高速铁路场景移动通信系统切换研究综述_李泰
- 格式:pdf
- 大小:294.43 KB
- 文档页数:7
高速铁路移动通信系统关键技术发展分析【摘要】本文分析了高速铁路移动通信系统的关键技术发展,包括移动性管理、信道分配与调度、信号传输与接收、安全与保密等方面。
首先介绍了该系统的概述,然后详细探讨了各项关键技术。
通过对这些技术的分析和研究,可以为高速铁路移动通信系统的稳定运行和高效通信提供有力支持。
本文总结了目前的研究成果,并展望了未来的发展方向。
高速铁路移动通信系统的发展对于提升交通运输效率和安全水平具有重要意义,研究成果的应用将推动相关领域的进步和发展。
通过本文的研究,可以为高速铁路移动通信系统的优化和改进提供重要参考。
【关键词】高速铁路、移动通信系统、关键技术、移动性管理、信道分配、信号传输、安全与保密、总结分析、未来发展、研究成果应用1. 引言1.1 背景介绍在当今信息化社会,移动通信系统已经成为人们生活中不可或缺的一部分。
随着高速铁路的发展和普及,高速铁路移动通信系统的建设和完善也显得尤为重要。
高速铁路移动通信系统是指在高速列车上实现信号传输和数据通信的系统,为乘客提供高速、稳定的通信服务,同时为列车运行提供必要的信息支持。
而要实现高速铁路移动通信系统的良好运行,关键技术的研究和发展则至关重要。
随着科技的不断进步和社会的不断发展,高速铁路移动通信系统面临着越来越多的挑战和机遇。
为了更好地满足人们对通信的需求,提高高速列车通信的稳定性和安全性,需要对高速铁路移动通信系统的关键技术进行深入研究和分析。
本文将重点对高速铁路移动通信系统的关键技术发展进行分析,探讨移动性管理技术、信道分配与调度技术、信号传输与接收技术以及安全与保密技术的应用,以期为高速铁路移动通信系统的发展提供参考和支持。
1.2 研究意义移动通信技术在高速铁路系统中的发展具有重要意义。
随着高铁网络的不断扩张和运营速度的提升,乘客在列车上需要进行高效的通信和数据传输。
高速铁路移动通信系统的发展可以提高乘客的通信体验,促进信息的传递和交流。
GSM—R移动通信系统在高速铁路中的应用我们知道在一些专属的领域,进行通讯必须使用一些专用的通讯方式,比如飞机使用的导航系统就和我们平常用的导航系统在功能,频率上都是不同的;再说到火车,其实也是一样的,列车使用的无线电通讯系统就和我们生活中的不大一样,火车使用的就是GSM-R这样的一个通讯系统。
本文就是针对GSM-R做了一个基本的介绍,然后结合GSM-R的使用也谈了谈GSM-R在现在的高速铁路中的运用。
GSM-R;高速铁路;调度;无线通讯一、前言我们几乎都坐过火车,但是似乎都会发现,有时候我们的火车在某些路段的时候只有一条铁轨,但是从来也没有发生过撞车;我们也发现,铁路每个站都是很繁忙的,每天在铁路上运行的列车那么多,如何来保证这些列车正常的运行,可定是花费了不少的功夫的。
但其实,GSM-R移动通讯系统就是能够来很好的保证列车系统正常运行,能够保证列车与调度,列车和乘客很好交流的一个先进系统,所以我们有必要对这样的一个系统有一些了解。
二、铁路GSM-R移动通信系统的概述GSM-R就是铁路使用的专属的移动通讯系统,是一种专用的信号传输系统。
主要就是把铁路的通讯系统也民用的信号区分开来,避免民用的通讯系统对于铁路运输调度的影响。
GSM-R的运用有效的提高了铁路运输系统的调度能力,对于铁路运输的日常管理工作也是起到了不小的作用。
到了今天GSM-R更多的是体现着一种数字化传输的功能,在铁路调度中,能够很好地跟踪列车的位置,能够很好地进行列车的管理,然后GSM-R还有呼叫的功能,可以运用到列车广播系统中;对于乘坐如今火车的人来说,GSM-R还有了旅客电话的功能,能够运用GSM-R进行无线通讯有了更多的人性化。
当然还有一个功能并不能忽视,那就是在铁路系统运行的过程中发生事故,出现故障的时候GSM-R也能为搜救起到有效的作用。
这一切都是靠GSM-R移动通讯技术的数字化功能来起作用的。
当然,我们不得不承认GSM-R移动通讯技术的起源不是中国,而是西方一些发达的国家,毕竟火车也是西方列强入侵中国的时候带进中国的。
LTE系统的切换及高速铁路环境下的改进研究的开题报告一、课题背景随着移动通信不断普及和发展,用户对于通信质量的要求也越来越高。
而在高速铁路上,由于列车高速行驶和信号遮蔽等因素的影响,对通信网络连接的稳定性和速率提出了更高的要求。
因此,对LTE系统在高速铁路环境下的切换及性能进行改进与优化,具有重要的现实意义和实际价值。
二、课题意义本课题旨在研究LTE系统在高速铁路环境下的切换及性能优化问题,主要解决以下几个问题:1. 针对高速铁路环境下的信号遮蔽和干扰等问题,优化LTE系统的信号传输质量和覆盖范围,提高用户体验。
2. 研究LTE系统在高速铁路环境下的切换问题,提高切换效率和成功率,保证用户通信的稳定性和连续性。
3. 分析LTE系统在高速列车运行状态下的各项性能指标,对系统进行改进优化,提高网络容量和传输速率。
三、研究方法本课题将采用以下几种研究方法:1. 研究前沿技术:分析和探究目前国内外LTE系统在高速铁路环境下的研究成果和应用现状,以及未来的发展趋势,为系统改进提供理论支持。
2. 现场测试实验:通过实地调研和试验,对LTE系统在高速列车运行状态下的信号质量、覆盖范围、切换效率和容量等指标进行测试和评估,获取实验数据。
3. 数据分析优化:对实验数据进行统计、分析和处理,找出问题所在,并进行优化改进,加强系统稳定性和容错性,提高网络传输速率。
四、预期目标本课题预期达到以下三个目标:1. 从理论上提出LTE系统在高速铁路环境下的切换及性能优化方案,为相关领域提供参考和实践指导。
2. 研究高速列车运行状态下LTE系统的实际情况,为系统的设计、建设和改进提供实验数据支撑。
3. 从实验数据中分析和总结出LTE系统在高速铁路环境下存在的问题及其解决方案,为相关部门提供参考,推动LTE系统在高速铁路环境下的应用和发展。
高铁环境下LTE的切换研究作者:黄欣荣来源:《消费电子·理论版》2013年第09期摘要:由于LTE系统采用扁平化的网络架构和精简的信令流程,大大减小了用户面的传输时延和控制面的时延,我们可以采用LTE技术来对高速铁路进行专网覆盖,提供稳定的高速宽带传输系统。
因此本文对高铁环境下LTE的切换解决方案进行研究,来满足高速铁路环境下LTE切换的要求。
关键词:高铁;LTE;切换中图分类号:TP31 文献标识码:A 文章编号:1674-7712 (2013) 08-0000-01一、引言随着我国高速铁路的迅速发展,为了满足高铁旅客对于数据通信和数字娱乐的通信需要,在高铁车厢内应能够同时支持WiFi、3G、2G等无线通信技术制式,使得我们可以使用专网覆盖的方式,达到更好的覆盖效果,为高铁的旅客提供高速的数据通信服务。
二、高铁环境的特征和对切换的影响由于高速铁路列车的运行速度比较高,当高速铁路列车在350公里/小时及以上的速度运行时,在3GHz的载波频率下,最大多普勒频移将达到1kHz以上。
更加恶劣的是多普勒频移是时变的,尤其是当列车与基站间的距离较近时。
列车运动速度的提高导致的较大时变多普勒频移和信道的多样性结合导致信道的动态衰落特征更加恶劣,给通信带来了很多问题。
问题主要如下有:(1)车体穿透损耗大;(2)高速带来的频繁切换;(3)小区重叠区难以满足切换和重选的需求;(4)高速带来的多普勒效应难以克服;(5)复杂的电磁环境。
三、针对高铁问题的切换解决方案(一)基于TD-LTE的高速铁路宽带无线通信系统方案为解决高速铁路通信的覆盖方案,可以采用基于TD-LTE的高速铁路宽带无线通信系统。
基于TD-LTE的高速铁路宽带无线通信系统是在高铁车厢内支持多种无线通信技术制式(如2G/3G、WiFi),车厢到路边的数据传输系统采用TD-LTE技术的通信系统。
系统共分为车载子系统,地面子系统和核心网三个部分。
高速铁路数字移动通信系统在当今高速发展的时代,高速铁路成为了人们出行的重要选择。
而在保障高速铁路安全、高效运行的众多技术中,高速铁路数字移动通信系统扮演着至关重要的角色。
高速铁路数字移动通信系统,简单来说,就是为高速铁路量身定制的一套通信解决方案。
它就像是一条无形的信息高速公路,确保列车上的工作人员、控制系统以及乘客之间能够顺畅、快速、准确地进行信息传递。
首先,我们来了解一下为什么高速铁路需要专门的数字移动通信系统。
高速铁路的运行速度极快,这就对通信的实时性和稳定性提出了极高的要求。
传统的移动通信系统在面对高速移动的场景时,往往会出现信号中断、延迟、数据丢失等问题。
想象一下,如果列车驾驶员与调度中心之间的通信出现了故障,无法及时获取前方路况信息或者接收指令,那将会给列车的运行带来极大的安全隐患。
再者,高速铁路上还有大量的设备需要实时监控和控制,比如列车的动力系统、制动系统、车门系统等,这些设备的数据传输也必须稳定可靠。
此外,随着人们对出行体验的要求不断提高,乘客在列车上也希望能够享受到高质量的通信服务,如流畅的上网、视频通话等。
那么,高速铁路数字移动通信系统是如何实现这些功能的呢?它主要由以下几个部分组成:基站系统是其中的重要一环。
在铁路沿线,会设置一系列的基站,这些基站就像一个个接力站,确保列车在高速行驶过程中始终能够接收到稳定的信号。
基站的覆盖范围和信号强度经过精心设计和优化,以适应高速铁路的特殊需求。
核心网则负责对通信数据进行处理和传输。
它就像是一个中央大脑,管理着整个通信网络的资源分配、数据路由等工作,确保信息能够快速、准确地到达目的地。
终端设备包括列车上的车载通信设备以及工作人员和乘客使用的移动终端。
车载通信设备与列车的控制系统紧密相连,能够实时传输列车的运行状态数据,并接收来自外部的指令。
而乘客使用的移动终端则可以通过无线网络接入系统,满足他们的通信和娱乐需求。
为了保证通信的可靠性和安全性,高速铁路数字移动通信系统还采用了一系列先进的技术。
高速铁路LTE-R改进切换算法的研究
陈鹏;米根锁;罗淼
【期刊名称】《铁道标准设计》
【年(卷),期】2018(062)005
【摘要】针对高速铁路中 LTE-R越区切换对切换时延和切换成功率的严格要求,以3GPP TS 23.401协议中的A3事件判决公式为基础,利用滤波中的测量周期Tm对触发时延进行计算,并结合列车的运行速度,对传统切换算法进行改进.通过对改进算法进行仿真,得到最佳切换参数.最后对两种算法采用相同的基站布置进行仿真比较,得出传统算法在列车运行速度超过205 km/h时,无法满足我国无线通信系统对越区切换成功率99.5%以上的要求,而改进后的算法在速度达到400 km/h时,切换成功率为99.6%,仍满足此要求.
【总页数】5页(P150-154)
【作者】陈鹏;米根锁;罗淼
【作者单位】兰州交通大学自动化与电气工程学院,兰州 730070;兰州交通大学自动化与电气工程学院,兰州 730070;兰州交通大学铁道技术学院,兰州 730070【正文语种】中文
【中图分类】U238;TN929.5
【相关文献】
1.基于实时动态迟滞的LTE-R切换算法优化研究 [J], 杜涛;陈永刚;李德威
2.基于速度触发的提前切换算法在LTE-R中的应用研究 [J], 米根锁;马硕梅
3.基于功率-距离的LTE-R切换算法优化研究 [J], 陈永刚;杜涛;王攀琦;戴乾军
4.基于IGWO-RBF的LTE-R切换算法研究 [J], 苏佳丽; 伍忠东; 丁龙斌; 刘菲菲
5.基于位置信息与波束赋形辅助的LTE-R切换算法研究 [J], 王瑞峰;席皓哲;姚军娟;吝天锁;郭博迪;臧浩月
因版权原因,仅展示原文概要,查看原文内容请购买。
高速铁路移动通信发展现状分析解析在当今快速发展的时代,高速铁路已成为人们出行的重要选择。
而与之相伴的高速铁路移动通信,也在不断演进和发展,为乘客提供更加便捷、高效和稳定的通信服务。
高速铁路移动通信面临着一系列独特的挑战。
首先,高速列车的快速移动导致频繁的小区切换,这对通信系统的无缝连接能力提出了极高要求。
当列车以数百公里的时速行驶时,在短时间内就会跨越多个基站覆盖区域,如果切换不及时或不顺畅,就会出现通信中断、信号不稳定等问题。
其次,高速列车的金属车体对信号有较强的屏蔽作用。
这意味着车内的信号强度会大幅减弱,影响通信质量。
为了克服这一障碍,需要采用特殊的天线设计和信号增强技术。
再者,高速铁路沿线的地理环境复杂多样,包括山区、隧道、桥梁等。
这些特殊地形会对信号的传播产生阻碍和干扰,进一步增加了实现稳定通信的难度。
近年来,为了应对这些挑战,高速铁路移动通信技术取得了显著的进展。
在标准和技术方面,LTER(长期演进铁路)和 5G 技术逐渐成为主流。
LTER 基于成熟的 LTE 技术,针对铁路应用进行了优化,提供了更高的可靠性和更低的延迟。
5G 技术则凭借其超高的带宽、超低的延迟和大规模连接的特性,为高速铁路移动通信带来了更多可能性。
例如,通过 5G 网络可以实现高清视频通话、实时列车监控以及智能运维等应用。
在网络覆盖方面,运营商加大了对高速铁路沿线的基站建设和优化力度。
通过合理规划基站布局、采用高增益天线和波束成形技术等手段,提高了信号覆盖的连续性和稳定性。
同时,还利用分布式天线系统和中继站等技术,解决了信号盲区和弱区的问题。
在终端设备方面,专门为高速铁路设计的手机、平板电脑等移动终端不断涌现。
这些设备具备更好的信号接收能力和抗干扰性能,能够在高速移动的环境下保持良好的通信连接。
然而,尽管取得了这些成就,高速铁路移动通信仍存在一些问题亟待解决。
一方面,不同地区和运营商之间的网络覆盖和服务质量存在差异。
13Internet Communication互联网+通信引言随着我国高速铁路的快速发展,为我国现代化交通运输事业带来了极大便利,带动了沿线城市和区域经济快速发展。
由于我国高铁时速超过300公里/时,随之而来的是高速铁路无线通信信号切换的问题,无法为用户提供稳定、无缝、高速的无线信号接入,因此探寻适合高铁场景下的无线通信接入方案已经成为亟需解决的问题。
如何在高速运行的时速下,提高无线通信网络服务的质量,成为三大运营商普遍关注的问题。
一、高速铁路无线通信的难点问题高速铁路无线通信环境下,无线网络接入存在多径损耗、多普勒频移、信号频繁切换等问题,与社会公众移动通信技术相比,高速铁路无线通信技术更为复杂,多普勒频移和信号的快速衰落,使得用户终端无法长期获得稳定的信号,导致高速列车无线通信连接速率极差,网络切换困难时常发生。
同时由于列车损耗和多径损耗,频繁的区域信号切换,造成车体内部形成弱信号区域,接收信号极容易产生干扰,使得通信误码率增加,通信质量下降。
1.1 多普勒频移因终端接收器快速移动产生的信号频移称为多普勒频移。
高铁列车行驶发生的多普勒频移和列车的运行速度以及基站信号方向的夹角成正比。
高铁列车在高速行驶过程中,致使无线信道环境发生变化,对无线通信系统数据传输的误码率、突发帧错误平均长度等造成极大影响,对终端设备提取载波频率提高了难度。
1.2 穿透损耗高速铁路影响无线通信接入的另一个原因是,高速行驶的列车车厢使得信号造成穿透损耗。
目前,我国高速铁路基本采用全封闭的金属车身,整体结构稳定、密封性极强,而且列车玻璃大多数采用单层或多层的金属镀膜玻璃,对信号的衰减影响很大。
尤其是随着无线通信信号频率的增加,信号遇到高速行驶的列车衰减更多,并且由于信号射入角度较少,信号的穿透损耗越大,所承受的车体损耗也越大。
因此,在通信基站的建设过程中,必须要考虑基站与铁路的距离,最好使天线的主瓣方向入射角大于10°,才能保证信号的有效传输。
高速铁路通信系统方案研究综述摘要:高速铁路正是基础设施建设的重中之重当前,国家大力发展高速铁路,其总里程数已经仅次于美国,位居世界第二。
与普通铁路相比,高速铁路具有通行车流量大、通行车速快为主等特点,这就对高速铁路的路况通行能力和服务质量提出了极为严格的要求。
高速铁路通信监控系统是现代高速铁路的有效管理手段,肩负着管理调度高速铁路的重任,在提高高速铁路安全性和运行效率方面具有重要作用。
畅通无阻高速铁路通信系统作为一个多种功能兼具的智能平台,不仅能实现高速铁路上实时信息的采集,接收,发送等基本功能,而且能汇总实时信息,协助铁路管理人员科学合理的利用高速铁路资源。
在我国高速铁路里程数不断刷新的大背景下,实现高速铁路沿线路况的全线通信监控,对推进高速铁路的安全运营和智能化发展具有显著意义。
高速铁路通信系统作为高速铁路机电系统最基础同时也是最重要的一环,作用是非常大的,能够在很大程度上保证整个高速铁路系统的正常运行。
关键词:高速铁路;通信系统;方案研究引言我国城市化的推进,高速铁路得到了快速发展,针对这种情况,相关单位应做好相应的管理工作,将高速铁路的作用充分的发挥出来。
结合近年的高速铁路管理情况,相关单位认为在高速铁路上设置通信监控系统能够更加有效的采集路面信息,并及时为行车人员提供有关情况,确保高速铁路能够安全、畅通的运行。
一、高速铁路通信系统的现状分析目前,我国高速铁路主要采用的是 SDH 光纤数字传输系统,在各大高速铁路上已经都有应用,比如,京珠高速铁路、京沪高速铁路和成渝高速铁路等等。
随着高速铁路渐渐发展的通信体系,其信令形式、选型的设备、制式要尽量维持相同,方便于以后的统一维护与管理,同时也为中国交通的专用通信网打下优良的基础。
将各种现代通信技术的融合运用,从而来推动我国高速铁路的智能化,现代化的飞速跨越式发展。
高速铁路机电项目几乎是使用光纤通信体系,为了高速铁路通信而供应的远距离传输渠道的是光纤数字传输体系,通过所构建的通信网络,就可以将所收集到的信息逐级进行传输,从而确保了信息的快速传输与信息的通畅。