七年级数学有理数单元测试题附答案
- 格式:docx
- 大小:17.56 KB
- 文档页数:3
第一章 有理数 单元测试题(一)一 选择题 (每小题3分 共30分)1.下列四个数中,在-2到 0之间的数是: ( ) A -1 B 1 C -3 D 32.下列说法正确的是: ( ) A 0表示什么也没有B 一场比赛赢4个球得+4分, -3分表示输了3个球 C 7没有符号D 0既不是正数,也不是负数3.既是分数又是正数的是( )A +2B -31C 0D 2.34.下列结论正确的有( )个: ① 规定了原点,正方向和单位长度的直线叫数轴 ② 最小的整数是0 ③ 正数,负数和零统称有理数 ④ 数轴上的点都表示有理数A 0B 1C 2D 3 5.在数轴上,A 点和B 点所表示的数分别为-2和1,若使A 点表示的数是B 点表示的数的3倍,应把A 点 ( ) A 向左移动5个单位 B 向右移动5个单位C 向右移动4个单位D 向左移动1个单位或向右移动5个单位 6.如图,在数轴上点M 表示的数可能是( )A .1.5B .-1.5C .-2.4D .2.47.在0.75,-1,-0.75,3,0,+5,-3这几个数中,互为相反数的有( ) A .0对 B .1对 C .2对 D .3对8.数a 在数轴上的对应点在原点左边,且|a|=4,则a 的值为( ) A .4或-4 B .4 C .-4 D .以上都不对 9.一个数的绝对值等于它的相反数,则这个数是( ) A .正数或0 B .负数或0 C .所有正数 D .所有负数10.清晨蜗牛从树根沿着树干往上爬,树高10m ,白天爬4m ,夜间下滑3m ,它从树根爬上树顶,需( ) A 、10天 B 、9天 C 、8天 D 、7天 二 填空题(每小题3分 共18分)1.如果向南走5米,记作+5米,那么向北走8米应记作____米. 2.已知下列各数:-4,3.5,0,-2,10,+21,其中非负数有_______ 3.在数轴上,距原点6个单位长度的点表示的数为____. 4.若a=-2020,则—a=____.5.某天早晨的气温是18℃,中午上升6℃,半夜又下降5℃,则半夜的气温是_____℃.6.如果x <0,y >0,且|x|=2,|y|=3,那么x+y=________. 三 解答题(本大题共72分) 1(30分) 计算(1)1+(-21 )+31 +(-61) (2)(-109)+(-267)+(+109)+268(3)(-23)-(+12)-(-56)-(-13) (4)(-813)-(+12)-(-70)-(-813);(5)(-3)-(-17)-(-33)-81 (6)(-12)+ 14 -(-21)+ 3 -(-2)2(8分)简答题:(1)-1和0之间还有负数吗?如有,请列举。
《有理数》单元测试一.选择题(共12小题)1.已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()A.3.16×109B.3.16×107C.3.16×108D.3.16×1062.﹣2的倒数是()A.2B.﹣3C.﹣ D.3.计算(﹣16)÷的结果等于()A.32 B.﹣32 C.8 D.﹣84.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有()A.1个 B.2个 C.3个 D.4个5.如图,点A、B在数轴上表示的数的绝对值相等,且AB=4,那么点A表示的数是()A.﹣3 B.﹣2 C.﹣1 D.36.对于任何有理数a,下列各式中一定为负数的是()A.﹣(﹣3+a)B.﹣a C.﹣|a+1| D.﹣|a|﹣17.如图,现有3×3的方格,每个小方格内均有不同的数字,要求方格内每一行.每一列以及每一条对角线上的三个数字之和均相等,图中给出了部分数字,则P 处对应的数字是()A.7 B.5 C.4 D.18.下列说法不正确的是()A.0既不是正数,也不是负数B.绝对值最小的数是0C.绝对值等于自身的数只有0和1D.平方等于自身的数只有0和19.已知a,b,c为非零的实数,则的可能值的个数为()A.4 B.5 C.6 D.710.“△”表示一种运算符号,其意义是:a△b=2a﹣b,如果x△(1△3)=2,那么x等于()A.1 B.C.D.211.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)12.当a=﹣1时,n为整数,则﹣a n+1(a2n+3﹣a2n+1﹣3a n+1+6a n)的值是()A.9 B.3 C.﹣3 D.﹣9二.填空题(共4小题)13.当a,b互为相反数,则代数式a2+ab﹣2的值为.14.计算﹣2+3×4的结果为15.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是.16.一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;36=22×32,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为三.解答题(共7小题)17.已知:b是最小的正整数,且a、b、c满足(c﹣5)2+|a+b|=0,试回答下列问题:(1)求a,b,c的值(2)a、b、c所对应的点分别为A、B、C,若点A以每秒1个单位长度的速度向左运动,点C以每秒5个点位长度的速度向右运动,试求几秒后点A与点C 距离为12个点位长度?18.如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是.(2)经过几秒,点M、点N分别到原点O的距离相等?19.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|的值.(2)若|x﹣2|=5,求x的值是多少?(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.20.(1)﹣|﹣7+1|+3﹣2÷(﹣)(2)()÷(﹣)×(3)21.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数c,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,),都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是;(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(注意:不能与题目中已有的“椒江有理数对”重复)22.如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.23.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D的距离和是一个不变的值(即PA+PC+PB+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.参考答案与试题解析一.选择题(共12小题)1.已知地球上海洋面积约为316 000 000km2,数据316 000 000用科学记数法可表示为()A.3.16×109B.3.16×107C.3.16×108D.3.16×106【解答】解:316 000 000用科学记数法可表示为3.16×108,故选:C.2.﹣2的倒数是()A.2B.﹣3C.﹣ D.【解答】解:﹣2的倒数是﹣.故选:C.3.计算(﹣16)÷的结果等于()A.32 B.﹣32 C.8 D.﹣8【解答】解:(﹣16)÷=(﹣16)×2=﹣32,故选:B.4.下列各数|﹣2|,﹣(﹣2)2,﹣(﹣2),(﹣2)3中,负数的个数有()A.1个 B.2个 C.3个D.4个【解答】解:|﹣2|=2,﹣(﹣2)2=﹣4,﹣(﹣2)=2,(﹣2)3=﹣8,﹣4,﹣8是负数,∴负数有2个.故选:B.5.如图,点A、B在数轴上表示的数的绝对值相等,且AB=4,那么点A表示的数是()A.﹣3 B.﹣2 C.﹣1 D.3【解答】解:如图,AB的中点即数轴的原点O.根据数轴可以得到点A表示的数是﹣2.故选:B.6.对于任何有理数a,下列各式中一定为负数的是()A.﹣(﹣3+a)B.﹣a C.﹣|a+1| D.﹣|a|﹣1【解答】解:A、﹣(﹣3+a)=3﹣a,a≤3时,原式不是负数,故A错误;B、﹣a,当a≤0时,原式不是负数,故B错误;C、∵﹣|a+1|≤0,∴当a≠﹣1时,原式才符合负数的要求,故C错误;D、∵﹣|a|≤0,∴﹣|a|﹣1≤﹣1<0,所以原式一定是负数,故D正确.故选:D.7.如图,现有3×3的方格,每个小方格内均有不同的数字,要求方格内每一行.每一列以及每一条对角线上的三个数字之和均相等,图中给出了部分数字,则P 处对应的数字是()A.7 B.5 C.4 D.1【解答】解:设下面中间的数为x,如图所示:p+6+8=7+6+5,解得P=4.故选:C.8.下列说法不正确的是()A.0既不是正数,也不是负数B.绝对值最小的数是0C.绝对值等于自身的数只有0和1D.平方等于自身的数只有0和1【解答】解:A、B、D均正确,绝对值等于它自身的数是所有非负数,所以C 错误,故选:C.9.已知a,b,c为非零的实数,则的可能值的个数为()A.4 B.5 C.6 D.7【解答】解:①a、b、c三个数都是正数时,a>0,ab>0,ac>0,bc>0,原式=1+1+1+1=4;②a、b、c中有两个正数时,设为a>0,b>0,c<0,则ab>0,a c<0,bc<0,原式=1+1﹣1﹣1=0;设为a>0,b<0,c>0,则ab<0,ac>0,bc<0,原式=1﹣1+1﹣1=0;设为a<0,b>0,c>0,则ab<0,ac<0,bc>0,原式=﹣1﹣1﹣1+1=﹣2;③a、b、c有一个正数时,设为a>0,b<0,c<0,则ab<0,ac<0,bc>0,原式=1﹣1﹣1+1=0;设为a<0,b>0,c<0,则ab<0,ac>0,bc<0,原式=﹣1﹣1+1﹣1=﹣2;设为a<0,b<0,c>0,则ab>0,ac<0,bc<0,原式=﹣1+1﹣1﹣1=﹣2;④a、b、c三个数都是负数时,即a<0,b<0,c<0,则ab>0,ac>0,bc>0,原式=﹣1+1+1+1=2.综上所述,的可能值的个数为4.故选:A.10.“△”表示一种运算符号,其意义是:a△b=2a﹣b,如果x△(1△3)=2,那么x等于()A.1 B.C.D.2【解答】∵x△(1△3)=2,x△(1×2﹣3)=2,x△(﹣1)=2,2x﹣(﹣1)=2,2x+1=2,∴x=.11.如图,在日历中任意圈出一个3×3的正方形,则里面九个数不满足的关系式是()A.a1+a2+a3+a7+a8+a9=2(a4+a5+a6)B.a1+a4+a7+a3+a6+a9=2(a2+a5+a8)C.a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5D.(a3+a6+a9)﹣(a1+a4+a7)=(a2+a5+a8)【解答】解:A、a1+a2+a3+a7+a8+a9=(a4+a5+a6)﹣21+(a4+a5+a6)+21=2(a4+a5+a6),正确,不符合题意;B、a1+a4+a7+a3+a6+a9=a1+a3+a4+a6+a7+a9=2(a2+a5+a8),正确,不符合题意;C、a1+a2+a3+a4+a5+a6+a7+a8+a9=9a5,正确,不符合题意D、(a3+a6+a9)﹣(a1+a4+a7)=6,错误,符合题意.故选:D.12.当a=﹣1时,n为整数,则﹣a n+1(a2n+3﹣a2n+1﹣3a n+1+6a n)的值是()A.9 B.3 C.﹣3 D.﹣9【解答】解:当n是偶数时,原式=1×(﹣1+1+3+6)=9,当n是奇数时,原式=﹣1×(﹣1+1﹣3﹣6)=9.故选:A.二.填空题(共4小题)13.当a,b互为相反数,则代数式a2+ab﹣2的值为﹣2.【解答】解:∵a,b互为相反数,∴a+b=0,∴a2+ab﹣2=a(a+b)﹣2=0﹣2=﹣2,故答案为:﹣2.14.计算﹣2+3×4的结果为10【解答】解:﹣2+3×4=﹣2+12=10,故答案为:10.15.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当﹣1<x<1时,化简[x]+(x)+[x)的结果是﹣2或﹣1或0或1或2.【解答】解:①﹣1<x<﹣0.5时,[x]+(x)+[x)=﹣1+0﹣1=﹣2;②﹣0.5<x<0时,[x]+(x)+[x)=﹣1+0+0=﹣1;③x=0时,[x]+(x)+[x)=0+0+0=0;④0<x<0.5时,[x]+(x)+[x)=0+1+0=1;⑤0.5<x<1时,[x]+(x)+[x)=0+1+1=2.故答案为:﹣2或﹣1或0或1或2.16.一个整数的所有正约数之和可以按如下方法求得,如:6=2×3,则6的所有正约数之和(1+3)+(2+6)=(1+2)×(1+3)=12;12=22×3,则12的所有正约数之和(1+3)+(2+6)+(4+12)=(1+2+22)×(1+3)=28;36=22×32,则36的所有正约数之和(1+3+9)+(2+6+18)+(4+12+36)=(1+2+22)×(1+3+32)=91.参照上述方法,那么200的所有正约数之和为465【解答】解:200的所有正约数之和可按如下方法得到:因为200=23×52,所以200的所有正约数之和为(1+2+22+23)×(1+5+52)=465.故答案为:465.三.解答题(共7小题)17.已知:b是最小的正整数,且a、b、c满足(c﹣5)2+|a+b|=0,试回答下列问题:(1)求a,b,c的值(2)a、b、c所对应的点分别为A、B、C,若点A以每秒1个单位长度的速度向左运动,点C以每秒5个点位长度的速度向右运动,试求几秒后点A与点C 距离为12个点位长度?【解答】解:(1)由题意得,b=1,c﹣5=0,a+b=0,则a=﹣1,b=1,c=5;(2)设x秒后点A与点C距离为12个点位长度,则x+5x=12﹣6,解得,x=1,答:1秒后点A与点C距离为12个点位长度.18.如图,已知A,B两点在数轴上,点A表示的数为﹣10,OB=3OA,点M以每秒3个单位长度的速度从点A向右运动.点N以每秒2个单位长度的速度从点O向右运动(点M、点N同时出发)(1)数轴上点B对应的数是30.(2)经过几秒,点M、点N分别到原点O的距离相等?【解答】(1)∵OB=3OA=30,∴B对应的数是30.故答案为:30.(2)设经过x秒,点M、点N分别到原点O的距离相等,此时点M对应的数为3x﹣10,点N对应的数为2x.①点M、点N在点O两侧,则10﹣3x=2x,解得x=2;②点M、点N重合,则,3x﹣10=2x,解得x=10.所以经过2秒或10秒,点M、点N分别到原点O的距离相等.19.同学们都知道,|4﹣(﹣2)|表示4与﹣2的差的绝对值,实际上也可理解为4与﹣2两数在数轴上所对应的两点之间的距离;同理|x﹣3|也可理解为x与3两数在数轴上所对应的两点之间的距离.试探索:(1)|4﹣(﹣2)|的值.(2)若|x﹣2|=5,求x的值是多少?(3)同理|x﹣4|+|x+2|=6表示数轴上有理数x所对应的点到4和﹣2所对应的两点距离之和,请你找出所有符合条件的整数x,使得|x﹣4|+|x+2|=6,写出求解的过程.【解答】解:(1)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴|4﹣(﹣2)|=6.(2)|x﹣2|=5表示x与2两数在数轴上所对应的两点之间的距离是5,∵﹣3或7与2两数在数轴上所对应的两点之间的距离是5,∴若|x﹣2|=5,则x=﹣3或7.(3)∵4与﹣2两数在数轴上所对应的两点之间的距离是6,∴使得|x﹣4|+|x+2|=6成立的整数是﹣2和4之间的所有整数(包括﹣2和4),∴这样的整数是﹣2、﹣1、0、1、2、3、4.20.(1)﹣|﹣7+1|+3﹣2÷(﹣)(2)()÷(﹣)×(3)【解答】解:(1)原式=﹣6+3+6=3;(2)原式=﹣×(﹣)×=1;(3)原式===2.2.21.观察下列两个等式:3+2=3×2﹣1,4+﹣1,给出定义如下:我们称使等式a+b=ab﹣1成立的一对有理数c,b为“椒江有理数对”,记为(a,b),如:数对(3,2),(4,),都是“椒江有理数对”.(1)数对(﹣2,1),(5,)中是“椒江有理数对”的是(5,);(2)若(a,3)是“椒江有理数对”,求a的值;(3)若(m,n)是“椒江有理数对”,则(﹣n,﹣m)不是“椒江有理数对”(填“是”、“不是”或“不确定”).(4)请再写出一对符合条件的“椒江有理数对”(6,1.4)(注意:不能与题目中已有的“椒江有理数对”重复)【解答】解:(1)﹣2+1=﹣1,﹣2×1﹣1=﹣3,∴﹣2+1≠﹣2×1﹣1,∴(﹣2,1)不是“共生有理数对”,∵5+=,5×﹣1=,∴5+=5×﹣1,∴(5,)中是“椒江有理数对”;(2)由题意得:a+3=3a﹣1,(3)不是.理由:﹣n+(﹣m)=﹣n﹣m,﹣n•(﹣m)﹣1=mn﹣1∵(m,n)是“椒江有理数对”∴m+n=mn﹣1∴﹣n﹣m=﹣(mn﹣1)m∴(﹣n,﹣m)不是“椒江有理数对”,(4)(5,1.5)等.故答案为:(5,);不是;(5,1.5).22.如图A在数轴上所对应的数为﹣2.(1)点B在点A右边距A点4个单位长度,求点B所对应的数;(2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点B以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求A,B两点间距离.(3)在(2)的条件下,现A点静止不动,B点沿数轴向左运动时,经过多长时间A,B两点相距4个单位长度.【解答】解:(1)﹣2+4=2.故点B所对应的数;(2)(﹣2+6)÷2=2(秒),4+(2+2)×2=12(个单位长度).故A,B两点间距离是12个单位长度.(3)运动后的B点在A点右边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12﹣4,运动后的B点在A点左边4个单位长度,设经过x秒长时间A,B两点相距4个单位长度,依题意有2x=12+4,解得x=8.故经过4秒或8秒长时间A,B两点相距4个单位长度.23.已知:在一条东西向的双轨铁路上迎面驶来一快一慢两列火车,快车长AB=2(单位长度),慢车长CD=4(单位长度),设正在行驶途中的某一时刻,如图,以两车之间的某点O为原点,取向右方向为正方向画数轴,此时快车头A在数轴上表示的数是a,慢车头C在数轴上表示的数是b.若快车AB以6个单位长度/秒的速度向右匀速继续行驶,同时慢车CD以2个单位长度/秒的速度向左匀速继续行驶,且|a+8|与(b﹣16)2互为相反数.(1)求此时刻快车头A与慢车头C之间相距多少单位长度?(2)从此时刻开始算起,问再行驶多少秒钟两列火车行驶到车头AC相距8个单位长度?(3)此时在快车AB上有一位爱动脑筋的七年级学生乘客P,他发现行驶中有一段时间t秒钟,他的位置P到两列火车头A、C的距离和加上到两列火车尾B、D 的距离和是一个不变的值(即PA+PC+PB+PD为定值).你认为学生P发现的这一结论是否正确?若正确,求出这个时间及定值;若不正确,请说明理由.【解答】解:(1)∵|a+8|与(b﹣16)2互为相反数,∴|a+8|+(b﹣16)2=0,∴a+8=0,b﹣16=0,解得a=﹣8,b=16.∴此时刻快车头A与慢车头C之间相距16﹣(﹣8)=24单位长度;(2)(24﹣8)÷(6+2)=16÷8=2(秒).或(24+8)÷(6+2)=4(秒)答:再行驶2秒或4秒两列火车行驶到车头AC相距8个单位长度;(3)∵PA+PB=AB=2,当P在CD之间时,PC+PD是定值4,t=4÷(6+2)=4÷8=0.5(秒),此时PA+PC+PB+PD=(PA+PB)+(PC+PD)=2+4=6(单位长度).故这个时间是0.5秒,定值是6单位长度.。
七年级数学有理数单元测试卷班级姓名 分数 一、选择题:每题5分,共25分1. 下列各组量中,互为相反意义的量是( )A 、收入200元与赢利200元B 、上升10米与下降7米C 、“黑色”与“白色”D 、“你比我高3cm ”与“我比你重3kg ”2.为迎接即将开幕的广州亚运会,亚组委共投入了2 198 000 000元人民币建造各项体育设施,用科学记数法表示该数据是( )A 10100.2198⨯元 B 6102198⨯元 C 910198.2⨯元 D 1010198.2⨯元 3. 下列计算中,错误的是( )。
A 、3662-=-B 、161)41(2=± C 、64)4(3-=- D 、0)1()1(1000100=-+- 4. 对于近似数0.1830,下列说法正确的是( )A 、有两个有效数字,精确到千位B 、有三个有效数字,精确到千分位C 、有四个有效数字,精确到万分位D 、有五个有效数字,精确到万分5.下列说法中正确的是 ( )A .a -一定是负数B a 一定是负数C a -一定不是负数D 2a -一定是负数二、填空题:(每题5分,共25分)6. 若0<a <1,则a ,2a ,1a的大小关系是 7.若a a =-那么2a 08. 如图,点A B ,在数轴上对应的实数分别为m n ,,则A B ,间的距离是 .(用含m n ,的式子表示)9. 如果0 xy 且x 2=4,y 2 =9,那么x +y =10、正整数按下图的规律排列.请写出第6行,第5列的数字 .A B m 0 n x 第一行 第二行 第三行 第四行 第五行 第一列 第二列 第三列 第四列 第五列 1 2 5 10 17 … 4 3 6 11 18 … 9 8 7 12 19 … 16 15 14 13 20 … 25 24 23 22 21 … ……三、解答题:每题6分,共24分11.① (-5)×6+(-125) ÷(-5) ② 312 +(-12 )-(-13 )+223③(23 -14 -38 +524 )×48 ④-18÷ (-3)2+5×(-12)3-(-15) ÷5四、解答题:12. (本小题6分) 把下列各数分别填入相应的集合里.()88.1,5,2006,14.3,722,0,34,4++-----(1)正数集合:{ …};(2)负数集合:{ …};(3)整数集合:{ …};(4)分数集合:{ …}1013. (本小题6分)某地探空气球的气象观测资料表明,高度每增加1千米,气温大约降低6℃.若该地地面温度为21℃,高空某处温度为-39℃,求此处的高度是多少千米?14. (本小题6分) 已知在纸面上有一数轴(如图),折叠纸面. (1)若1表示的点与-1表示的点重合,则- 2表示的点与数 表示的点重合;(2)若-1表示的点与3表示的点重合,则5表示的点与数 表示的点重合;15.(本小题8分) 某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.(1)这10名同学中最高分是多少?最低分是多少?(2)10名同学中,低于80分的所占的百分比是多少?(3)10名同学的平均成绩是多少?七年级数学有理数测试卷 参考答案1.B 2.C 3.D 4.C 5.C 6.aa a 12 7.≤ 8.n-m 9.±1 10.32 11①-5 ②6 ③12 ④83 12①88.1,2006,722+ ②)5(,14.3,34,4+----- ③)5(,2006,0,4+-- ④88.1,14.3,722,34+--- 13.10千米14. ①2 ②-315.①最高分:92分;最低分70分.②低于80分的学生有5人。
一、选择题1.下列说法中,①a - 一定是负数;② a -一定是正数;③倒数等于它本身的数是±1;④一个数的平方等于它本身的数是1;⑤两个数的差一定小于被减数;⑥如果两个数的和为正数,那么这两个数中至少有一个正数正确的有( ) A .2个 B .3个 C .4个 D .5个2.计算:11322⎛⎫⎛⎫-÷-÷- ⎪ ⎪⎝⎭⎝⎭的结果是( ) A .﹣3B .3C .﹣12D .12 3.下列各数中,互为相反数的是( )A .+(-2)与-2B .+(+2)与-(-2)C .-(-2)与2D .-|-2|与+(+2)4.若一个数的绝对值的相反数是17-,则这个数是( ) A .17- B .17+ C .17± D .7±5.计算112123123412542334445555555555⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-+++---+++++⋯++⋯+ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭的值( )A .54B .27C .272D .06.一件商品原售价为2000元,销售时先提价10%;再降价10%,现在的售价与原售价相比( )A .提高20元B .减少20元C .提高10元D .售价一样 7.计算-3-1的结果是( )A .2B .-2C .4D .-4 8.下列四个式子,正确的是( )①33.834⎛⎫->-+ ⎪⎝⎭;②3345⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭;③ 2.5 2.5->-;④125523⎛⎫-->+ ⎪⎝⎭. A .③④ B .① C .①② D .②③ 9.6-的相反数是( )A .6B .-6C .16D .16- 10.有理数a ,b 在数轴上表示如图所示,则下列各式中正确的是( )A .0ab >B .b a >C .a b ->D .b a < 11.计算(-2)2018+(-2)2019等于( ) A .-24037 B .-2C .-22018D .2201812.若2020M M +-=+,则M 一定是( )A .任意一个有理数B .任意一个非负数C .任意一个非正数D .任意一个负数二、填空题13.在有理数3.14,3,﹣12 ,0,+0.003,﹣313,﹣104,6005中,负分数的个数为x ,正整数的个数为y ,则x+y 的值等于__.14.23(2)0x y -++=,则x y 为______.15.按下面程序计算,若开始输入x 的值为正数,最后输出的结果为656,则满足条件所有x 的值是___.16.计算:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[________]+1.2=________+1.2=____;(2)32.5+46+(-22.5)=[____]+46=_____+46=____.17.我国“杂交水稻之父”袁隆平主持研究的某种超级杂交稻平均亩产820千克,某地今年计划栽种这种超级杂交稻30万亩,预计今年这种超级杂交稻的产量_____千克(用科学记数法表示)18.已知一个数的绝对值为5,另一个数的绝对值为3,且两数之积为负,则两数之差为____.19.如果将正整数按下图的规律排列,那么第六行,第五列的数为_______.20.(1)用四舍五入法,对5.649取近似值,精确到0.1的结果是____;(2)用四舍五入法,把1 999.508取近似值(精确到个位),得到的近似数是____;(3)用四舍五入法,把36.547精确到百分位的近似数是____.三、解答题21.计算:2334[28(2)]--⨯-÷-22.计算:(1)45(30)(13)+---;(2)32128(2)4-÷-⨯-. 23.在数轴上表示下列各数:14, 1.5,3,0,2.5,52----,并将它们按从小到大的顺序排列.24.以1厘米为1个单位长度用直尺画数轴时,数轴上互为相反数的点A 和点B 刚好对着直尺上的刻度2和刻度8.(1)写出点A 和点B 表示的数; (2)写出在点B 左侧,并与点B 距离为9.5厘米的直尺左端点C 表示的数;(3)若直尺长度为a 厘米,移动直尺,使得直尺的长边CD 的中点与数轴上的点A 重合,求此时左端点C 表示的数.25.计算:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭. 26.某儿童自行车厂计划一周生产儿童自行车1400辆,平均每天生产200辆,但由于种种原因,实际每天的生产量与计划每天的生产量有出入.实际情况如下表(超产记为正,减产记为负) 星期一 二 三 四 五 六 日 增减 5+ 2- 4- 13+ 10- 16+ 9-(2)这周生产量最多的一天比生产量最少的一天多生产多少辆?(3)该厂实行每周计件工资制,每生产一辆可得50元,若超额完成任务,则超出部分每辆另奖12元;少生产一辆扣20元,那么该工厂这周的工资总额是多少元?【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据正数和负数、绝对值、倒数等相关的性质,逐一判断即可.【详解】①-a不一定是负数,若a为负数,则-a就是正数,故说法不正确;②|-a|一定是非负数,故说法不正确;③倒数等于它本身的数为±1,说法正确;④0的平方为0,故说法不正确;⑤一个数减去一个负数,差大于被减数,故说法不正确;⑥如果两个数的和为正数,那么这两个数中至少有一个正数,故说法正确.说法正确的有③、⑥,故选A.【点睛】本题主要考查有理数的加法、正数和负数、绝对值、倒数,能熟记相关的定义及其性质是解决此类题目的关键.2.C解析:C【分析】根据有理数的除法法则,可得除以一个数等于乘以这个数的倒数,再根据有理数的乘法运算,可得答案.【详解】原式﹣3×(﹣2)×(﹣2)=﹣3×2×2=﹣12,故选:C.【点睛】本题考查了有理数的乘除法法则,除以一个数等于乘这个数的倒数,计算过程中,最后结果的正负根据原式中负号的个数确定,原则是奇负偶正.3.D解析:D【解析】【分析】先将各选项中的数字化简,然后根据相反数的定义进行判断即可.【详解】A. +(-2)=-2,-2=-2,故A 选项中的两个数不互为相反数;B. +(+2)=2, -(-2)=2,故B 选项中的两个数不互为相反数;C. -(-2)=2,2=2,故C 选项中的两个数不互为相反数;D. -|-2|=-2,+(+2)=2,-2与2互为相反数,故D 选项中的两个数互为相反数,故选D.【点睛】本题考查了相反数的概念,涉及了绝对值化简等,熟练掌握相关知识是解题的关键. 4.C解析:C【分析】根据绝对值的代数意义和相反数的定义进行分析解答即可.【详解】∵相反数为17-的数是17,而17-或17的绝对值都是17, ∴这个数是17-或17. 故选C.【点睛】熟知“绝对值的代数意义和相反数的定义”是解答本题的关键. 5.C解析:C【分析】根据有理数的加减混合运算先算括号内的,进而即可求解.【详解】 解:原式=﹣12+1﹣32+2﹣52+3﹣72+…+27 =27×12 =272. 故选:C .【点睛】本题考查了有理数的加减混合运算,解决本题的关键是寻找规律.6.B解析:B【分析】根据题意可列式现在的售价为()()2000110110⨯+%⨯-%,即可求解.【详解】解:根据题意可得现在的售价为()()20001101101980⨯+%⨯-%=(元),所以现在的售价与原售价相比减少20元,故选:B .【点睛】本题考查有理数运算的实际应用,根据题意列出算式是解题的关键.7.D解析:D【解析】试题-3-1=-3+(-1)=-(3+1)=-4.故选D.8.D解析:D【分析】利用绝对值的性质去掉绝对值符号,再根据正数大于负数,两个负数比较大小,大的数反而小,可得答案.【详解】①∵33 3.754⎛⎫-+=- ⎪⎝⎭, 33.83 3.754>=, ∴33.834⎛⎫-<-+ ⎪⎝⎭,故①错误;②∵33154420⎛⎫--== ⎪⎝⎭,21335502⎛⎫--== ⎪⎝⎭, 15122020>, ∴3345⎛⎫⎛⎫-->-- ⎪ ⎪⎝⎭⎝⎭,故②正确; ③∵ 2.5 2.5-=,2.5 2.5>-, ∴ 2.5 2.5->-,故③正确;④∵111523623⎛⎫--== ⎪⎝⎭,217533346+==, 333466<,∴125523⎛⎫-->+ ⎪⎝⎭,故④错误. 综上,正确的有:②③.故选:D .【点睛】本题考查了绝对值的化简以及有理数大小比较,两个负数比较大小,绝对值大的数反而小.9.B解析:B【详解】先根据绝对值的定义化简|-6|,再由相反数的概念解答即可.解:∵|-6|=6,6的相反数是-6,∴|-6|的相反数是-6.故选B .10.C解析:C【分析】根据数轴可得0a b <<且a b >,再逐一分析即可.【详解】由题意得0a <,0b >,a b >,A 、0ab <,故本选项错误;B 、a b >,故本选项错误;C 、a b ->,故本选项正确;D 、b a >,故本选项错误.故选:C .【点睛】本题考查数轴,由数轴观察出0a b <<且a b >是解题的关键.11.C解析:C【分析】直接利用偶次方,奇次方的性质化简各数得出答案.【详解】解:(-2)2018+(-2)2019=(-2)2018+(-2)2018·(-2)=(-2)2018·(1-2)=-22018故选:C.【点睛】此题主要考查了偶次方的性质,正确化简各数是解题关键.12.B解析:B【分析】直接利用绝对值的性质即可解答.【详解】解:∵M +|-20|=|M |+|20|,∴M≥0,为非负数.故答案为B .【点睛】本题考查了绝对值的应用,灵活应用绝对值的性质是正确解答本题的关键.二、填空题13.4【解析】负分数为:﹣﹣3共2个;正整数为:36005共2个则x+y=2+2=4故答案为4【点睛】本题主要考查了有理数的分类熟记有理数的分类是解决此题的关键解析:4【解析】 负分数为:﹣12 ,﹣313,共2个;正整数为: 3, 6005共2个, 则x+y=2+2=4,故答案为4. 【点睛】本题主要考查了有理数的分类,熟记有理数的分类是解决此题的关键. 14.﹣8【分析】根据绝对值的非负性和偶次方的非负性求出xy 的值然后代入代数式中计算即可【详解】解:∵∴x-3=0y+2=0解得:x=3y=﹣2∴==﹣8故答案为:﹣8【点睛】本题考查代数式求值绝对值乘方解析:﹣8【分析】根据绝对值的非负性和偶次方的非负性求出x 、y 的值,然后代入代数式中计算即可.【详解】解:∵23(2)0x y -++=,∴x-3=0,y+2=0,解得:x=3,y=﹣2,∴x y =3(2)-=﹣8,故答案为:﹣8.【点睛】本题考查代数式求值、绝对值、乘方运算,熟练掌握绝对值和偶次方的非负性是解答的关键.15.131或26或5或【分析】利用逆向思维来做分析第一个数就是直接输出656可得方程5x+1=656解方程即可求得第一个数再求得输出为这个数的第二个数以此类推即可求得所有答案【详解】用逆向思维来做:第一解析:131或26或5或45.【分析】利用逆向思维来做,分析第一个数就是直接输出656,可得方程5x+1=656,解方程即可求得第一个数,再求得输出为这个数的第二个数,以此类推即可求得所有答案.【详解】用逆向思维来做:第一个数就是直接输出其结果的:5x+1=656,解得:x=131;第二个数是(5x+1)×5+1=656,解得:x=26;同理:可求出第三个数是5;第四个数是45,∴满足条件所有x的值是131或26或5或45.故答案为131或26或5或45.【点睛】此题考查了方程与不等式的应用.注意理解题意与逆向思维的应用是解题的关键.16.(-08)+(-07)+(-21)(-36)-24325+(-225)1056【分析】(1)先根据加法的运算律把同号的数相加再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加再根据加法解析:(-0.8)+(-0.7)+(-2.1) (-3.6) -2.4 32.5+(-22.5) 10 56【分析】(1)先根据加法的运算律把同号的数相加,再根据加法法则计算;(2)先根据加法的运算律把相加得整数的数相加,再根据加法法则计算.【详解】解:(1)(-0.8)+1.2+(-0.7)+(-2.1)=[(-0.8)+(-0.7)+(-2.1)]+1.2=(-3.6)+1.2=-2.4;(2)32.5+46+(-22.5)=[32.5+(-22.5)]+46=10+46=56.故答案为:(-0.8)+(-0.7)+(-2.1),(-3.6),-2.4;32.5+(-22.5),10,56.【点睛】本题考查了有理数的加法,属于基本题型,熟练掌握加法运算律和加法法则是解题的关键.17.46×108【分析】本题已知的是亩产量和亩数要求总产量就要利用三者之间的关系式先计算总产量通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案【详解】解:依题意得:解析:46×108【分析】本题已知的是亩产量和亩数,要求总产量,就要利用三者之间的关系式先计算总产量.通过简单的计算后用科学计数法表示:总产量=亩产量×总亩数(注意:单位换算)即可得出答案.【详解】解:依题意得:820×300000=246000000=2.46×108.故答案为:2.46×108.【点睛】此题主要考查科学记数法的表示方法.科学记数法的表示形式为10na 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.±8【分析】首先根据绝对值的性质得出两数进而分析得出答案【详解】设|a|=5|b|=3则a=±5b=±3∵ab<0∴当a=5时b=-3∴5-(-3)=8;当a=-5时b=3∴-5-3=-8故答案为:解析:±8【分析】首先根据绝对值的性质得出两数,进而分析得出答案.【详解】设|a|=5,|b|=3,则a=±5,b=±3,∵ab<0,∴当a=5时,b=-3,∴5-(-3)=8;当a=-5时,b=3,∴-5-3=-8.故答案为:±8.【点睛】本题主要考查了绝对值的性质以及有理数的混合运算,熟练掌握绝对值的性质是解题关键.19.32【分析】观察分析题图中数的排列规律可知:第n行第一列是且第n行第一列到第n 列的数从左往右依次减少1所以第六行的第一个数是36减去4即可得到第五个数【详解】解:观察分析题图中数的排列规律可知:第n 解析:32【分析】观察、分析题图中数的排列规律可知:第n 行第一列是2n ,且第n 行第一列到第n 列的数从左往右依次减少1,所以第六行的第一个数是36,减去4,即可得到第五个数.【详解】解:观察、分析题图中数的排列规律可知:第n 行第一列是2n ,且第n 行第一列到第n 列的数从左往右依次减少1,所以第六行第五个数是26436432-=-=.故答案为:32.【点睛】本题主要考查了数字规律题,能够观察出第一个数是行数的平方,再依次减少是解决本题的关键.20.(1)56(2)2000(3)3655【分析】(1)精确到哪一位即对下一位的数字进行四舍五入据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可【详解】解解析:(1)5.6 (2)2000 (3)36.55【分析】(1)精确到哪一位,即对下一位的数字进行四舍五入,据此解答即可;(2)把十分位上的数字5进行四舍五入即可;(3)把千分位上的数字7进行四舍五入即可.【详解】解:(1)5.649≈5.6.(2)1999.58≈2000(3)36.547≈36.55故答案为:5.6;2000;36.55【点睛】本题考查了近似数:经过四舍五入得到的数为近似数.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位的说法.三、解答题21.21-.【分析】先计算有理数的乘方,再计算括号内的除法与减法,然后计算有理数的乘法,最后计算有理数的减法即可得.【详解】解:原式[]9428(8)=--⨯-÷-,[]942(1)=--⨯--,943=--⨯,912=--,21=-.【点睛】本题考查了含乘方的有理数混合运算,熟练掌握各运算法则是解题关键.22.(1)28;(2)-2【分析】(1)有理数的加减混合运算,从左往右依次计算即可;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)45(30)(13)+---=4530+13-=15+13=28(2)32128(2)4-÷-⨯- =18844-÷-⨯ =11--=-2.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键. 23.图见解析,1531.502.542--<-<-<<< 【分析】在数轴上表示出各数,再按照从左到右的顺序用“<”号把它们连接起来即可.【详解】解: 5=-5--如图所示:故:1531.502.542--<-<-<<<. 【点睛】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.24.(1)点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是-6.5;(3)3-0.5a【分析】(1)根据AB=8-2=6,点A 和点B 表示的数是互为相反数,即可得到结果;(2)利用点B 表示的数3减去9.5即可得到答案;(3)利用中点表示的数向左移动0.5a 个单位计算即可.【详解】(1)∵AB=8-2=6,点A 和点B 表示的数是互为相反数,∴点A 表示的数是-3,点B 表示的数是3;(2)点C 表示的数是:3-9.5=-6.5;(3)∵直尺长度为a 厘米,直尺中点表示的数是-3,∴直尺此时左端点C 表示的数-3-0.5a .【点睛】此题考查利用数轴表示数,数轴上两点之间的距离,数轴上点移动的规律,熟记数轴上点移动的规律进行计算是解题的关键.25.(1)0;(2)1-.【分析】(1)原式先把除法转换为乘法,再逆用乘法分配律进行计算即可得到答案;(2)原式先计算乘方运算,再计算乘法运算,最后算加减运算即可求出值.【详解】解:(1)()4235524757123⎛⎫÷--⨯-÷- ⎪⎝⎭ 45355171271234⎛⎫=⨯--⨯+⨯ ⎪⎝⎭ 4535571271212=-⨯-⨯+ 43517712⎛⎫=--+⨯ ⎪⎝⎭ 5012=⨯ 0=; (2)()3218223427⎛⎫-⨯+-⨯- ⎪⎝⎭ ()98427427⎛⎫-⨯+-⨯- ⎝=⎪⎭98=-+1=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.26.(1)该厂本周实际生产自行车1409辆;(2)产量最多的一天比产量最少的一天多生产自行车26辆;(3)该厂工人这一周工资总额是70558元.【分析】(1)根据每天的增减量,依次相加,可得答案;(2)根据每天的增减量,用最多的一天减去最少的一天即可;(3)该厂一周工资=实际自行车产量×50+超额自行车产量×12.【详解】解:(1)1400+5-2-4+13-10+16-9=1409(辆),答:该厂本周实际生产自行车1409辆;(2)16-(-10)=26(辆),答:产量最多的一天比产量最少的一天多生产自行车26辆;(3)50×1409+12×9=70558.答:该厂工人这一周工资总额是70558元.【点睛】本题考查有理数加、减运算的应用,用正数和负数表示.明白“+”是比计划多、“-”是比计划少是解题的关键.。
一、选择题1.数学考试成绩85分以上为优秀,以85分为标准,老师将某一小组五名同学的成绩记为+9、-4、+11、-7、0,这五名同学的实际成绩最高的应是( ) A .94分B .85分C .98分D .96分2.下列运算正确的有( )①()15150--=;②11111122344⎛⎫÷-+= ⎪⎝⎭; ③2112439⎛⎫-= ⎪⎝⎭; ④()30.10.0001-=-;⑤22433-=-A .1个B .2个C .3个D .4个3.若b<0,刚a ,a+b ,a-b 的大小关系是( )A .a<a <+b -b aB .<a<a-b a+bC .a<<a-b a+bD .<a<a+b a-b4.下列计算中,错误的是( ) A .(2)(3)236-⨯-=⨯= B .()144282⎛⎫÷-=⨯-=- ⎪⎝⎭C .363(6)3--=-++=D .()()2399--=--=5.已知n 为正整数,则()()2200111n-+-=( )A .-2B .-1C .0D .26.下列各数中,互为相反数的是( )A .+(-2)与-2B .+(+2)与-(-2)C .-(-2)与2D .-|-2|与+(+2) 7.下列算式中,计算结果是负数的是( ) A .3(2)⨯-B .|1|-C .(2)7-+D .2(1)-8.围绕保障疫情防控、为企业好困解难,财政部门快速行动,持续加大资金投入,截至2月14日,各级财政已安排疫情防控补助资金901.5亿元,把“901.5”用科学记数法表示为( ) A .109.01510⨯ B .39.01510⨯ C .29.01510⨯ D .109.0210⨯ 9.在数轴上距原点4个单位长度的点所表示的数是( ). A .4B .-4C .4或-4D .2或-210.将(-3.4)3,(-3.4)4,(-3.4)5从小到大排列正确的是( ) A .(-3.4)3<(-3.4)4<(-3.4)5 B .(-3.4)5<(-3.4)4<(-3.4)3 C .(-3.4)5<(-3.4)3<(-3.4)4 D .(-3.4)3<(-3.4)5<(-3.4)411.如果a ,b ,c 为非零有理数且a + b + c = 0,那么a b c abc a b c abc+++的所有可能的值为(A.0 B.1或- 1 C.2或- 2 D.0或- 212.据《经济日报》2018年5月21日报道:目前,世界集成电路生产技术水平最高已达到7nm(1nm=10﹣9m),主流生产线的技术水平为14~28nm,中国大陆集成电路生产技术水平最高为28nm.将28nm用科学记数法可表示为()A.28×10﹣9m B.2.8×10﹣8m C.28×109m D.2.8×108m 13.按键顺序是的算式是()A.(0.8+3.2)÷45=B.0.8+3.2÷45=C.(0.8+3.2)÷45=D.0.8+3.2÷45=14.把实数36.1210-⨯用小数表示为()A.0.0612 B.6120 C.0.00612 D.61200015.计算(-2)2018+(-2)2019等于( )A.-24037B.-2 C.-22018D.22018二、填空题16.绝对值小于2的整数有_______个,它们是______________.17.数轴上表示有理数-3.5与4.5两点的距离是___________.18.已知|a|=3,|b|=2,且ab<0,则a﹣b=_____.19.按下面程序计算,若开始输入x的值为正数,最后输出的结果为656,则满足条件所有x的值是___.20.计算3253.1410.31431.40.284⨯+⨯-⨯=__.21.某商店营业员每月的基本工资为4000元,奖金制度是每月完成规定指标10000元营业额,发奖金300元;若营业额超过规定指标,另奖超额部分营业额的5%.该商店的一名营业员九月份完成营业额13200元,则他九月份的收入为________元.22.校运动会的拔河比赛真是紧张刺激!规定拔河时,任意一方拉过30cm就算获胜.小胖他们班在每次喊过“拉”声之后都可拉过7cm,但又会被拉回3cm.如此下去,该班在第________次喊过“拉”声后就可获得胜利.23.等边三角形ABC(三条边都相等的三角形是等边三角形)在数轴上的位置如图所示,点A,B对应的数分别为0和1-,若ABC绕着顶点顺时针方向在数轴上翻转1次后,点C所对应的数为1,则再翻转3次后,点C所对应的数是________.24.分别输入1-,2-,按如图所示的程序运算,则输出的结果依次是_________,________.输入→+4 →(-(-3))→-5→输出25.比较大小:364--_____________()6.25--.26.(1)用四舍五入法,对5.649取近似值,精确到0.1的结果是____;(2)用四舍五入法,把1 999.508取近似值(精确到个位),得到的近似数是____;(3)用四舍五入法,把36.547精确到百分位的近似数是____.三、解答题27.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒.-1.2+0.70-1-0.3+0.20.3+0.5求这个小组8名男生的平均成绩是多少?28.如图,数轴上A,B两点之间的距离为30,有一根木棒MN,设MN的长度为x.MN数轴上移动,M始终在左,N在右.当点N移动到与点A,B中的一个重合时,点M所对应的数为9,当点N移动到线段AB的中点时,点M所对应的数是多少?29.将n个互不相同的整数置于一排,构成一个数组.在这n个数字前任意添加“+”或“-”号,可以得到一个算式.若运算结果可以为0,我们就将这个数组称为“运算平衡”数组.(1)数组1,2,3,4是否是“运算平衡”数组?若是,请在以下数组中填上相应的符号,并完成运算;1 2 3 4 =(2)若数组1,4,6,m是“运算平衡”数组,则m的值可以是多少?(3)若某“运算平衡”数组中共含有n个整数,则这n个整数需要具备什么样的规律?30.定义:求若干个相同的有理数(均不等于0)的除法运算叫做除方,如222÷÷等.类比有理数的乘方,我们把222÷÷记作32,读作“2的下3次方”,一般地,把n个(0)a a≠相除记作na,读作“a的下n次方”.理解:(1)直接写出计算结果:32=_______.(2)关于除方,下列说法正确的有_______(把正确的序号都填上); ①21a =(0)a ≠;②对于任何正整数n ,11n =; ③433=4;④负数的下奇数次方结果是负数,负数的下偶数次方结果是正数. 应用:(3)我们知道,有理数的减法运算可以转化为加法运算,除法运算可以转化为乘法运算,有理数的除方运算如何转化为乘方运算呢?例如:241111222222()2222=÷÷÷=⨯⨯⨯=(幂的形式)试一试:将下列除方运算直接写成幂的形式:65=_______;91()2-=________;(4)计算:3341()(2)2(8)24-÷--+-⨯-.。
一、解答题1.计算:(1)6÷(-3)×(-32) (2)-32×29-+(-1)2019-5÷(-54) 解析:(1)3;(2)1.【分析】(1)根据有理数的乘除混合运算法则计算即可;(2)根据有理数的混合运算法则计算即可.【详解】解:(1)原式=6×1-3⎛⎫ ⎪⎝⎭ ×(-32)=3; (2)原式=-9×29+(-1)-5×4-5⎛⎫ ⎪⎝⎭ =-2-1+4=1.【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法. 2.计算(1)28()5(0.4)5+----;(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭; (3)2336()(2)()(6)575⨯---⨯-+-⨯; (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦; (5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦. 解析:(1)3;(2)3;(3)667-;(4)3-;(5)315.4【分析】 (1)先把运算统一为省略加号的和的形式,再利用加法的运算律,把互为相反数的两数先加,从而可得答案;(2)先把除法转化为乘法,再利用乘法的分配律把运算化为:()()()1573636363612-⨯-+⨯--⨯-,再计算乘法运算,最后计算加减运算即可得到答案;(3)把原式化为:()233662557-⨯+-⨯-⨯,逆用乘法的分配律,同步进行乘法运算,最后计算减法即可得到答案; (4)先计算小括号内的运算与乘方运算,再计算中括号内的运算,再计算乘法运算,最后计算加减运算即可得到答案;(5)先计算乘方运算,同步把除法转化为乘法,再计算小括号内的减法运算,同步进行乘法运算,最后计算加法运算即可得到答案.【详解】解:(1)28()5(0.4)5+---- 2850.45=--+ 3.=(2)1571361236⎛⎫⎛⎫-+-÷- ⎪ ⎪⎝⎭⎝⎭ ()157363612⎛⎫=-+-⨯- ⎪⎝⎭()()()1573636363612=-⨯-+⨯--⨯- 123021=-+3.=(3)2336()(2)()(6)575⨯---⨯-+-⨯ ()233662557=-⨯+-⨯-⨯ 2366557⎛⎫=-⨯+- ⎪⎝⎭ 667=-- 667=- (4)42019213(20.2)(2)(1)5⎡⎤---+-÷⨯---⎢⎥⎣⎦()()1132212⎡⎤⎛⎫=---+-⨯--- ⎪⎢⎥⎝⎭⎣⎦()313212⎛⎫=---+⨯-+ ⎪⎝⎭ ()31212⎛⎫=---⨯-+ ⎪⎝⎭131=--+3.=-(5)24512.5()(0.1)(2)(2)10⎡⎤÷-⨯---+-⎣⎦ ()()1=2.5101632100⨯-⨯-- ()1164=--- 1164=-+ 315.4= 【点睛】本题考查的是含乘方的有理数的混合运算,乘法分配律的应用,掌握运算法则与运算顺序是解题的关键.3.给出四个数:3,4--,2,6,计算“24点”,请列出四个符合要求的不同算式. (可运用加、减、乘、除、乘方运算,可用括号;注意:例如4(123)24⨯++=与(213)424++⨯=只是顺序不同,属同一个算式.)算式1:_________________;算式2_______________;算式3:_________________;算式4_______________;解析:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【分析】由241212,=+ 可得()342624,-⨯-+⨯=由()2438=-⨯-,可得()()342624,-⨯-+-=由()24124,=-⨯- 可得()()643224,⨯-⨯-+=由()2446=-⨯-,可得()()()()43624624-⨯--÷=-⨯-=,从而可得答案.【详解】解:算式1:()()3426121224,-⨯-+⨯=+=算式2:()()()()34263824,-⨯-+-=-⨯-=算式3:()()()()643224124,⨯-⨯-+=-⨯-=算式4:()()()()()()43624334624,-⨯--÷=-⨯--=-⨯-=故答案为:()()342624,-⨯-+⨯=()()342624,-⨯-+-=()()643224,⨯-⨯-+=()()()()43624624.-⨯--÷=-⨯-=【点睛】本题考查有理数的混合运算,解答本题的关键是明确有理数混合运算的计算方法,注意本题答案不唯一,这是一道开放性的题目,同时考查了学生的逆向思维.4.321032(2)(3)5-÷---⨯解析:﹣31.【分析】根据有理数的混合运算法则计算即可.【详解】解:321032(2)(3)5-÷---⨯=10-32÷(﹣8)-9×5=10-(﹣4)-45=10+4-45=14-45=﹣31.【点睛】此题主要考察了有理数的混合运算,解题关键是掌握有理数混合运算法则.5.计算:()22216232⎫⎛-⨯-- ⎪⎝⎭ 解析:2【分析】原式先计算乘方,再运用乘法分配律计算,最后进行加减运算即可.【详解】解:()22216232⎫⎛-⨯-- ⎪⎝⎭=2136()432⨯-- =213636432⨯-⨯- =24-18-4=2.【点睛】 此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.6.计算:329(1)4(2)34⎛⎫--÷-+-⨯ ⎪⎝⎭. 解析:12-. 【分析】 根据有理数的四则混合运算顺序:“先算乘方,再算乘除,然后算加减”进行计算即可.【详解】原式311222⎛⎫=-++-=- ⎪⎝⎭. 【点睛】本题考查了有理数的混合运算,掌握运算法则是解题的关键. 7.在数轴上表示下列各数:14, 1.5,3,0,2.5,52----,并将它们按从小到大的顺序排列.解析:图见解析,1531.502.542--<-<-<<< 【分析】在数轴上表示出各数,再按照从左到右的顺序用“<”号把它们连接起来即可.【详解】解: 5=-5--如图所示:故:1531.502.542--<-<-<<<. 【点睛】本题考查的是有理数的大小比较,熟知数轴的特点是解答此题的关键.8.计算:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭;(2)2331(2)592-+-⨯--÷. 解析:(1)1-;(2)47-.【分析】(1)原式先计算乘方和括号内,然后再计算乘法即可得到答案;(2)原式先计算乘方和化简绝对值,再计算乘除法,最后计算加减运算即可得到答案.【详解】解:(1)23(2)14⎛⎫-⨯- ⎪⎝⎭ 3414⎛⎫=⨯- ⎪⎝⎭ 144⎛⎫=⨯- ⎪⎝⎭1=-.(2)2331(2)592-+-⨯--÷ 21(8)593=-+-⨯-⨯ 1406=---47=-.【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.9.小李坚持跑步锻炼身体,他以30分钟为基准,将连续七天的跑步时间(单位:分钟)记录如下:10,-8,12,-6,11,14,-3(超过30分钟的部分记为“+”,不足30分钟的部分记为“-”)(1)小李跑步时间最长的一天比最短的一天多跑几分钟?(2)若小李跑步的平均速度为每分钟0.1千米,请你计算这七天他共跑了多少千米? 解析:(1)22分钟;(2)24千米.【分析】(1)时间差=标准差的最大值-标准差的最小值;(2)先计算出一周的总运动时间,利用路程,速度,时间的关系计算即可.【详解】(1)()14822--=(分钟).故小李跑步时间最长的一天比最短的一天多跑22分钟.(2)()30710812611143240⨯+-+-++-=(分钟),0.124024⨯=(千米).故这七天他共跑了24千米.【点睛】本题考查了有理数的混合运算,熟练运用标准差计算时间差,标准时间计算总时间是解题的关键.10.某农户家准备出售10袋大米,称得质量如下:(单位:千克)182,180,175,173,182,185,183,181,180,183(1)填空:以180千克作为基准数,可用正、负数表示这10袋大米的质量与180的差为 ;(2)试计算这10袋大米的总质量是多少千克?解析:(1)+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)1804千克【分析】(1)规定超出基准数为正数,则不足部分用负数表示,即可;(2)把第(1)题10个数相加,再加上180×10,即可.【详解】(1)以180千克为基准数,超过180千克的记作正数,低于180千克的记作负数,那么各袋大米的质量分别为:+2,0,−5,-7,+2,+5,+3,+1,0,+3,故答案是:+2,0,−5,-7,+2,+5,+3,+1,0,+3;(2)(+2+0−5-7+2+5+3+1+0+3)+ 180×10=1804(千克),答:这10袋大米的总质量是1804千克.【点睛】本题主要考查正负数的意义以及有理数的加减法的实际应用,熟练掌握有理数的加减法运算法则,是解题的关键.11.计算:(1)14-25+13(2)42111|23|()823---+-⨯÷ 解析:(1)2;(2)4【分析】 (1)根据有理数的加减运算,即可求出答案;(2)先计算乘方、绝对值、然后计算乘除,再计算加减运算,即可得到答案.【详解】解:(1)14251311132-+=-+=;(2)42111|23|()823---+-⨯÷=111834--+⨯⨯ =26-+=4.【点睛】本题考查了有理数的混合运算,解题的关键是掌握运算法则进行解题.12.计算题:(1)3×(﹣4)﹣28÷(﹣7);(2)﹣12020+(﹣2)3×1123⎛⎫-+ ⎪⎝⎭. 解析:(1)﹣8;(2)13. 【分析】(1)先计算乘除,再计算加减,即可得到答案;(2)先计算乘方、然后计算乘法和括号内的运算,再计算加法即可.【详解】解:(1)3×(﹣4)﹣28÷(﹣7)=(﹣12)+4=﹣8;(2)﹣12020+(﹣2)3×1123⎛⎫-+ ⎪⎝⎭. =-1+(-8)×16⎛⎫- ⎪⎝⎭ =413-+=13. 【点睛】本题考查了有理数的加减乘除运算,解题的关键是熟练掌握运算法则进行解题. 13.阅读下面材料:在数轴上6与1-所对的两点之间的距离:6(1)7--=;在数轴上2-与3所对的两点之间的距离:235--=;在数轴上8-与4-所对的两点之间的距离:(8)(4)4---=;在数轴上点A 、B 分别表示数a 、b ,则A 、B 两点之间的距离AB a b b a =-=-. 回答下列问题:(1)数轴上表示2-和5-的两点之间的距离是_______;数轴上表示数x 和3的两点之间的距离表示为_______;数轴上表示数_______和_______的两点之间的距离表示为2x +;(2)七年级研究性学习小组在数学老师指导下,对式子23x x ++-进行探究: ①请你在草稿纸上画出数轴,当表示数x 的点在2-与3之间移动时,32x x -++的值总是一个固定的值为:_______.②请你在草稿纸上画出数轴,要使327x x -++=,数轴上表示点的数x =_______.解析:(1)3;|x−3|;x ,-2;(2)5;−3或4.【分析】(1)根据题意找出数轴上任意点间的距离的计算公式,然后进行计算即可;(2)①先化简绝对值,然后合并同类项即可;②分为x >3和x <−2两种情况讨论.【详解】解:(1)数轴上表示−2和−5的两点之间的距离为:|−2−(−5)|=3;数轴上表示数x 和3的两点之间的距离为:|x−3|;数轴上表示数x 和−2的两点之间的距离表示为:|x +2|;故答案为:3,|x−3|,x ,-2;(2)①当x 在-2和3之间移动时,|x +2|+|x−3|=x +2+3−x=5;②当x >3时,x−3+x +2=7,解得:x=4,当x <−2时,3−x−x−2=7.解得x=−3,∴x=−3或x=4.故答案为:5;−3或4.【点睛】本题主要考查的是绝对值的定义和化简,根据题意找出数轴上任意两点之间的距离公式是解题的关键.14.计算(1)18()5(0.25)4+----(2)2﹣412()(63)7921-+⨯- (3)1373015-⨯ (4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦. 解析:(1)3;(2)37;(3)﹣236;(4)72【分析】 (1)本式为简单的有理数加减运算,从左到右先将分数进行计算,再从左到右计算即可. (2)按照有理数混合运算的顺序,利用乘法分配律直接去括号,再进行运算. (3)将﹣71315分解为﹣7﹣1315,再利用乘方分配律进行计算即可. (4)分别根据有理数的乘方计算出各数,再根据实数混合运算的法则进行计算即可.【详解】解:(1)18()5(0.25)4+---- =118544--+ =3;(2)2﹣412()(63)7921-+⨯- =4122(63)(63)(63)7921⎡⎤-⨯--⨯-+⨯-⎢⎥⎣⎦ =2﹣(﹣36+7﹣6),=2﹣(﹣35)=37;(3)1373015-⨯ =﹣7×30+(﹣1315)×30 =﹣210﹣26=﹣236;(4)22220103213()2(1)43⎡⎤--⨯-⨯--÷-⎢⎥⎣⎦ =341(92)149--⨯-⨯-÷ =912-+=72. 【点睛】此题考查了有理数的混合运算注意:要正确掌握运算顺序,即乘方运算(和以后学习的开方运算)叫做三级运算;乘法和除法叫做二级运算;加法和减法叫做一级运算.在混合运算中要特别注意运算顺序:先三级,后二级,再一级;有括号的先算括号里面的;同级运算按从左到右的顺序.15.设0a >,x ,y 为有理数,定义新运算:||a x a x =⨯※.如323|2|6=⨯=※,()414|1|a a -=⨯-※.(1)计算20210※和()20212-※的值. (2)若0y <,化简()23y -※.(3)请直接写出一组,,a x y 的具体值,说明()a x y a x a y +=+※※※不成立. 解析:(1)0;4042;(2)6y -;(3)1a =,2x =,3y =-(答案不唯一)【分析】(1)根据题意※表示前面的数与后面数的绝对值的积,直接代入数据求解计算;(2)有y<0,得到y 为负数,进而得到-3y 为正数,去绝对值后等于本身-3y ,再代入数据求解即可;(3)按照题意要求写一组具体的,,a x y 的值再验算即可.【详解】解:(1)根据题意得:202102021|0|0=⨯=※; ()202122021|2|4042-=⨯-=※;(2)因为0y <,所以30y ->,所以()()232|3|236y y y y -=⨯-=⨯-=-※;(3)由题意,当,,a x y 分别取1a =,2x =,3y =-时,此时()2311※※(-1)=1-=,而11※2※(-3)=2+3=5+,所以,()a x y a x a y +=+※※※不成立.【点睛】本题是新定义题型,按照题目中给定的运算要求和顺序进行求解即可.16.计算:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭; (2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭; 解析:(1)6;(2)11.【分析】(1)先变成省略括号和形式,同时把小数化分数,把分数相加,同号相加,最后异号相加即可;(2)先算乘方,去绝对值和带分数化假分数,再计算乘法,最后计算加减法即可.【详解】解:(1)()11270.754⎛⎫--+-+ ⎪⎝⎭, =1312744+-+, =1217+-,=13-7,=6;(2)()()202023111242144⎛⎫-++-⨯--⨯- ⎪⎝⎭, =()351124444⎛⎫++⨯--⨯- ⎪⎝⎭=11235++-=11.【点睛】本题考查含有乘方的有理数混合,掌握有理数混合运算的法则,解答的关键是熟练掌握运算法则和运算顺序.17.计算:(1)()()34287⨯-+-÷;(2)()223232-+---.解析:(1)16-;(2)6.【分析】(1)先算乘除,后算加法即可;(2)原式先计算乘方运算,再化简绝对值,最后算加减运算即可求出值.【详解】(1)原式12416=--=-(2)原式34926=-+-=【点睛】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.18.计算:2202013(1)(2)4(1)2-÷-⨯---+-. 解析:33【分析】有理数的混合运算,注意先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】 解:2202013(1)(2)4(1)2-÷-⨯---+- =1(2)4192-÷⨯--+ =192(2)4-⨯⨯--+ =3641-+=33.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.19.计算:(1)45(30)(13)+---;(2)32128(2)4-÷-⨯-. 解析:(1)28;(2)-2【分析】 (1)有理数的加减混合运算,从左往右依次计算即可;(2)有理数的混合运算,先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【详解】解:(1)45(30)(13)+---=4530+13-=15+13=28(2)32128(2)4-÷-⨯- =18844-÷-⨯ =11--=-2.【点睛】本题考查有理数的混合运算,掌握运算顺序和计算法则正确计算是解题关键.20.一名足球守门员练习折返跑,从球门线出发,向前记作正数,返回记作负数,他的记录如下:(单位:米)+5,﹣4,+10,﹣8,﹣6,+13,﹣10.(1)守门员最后是否回到了球门线的位置?(2)在练习过程中,守门员离开球门线最远距离是多少米?(3)守门员全部练习结束后,他共跑了多少米?解析:(1)回到了球门线的位置;(2)11米;(3)56米【分析】(1)由于守门员从球门线出发练习折返跑,问最后是否回到了球门线的位置,只需将所有数加起来,看其和是否为0即可;(2)计算每一次跑后的数据,绝对值最大的即为所求;(3)求出所有数的绝对值的和即可.【详解】解:(1)(+5)+(﹣4)+(+10)+(﹣8)+(﹣6)+(+13)+(﹣10)=(5+10+13)-(4+8+6+10)=28-28=0.答:守门员最后回到了球门线的位置;(2)(3)|+5|+|﹣4|+|+10|+|﹣8|+|﹣6|+|+13|+|﹣10|=5+4+10+8+6+13+10=56(米).答:守门员全部练习结束后,他共跑了56米.【点睛】本题考查了正数和负数以及有理数加减运算的应用等知识点,解题的关键是理解“正”和“负”的相对性,确定具有相反意义的量.21.计算:(1)2×(-3)3-4×(-3)(2)-22÷(12-13)×(-58)解析:(1)-42;(2)15【分析】(1)先算乘方、乘法,再算加减法即可;(2)先算括号和乘方,再算乘除即可.【详解】(1)原式 =2(27)12⨯-+=-54+12= 42-.(2)原式 =15 4()68 -÷⨯-=5 468⨯⨯=15.【点睛】本题考查了有理数的运算,掌握运算法则及运算顺序是关键.22.如图,数轴上A,B两点之间的距离为30,有一根木棒MN,设MN的长度为x.MN数轴上移动,M始终在左,N在右.当点N移动到与点A,B中的一个重合时,点M所对应的数为9,当点N移动到线段AB的中点时,点M所对应的数是多少?解析:点M所对应的数为24或-6.【分析】设MN=x,然后分类计算即可:①当点N与点A重合时,点M所对应的数为9,则点N对应的数为x+9;②当点N与点B重合时,点M所对应的数为9,则点N对应的数为x+9.【详解】设MN=x,①当点N 与点A 重合时,点M 所对应的数为9,则点N 对应的数为x+9,∵AB=30,∴当N 移动到线段AB 的中点时,点N 对应的数为x+9+15=x+24,∴点M 所对应的数为x+24-x=24;②当点N 与点B 重合时,点M 所对应的数为9,则点N 对应的数为x+9,∵AB=30,∴当N 移动到线段AB 的中点时,点N 对应的数为x+9-15=x-6,∴点M 所对应的数为x-6-x=-6;综上,点M 所对应的数为24或-6.【点睛】本题综合考查了数轴的有关内容,用几何方法借助数轴来求解,非常直观,且不容易遗漏,体现了数形结合的优点.数形结合并分类讨论是解题的关键.23.计算:(1)152|18|()263-⨯-+; (2)20203221124(2)3()3-+÷--⨯. 解析:(1)6;(2)-5【分析】(1)先去掉绝对值,然后根据乘法分配律即可解答本题;(2)根据有理数的乘方、有理数的乘除法和加减法可以解答本题.【详解】解:(1)152|18|()263-⨯-+ =18×(12﹣56+23) =18×12﹣18×56+18×23=9﹣15+12=6;(2)20203221124(2)3()3-+÷--⨯ =﹣1+24÷(﹣8)﹣9×19=﹣1+(﹣3)﹣1=﹣5.【点睛】 此题主要考查有理数的混合运算,熟练掌握混合运算顺序是解题关键.24.计算:(1)()()()923126--⨯-+÷-(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭. 解析:(1)1;(2)-1.【分析】 (1)先算乘除,再算加减即可求解;(2)先算乘方,后算除法,最后算加减即可求解.【详解】(1)()()()923126--⨯-+÷-=962--=1;(2)()2235112342⎛⎫-+--÷- ⎪⎝⎭ =11891632-+-÷ =1893216-+-⨯ =892-+-=-1.【点睛】 此题考查了有理数的混合运算,有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.进行有理数的混合运算时,注意各个运算律的运用,使运算过程得到简化.25.(1)()()()()413597--++---+;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭. 解析:(1)-6;(2)715. 【分析】 (1)原式根据有理数的加减法法则进行计算即可得到答案;(2)原式把除法转换为乘法,再进行乘法运算即可得到答案.【详解】解:(1)()()()()413597--++---+=-4-13-5+9+7=-22+9+7=-13+7=-6;(2)340.2575⎛⎫-÷-⨯ ⎪⎝⎭ =174435⨯⨯ =715. 【点睛】此题主要考查了有理数的混合运算,熟练掌握运算法则是解答此题的关键.26.计算下列各题:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; (2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭. 解析:(1)19-;(2) 3.-【分析】 (1)利用乘法的分配律把原式化为:()()()1573636362912⨯--⨯-+⨯-,再计算乘法运算,最后计算加减运算即可得到答案; (2)先计算乘方运算与小括号内的运算,同步把除法转化为乘法,再计算乘法运算,最后计算减法运算即可得到答案.【详解】解:(1)()157362912⎛⎫-+⨯- ⎪⎝⎭; ()()()1573636362912=⨯--⨯-+⨯- 182021=-+-19=-(2)()()2362295321343⎛⎫⎛⎫-÷⨯---+⨯- ⎪ ⎪⎝⎭⎝⎭ ()4452741993⎛⎫=⨯⨯---+⨯ ⎪⎝⎭ 16733⎛⎫=--- ⎪⎝⎭16733=-+ 9 3.3=-=- 【点睛】本题考查的是乘法的分配律的应用,含乘方的有理数的混合运算,掌握以上知识是解题的关键.27.阅读下列材料:(0)0(0)(0)x x x x x x >⎧⎪==⎨⎪-<⎩,即当0x <时,1x x x x ==--.用这个结论可以解决下面问题:(1)已知a ,b 是有理数,当0ab ≠时,求a b a b+的值; (2)已知a ,b ,c 是有理数,0a b c ++=,0abc <,求b c a c a b a b c +++++的值. 解析:(1)2或2-或0;(2)-1.【分析】(1)分三种情况讨论,①0,0a b >>,②0,0a b <<,③0ab <,分别根据题意化简即可;(2)由0a b c ++=整理出,,a b c b c a a c b +=-+=-+=-,判断a b c ,,中有两正一负,再整体代入,结合题意计算即可.【详解】(1)0ab ≠∴①0,0a b >>,==1+1=2a b a b a b a b ++; ②0,0a b <<,==11=2a b a b a b a b+-----; ③0ab <,=1+1=0a b a b+-, 综上所述,当0ab ≠时,a b a b +的值为:2或2-或0; (2)0a b c ++=,0abc <,,a b c b c a a c b ∴+=-+=-+=-即a b c ,,中有两正一负, ∴==()1b c a c a b a b c a b c a b c a b c a b c+++---++++-++=-. 【点睛】本题考查绝对值的非负性以及有理数的运算等知识,是重要考点,难度一般,掌握相关知识是解题关键.28.计算(1)21145()5-÷⨯-(2)21(2)8(2)()2--÷-⨯-.解析:(1)4125;(2)2.【分析】第(1)和(2)小题都属于有理数的混合运算,根据混合运算的运算顺序:先算乘方,并利用有理数的除法法则将除法转化为乘法,再计算乘法,最后计算加减即可求出结果.【详解】解:(1)21145()5-÷⨯-11116()55=-⨯⨯-16125=+4125=;(2)21(2)8(2)()2--÷-⨯-1148()()22=-⨯-⨯-42=-2=.【点睛】本题考查了有理数的混合运算,解题的关键是确定正确的运算顺序并运用运算法则准确计算.29.体育课上全班男生进行了百米测试,达标成绩为14秒,下面是第一小组8名男生的成绩记录,其中“+”表示成绩大于14秒,“-”表示成绩小于14秒.解析:9秒.【分析】根据平均成绩的计算方法,先列式计算表格中所有数据的平均数,再加上标准成绩即可得出结果.【详解】解:1.20.7010.30.20.30.50.18-++--+++=-(秒)140.113.9-=(秒).答:这个小组8名男生的平均成绩是13.9秒.【点睛】此题考查了有理数的混合运算的实际应用,正确理解题目中正数和负数的含义是列式计算的关键.30.计算(1) ()375244128⎛⎫---⨯- ⎪⎝⎭(2) ()212382455-+--÷-⨯解析:(1)47;(2)4925【分析】 (1)根据乘法分配律,求出算式的值是多少即可;(2)先计算乘方及绝对值运算,再计算乘除法运算,最后算加减运算即可求出值.【详解】解: ()375244128⎛⎫---⨯- ⎪⎝⎭ =18+14+15=47(2)()212|38|2455-+--÷-⨯ =11452455⎛⎫-+-⨯-⨯⎪⎝⎭ =24125+ 4925= 【点睛】此题主要考查了有理数的混合运算,要熟练掌握,注意明确有理数混合运算顺序:先算乘方,再算乘除,最后算加减;同级运算,应按从左到右的顺序进行计算;如果有括号,要先做括号内的运算.。
人教版初中数学七年级上册第1章《有理数》单元测试题及答案一、选择题(本大题共10小题,共30.0分)1.用表示的数一定是A. 负数B. 正数或负数C. 负整数D. 以上全不对2.若a、b都是不为零的数,则的结果为A. 3或B. 3或C. 或1D. 3或或13.实数a、b在数轴上的位置如图,则|a+b|-|a-b|等于()A. 2aB. 2bC.D.4.计算-42的结果等于()A. B. 16 C. D. 85.-23的意义是()A. 3个相乘B. 3个相加C. 乘以3D. 的相反数6.下列说法中:①若干个有理数相乘,如果负因数的个数是奇数,则乘积一定是负数;②若a、b互为相反数,则;③当a≠0时,|a|总是大于0;④如果a=b,那么,其中正确的说法个数是()A. 1B. 2C. 3D. 47.有理数在数轴上的位置如图所示,则在式子中,值最大的是()A. B. C. D.8.现定义一种新运算“*”,规定a*b=ab+a-b,如1*3=1×3+1-3,则(-2*5)*6等于()A. 120B. 125C.D.9.若m•n≠0,则+的取值不可能是()A. 0B. 1C. 2D.A. 0B.C. 10D. 20二、填空题(本大题共6小题,共18.0分)11.若-1<x<4,则|x+1|-|x-4|= ______ .12.如果a<0,则|a|=______.13.在数轴上,点P与表示有理数2的点A相距3个单位,则点P表示的数是______ .14.如图,在每个“〇”中填入一个整数,使得其中任意四个相邻“〇”中所填整数之和都相等,可得d的值为______.15.若输入整数a,按照下列程序,计算将无限进行下去且不会输出,则a所有可能取到的值为______.16.规定:[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数),例如:[2.3]=2,(2.3)=3,[2.3)=2.当-1<x<1时,化简[x]+(x)+[x)的结果是______.三、计算题(本大题共1小题,共20.0分)17.计算下列各题(1)(-2)3-|2-5|-(-15)(2)-4(3)(4)(5).四、解答题(本大题共3小题,共32.0分)18.观察下列单项式:-x,3x2,-5x3,7x4,…,-37x19,39x20,…写出第n个单项式.为了解决这个问题,特提供下面的解题思路:(1)这组单项式的系数的符号、绝对值规律是什么?(2)这组单项式的次数的规律是什么?(4)请你根据猜想,请写出第2013个、第2014个单项式.19.如图,已知点A在数轴上,从点A出发,沿数轴向右移动3个单位长度到达点C,点B所表示的有理数是5的相反数,按要求完成下列各小题.(1)请在数轴上标出点B和点C;(2)求点B所表示的有理数与点C所表示的有理数的乘积;(3)若将该数轴进行折叠,使得点A和点B重合,则点C和数______所表示的点重合.20.观察下列等式:=1-,=,=三个等式两边分别相加得:=1-=1-=(1)猜想并写出:______ ;(2)直接写出下列各式的计算结果:+++…+= ______ ;(3)探究并计算:+++…+.答案和解析1.【答案】B【解析】【分析】此题主要考查了绝对值的定义及有理数的加法法则.由于m、n为非零的有理数,则有3种情况要考虑到,用到了分类讨论的思想.由于m、n为非零的有理数,根据有理数的分类,m、n的值可以是正数,也可以是负数.那么分三种情况分别讨论:①两个数都是正数;②两个数都是负数;③其中一个数是正数另一个是负数,针对每一种情况,根据绝对值的定义,先去掉绝对值的符号,再计算即可.【解答】解:分3种情况:①两个数都是正数;∴+=1+1=2,②两个数都是负数;∴+=-1-1=-2,③其中一个数是正数另一个是负数,所以,原式=-1+1=0.∴+的取值不可能是1.故选B.2.【答案】A【解析】【分析】此题考查了有理数的加法,绝对值的有关知识,熟练掌握运算法则是解本题的关键.找出绝对值小于5的所有整数,求和即可.【解答】解:绝对值小于5的所有整数为:0,±1,±2,±3,±4,∴0-1+1-2+2-3+3-4+4=0.故选A.3.【答案】D【解析】解:a>0时,-a<0,是负数,a=0时,-a=0,0既不是正数也不是负数,a<0时,-a>0,是正数,综上所述,-a表示的数可以是负数,正数或0.故选D.根据字母表示数解答.本题考查了有理数,熟练掌握字母表示数的意义是解题的关键.4.【答案】B【解析】【分析】本题考查了绝对值的意义及分式的化简.正数和0的绝对值是它本身,负数和0的绝对值是它的相反数.当x>0时,=1;当x<0时,=-1.互为相反数(0除外)的两个数的商为-1,相同两个数(0除外)的商为1.可从a、b同号,a、b异号,分类讨论得出结论.【解答】解:①当a>0,b>0时则++=1+1+1=3;②当a<0,b<0时=-1-1+1=-1;③当a>0,b<0时=1-1-1=-1;④当a<0,b>0时=-1+1-1=-1;故选B.5.【答案】A【解析】【分析】此题考查了整式的加减,绝对值,以及实数与数轴,熟练掌握运算法则是解本题的关键.根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,去括号合并即可得到结果.【解答】解:根据数轴上点的位置得:a<0<b,且|a|<|b|,∴a+b>0,a-b<0,则原式=a+b+a-b=2a.故选A.6.【答案】A【解析】解:-42=-16,根据有理数的乘方法则求出即可.本题考查了有理数的乘方,能区分-42和(-4)2是解此题的关键.7.【答案】D【解析】【分析】根据乘方的意义和相反数的定义判断.本题考查了有理数乘方:求n 个相同因数积的运算,叫做乘方.【解答】解:-23的意义是3个2相乘的相反数.故选D.8.【答案】A【解析】【分析】本题考查有理数的相关概念,学生需要充分理解正负数,0,相反数,绝对值等概念,特别需要注意0既不是正数也不是负数这一重要特性.【解答】①若干个有理数相乘,如果负因数的个数是奇数,还需要因数中没有0,才能得到乘积一定是负数,故错误;②0和它本身也是互为相反数,但是没有意义,故错误;③正数的绝对值是正数,负数的绝对值是正数,0的绝对值是0.当时,a的绝对值总是大于0,正确;④当c=0时,没有意义,故错误.故选A.9.【答案】D【解析】【分析】本题考查了数轴,有理数数的大小比较,根据数轴判断出a、b,c的正负情况以及绝对值的大小是解题的关键.根据数轴可得-1<a<0<b<c<1,且|a|=|c|,然后分别求得,c+a,-a,c-b的取值范围即可.【解答】解:由数轴可得,-1<a<0<b<c<1,且|a|=|c|,∴0<c-b<1,c+a=0,0<-a<1,,∴最大的数为.故选D.10.【答案】D【解析】解:∵a*b=ab+a-b,∴(-2*5)*6=(-2×5-2-5)*6=-17*6=-17×6+(-17)-6=-125.根据运算的规定首先求出(-2*5),然后再求出-17*6即可.本题主要考查了有理数的混合运算,正确理解题意,能掌握新定义是解题关键.11.【答案】2x-3【解析】解:原式=x+1-(-x+4),=x+1+x-4,=2x-3,故答案为:2x-3.根据绝对值的性质:当a是正有理数时,a的绝对值是它本身a;当a是负有理数时,a 的绝对值是它的相反数-a可得|x+1|=x+1,|x-4|=-x+4,然后再合并同类项即可.此题主要考查了绝对值,关键是掌握绝对值的性质,正确判断出x+1,x-4的正负性.12.【答案】-a【解析】解:∵a<0,则|a|=-a.故答案为-a.根据负数的绝对值是它的相反数可得所求的绝对值.考查绝对值的意义;用到的知识点为:负数的绝对值是它的相反数.13.【答案】5或-1【解析】解:∵数轴上的P点与表示有理数2的点的距离是3个单位长度,则P点表示的数是5或-1.故答案为:5或-1.由于P点与表示有理数2的点的距离是3个单位长度,所以P在表示2点左右两边都有可能,结合数轴即可求解.此题综合考查了数轴、绝对值的有关内容,解决本题的关键是明确P在表示2点左右两边都有可能.14.【答案】8【解析】【分析】本题是一道找规律的题目,考查了有理数的加法和方程组的思想,是中档题难度不大.由题意得a+8+b-5=8+b-5+c=b-5+c+d=-5+c+d+4,然后转化成方程组的形式,求得d的值即可.【解答】解:∵a+8+b-5=8+b-5+c=b-5+c+d=-5+c+d+4,∴a+8+b-5=8+b-5+c①,8+b-5+c=b-5+c+d②,b-5+c+d=-5+c+d+4③,∴a-5=c-5,8+c=c+d,b-5=-5+4,∴b=4,d=8,a=c,故答案为8.15.【答案】0或±1【解析】【分析】是整数,求解即可.【解答】解:依题意得:a2≤1且a是整数,解得a=0或a=±1.故答案为0或±1.16.【答案】-2或-1或0或1或2【解析】解:①-1<x<-0.5时,[x]+(x)+[x)=-1+0-1=-2;②-0.5<x<0时,[x]+(x)+[x)=-1+0+0=-1;③x=0时,[x]+(x)+[x)=0+0+0=0;④0<x<0.5时,[x]+(x)+[x)=0+1+0=1;⑤0.5<x<1时,[x]+(x)+[x)=0+1+1=2.故答案为:-2或-1或0或1或2.分五种情况讨论x的范围:①-1<x<-0.5,②-0.5<x<0,③x=0,④0<x<0.5,⑤0.5<x<1即可得到答案.本题考查了学生对[x]表示不大于x的最大整数,(x)表示不小于x的最小整数,[x)表示最接近x的整数(x≠n+0.5,n为整数)的理解,难度适中,解此题的关键是分类讨论思想的应用.17.【答案】解:(1)原式=-8-3+15=4;(2)原式=-10-5=-15;(3)原式=12-20+9-10=-9;(4)原式=;(5)原式==-10-39=-49.【解析】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.(1)原式第一项利用乘方的意义化简,第二项利用绝对值的代数意义化简,最后一项利用减法法则变形,计算即可得到结果;(2)原式利用减法法则变形,结合后,相加即可得到结果;(3)原式利用除法法则变形,再利用乘法分配律计算即可得到结果;(4)原式先计算乘方运算,再计算乘除运算,最后算加减运算即可得到结果;(5)原式结合后,利用乘法分配律计算即可得到结果.18.【答案】解:(1)根据各项系数的符号以及系数的值得出:这组单项式的系数的符号规律是(-1)n,系数的绝对值规律是2n-1.(2)这组单项式的次数的规律是从1开始的连续自然数.(3)第n个单项式是:(-1)n(2n-1)x n.(4)第2013个单项式是-4025x2013,第2014个单项式是4027x2014.【解析】(1)根据已知数据得出单项式的系数的符号规律和系数的绝对值规律;(2)根据已知数据次数得出变化规律;(3)根据(1)(2)中数据规律得出即可;(4)利用(3)中所求即可得出答案.此题主要考查了数字变化规律,得出次数与系数的变化规律是解题关键.19.【答案】-8【解析】解:(1)如图所示:(2)-5×2=-10.(3)A、B中点所表示的数为-3,点C与数-8所表示的点重合.故答案为:-8.(1)将点A向右移动3个单位长度得到点C的位置,依据相反数的定义得到点B表示的数;(2)依据有理数的乘法法则计算即可;(3)找出AB的中点,然后可得到与点C重合的数.本题主要考查的是数轴、相反数、有理数的乘法,在数轴上确定出点A、B、C的位置是解题的关键.20.【答案】解:(1);(2);(3)原式.【解析】此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键. (1)观察已知等式,得到拆项规律,写出即可;(2)原式===故应该填;(3)原式利用程序法变形,计算即可得到结果.第11页,共11页。
人教版七年级上册数学第一章《有理数》单元测试卷(满分100分,时间90分钟)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个..是正确的).1.下列说法正确的是( )A .所有的整数都是正数B .不是正数的数一定是负数C .0不是最小的有理数D .正有理数包括整数和分数2. 下列说法正确的有( )①0是绝对值最小的数 ②绝对值等于本身的数是正数③数轴上原点两侧的数互为相反数 ④两个数比较,绝对值大的反而小.A .1个B .2个C .3个D .4个3.2--的相反数是( )A .2B .21 C .-12 D .-2 4.在2222,(2),(2),2,(2)--------中,负数的个数是( )A. l 个B. 2个 C . 3个 D . 4个5.下列有理数大小关系判断正确的是( )A .11()910-->-- B . 100-> C . 33+<- D. 01.01->- 6. 如图所示,直径为单位1的圆从数轴上表示1的点沿着数轴无滑动地逆时针滚动一周到达A 点,则A 点表示的数是( )A .﹣π+1B .﹣π﹣1C .π+1D .π﹣17. 若|x |=﹣x ,则x 一定是( )A .负数B .负数或零C .零D .正数 8. 若|2|1x -=则x 的值是( ).A. 3B. 1 C . 1或 D . 3或1-9. 已知:2000199920012000M =-,1999199820001999N =-,那么M +N 的值必定是( )A .正数B .零C .负数D .不能确定10. 如图,数轴上有A ,B ,C ,D 四个整数点(即各点均表示整数),且2AB=BC=3CD .若A ,D 两点所表示的数分别是﹣5和6,且线段BE=2,EF=1则离原点最近的点是( )A .B B .EC .FD .C二、填空题(本大题共10小题,每小题2分,共20分).11.一次考试中,老师采取一种记分制:得120分记为+20分,那么86分应记为 分,李明的成绩记为 ﹣8分,那么他的实际得分为 分. 12.在15,38-,0.15,-30,-12.8,225中,负分数的有 . 13. 绝对值最小的数是 ;一个数的平方是它本身,这个数是 ;绝对值是它本身的数是 .14.有理数a 、b 、c 在数轴上的位置如图所示,试化简:(1)|a |= ;(2)|a +c |+|a +b |﹣|b ﹣c |= .15.若,则的值为 .16.近似数5.3万精确到 位;近似数5.27×610有 个有效数字;将87000保留两个有效数字用科学记数法表示为 .17.在数轴上任取一条长度为120169的线段,则此线段在这条数轴上最多能盖住的整数点的个数是 . 18.已知P 是数轴上的一个点.把点P 向左移动3个单位后,再向右移动一个单位,这时它到原点的距离是4个单位,则P 点表示的数是______.19. 有一个运算程序,可以使:a ⊕b = n (n 为常数)时,得(a +1)⊕b = n +1, a ⊕(b +1)= n -2 现在已知1⊕1 = 2,那么20122012⊕= .20.图1是由若干个小圆圈堆成的一个形如正三角形的图案,最上面一层有一个圆圈,以下各层均比上一层 多一个圆圈,一共堆了n 层.将图1倒置后与原图1拼成图2的形状,这样我们可以算出图1中所有圆 圈的个数为(1)1232n n n +++++=.图1 图2 图3 图4如果图1中的圆圈共有12层,23(2)0m n -++=2m n +第2层 第1层 …… 第n 层⊕ 我们自上往下,在每个圆圈中都按图3的方式填上一串连续的正整数1234,,,,,则最底层最左边这个圆圈中的数是 ;⊕ 我们自上往下,在每个圆圈中都按图4的方式填上一串连续的整数23-,22-,21-,,则图4中所有圆圈中各数的绝对值之和为 .三、解答题21.计算:(12分)⊕ 13323(2)5(8)4545+---- ⊕ 7115[45()36]59126--+⨯÷⊕ 322012111()()(1)(2)(1)2216⎡⎤--÷--⨯-÷-⎢⎥⎣⎦ ⊕()2431(2)453⎡⎤-+-÷⨯--⎣⎦22.(5分)若a ,b 互为相反数,c ,d 互为倒数,m 的绝对值为2,求的值.。
七年级数学(上) 第一章 有理数单元测试题(120分)一、选择题(3分×10=30分)1、2008的绝对值是( )A 、2008B 、-2008C 、±2008D 、20081 2、下列计算正确的是( )A 、-2+1=-3B 、-5-2=-3C 、-112-=D 、1)1(2-=-3、下列各对数互为相反数的是( )A 、-(-8)与+(+8)B 、-(+8)与+︱-8︱C 、-2222)与(-D 、-︱-8︱与+(-8)4、计算(-1)÷(-5)×51的结果是( ) A 、-1 B 、1 C 、251 D 、-25 5、两个互为相反数的有理数的乘积为( )A 、正数B 、负数C 、0D 、负数或0 6、下列说法中,正确的是( )A 、有最小的有理数B 、有最小的负数C 、有绝对值最小的数D 、有最小的正数7、小明同学在一条南北走向的公路上晨练,跑步情况记录如下:(向北为正,单位:m ):500,-400,-700,800 小明同学跑步的总路程为( )A 、800 mB 、200 mC 、2400 mD 、-200 m8、已知︱x ︱=2,y 2=9,且x ·y<0,则x +y=( )A 、5B 、-1C 、-5或-1D 、±19、已知数轴上的A 点到原点的距离为2个单位长度,那么在数轴上到A 点的距离是3个单位长度的点所表示的数有( )A 、1个B 、2个C 、3个D 、4个10、有一张厚度是0.1mm 的纸,将它对折20次后,其厚度可表示为( )A 、(0.1×20)mmB 、(0.1×40)mmC 、(0.1×220)mmD 、(0.1×202)mm二、填空题(5分×3=15)11、妈妈给小颖10元钱,小颖记作“+10元”,那么“-5元”可能表示什么 _____12、一个正整数,加上-10,其和小于0,则这个正整数可能是 (写出两个即可)13、绝对值小于2008的所有整数的和是( )14、观察下列各数,按规律在横线上填上适当的数。
七年级数学单元测试〔有理数〕一、填空题〔每题3分,共24分〕1.把以下各数填在相应的大括号中8,43,0.275,0,31-,6-,25.0-,2-正整数集合{ } 整数集合{} 负整数集合{} 正分数集合{ } 2.8.3-的相反数是 ,213的倒数是 ; 3、计算-3+1= ;=⎪⎭⎫ ⎝⎛-÷215 ;=-42 。
4、“负3的6次幂”写作 。
25-读作 ,平方得9的数是 。
5、-2的倒数是 , 311-的倒数的相反数是 。
有理数 的倒数等于它的绝对值的相反数。
6、根据语句列式计算: ⑴-6加上-3与2的积: ;⑵-2与3的和除以-3: ;⑶-3与2的平方的差: 。
7、用科学记数法表示:109000= ;89900000≈ 〔保留2个有效数字〕。
8、按四舍五入法则取近似值:70.60的有效数字为 个,2.096≈ 〔精确到百分位〕;15.046≈ 〔精确到0.1〕。
9、在括号填上适当的数,使等式成立: ⑴⨯=÷-78787〔 〕; ⑵8-21+23-10=〔23-21〕+〔 〕; ⑶+-=⨯-69232353〔 〕。
10.已知()03122=-++y x ,则33y x +=__________; 二、选择题 〔每题3分,共24分〕1.在211-,2.1,2-,0 ,-|-3|,()2--中,负数的个数有〔 〕A .2个B .3个C . 4个D . 5个2.,162=a 则a 是〔 〕A . 4或4-B . 4-C . 4D . 8或8-3.比较4.2-, 5.0-, ()2-- ,3-的大小,以下正确的〔 〕A .3- >4.2- > ()2--> 5.0-B .()2-- > 3->4.2-> 5.0-C .()2-- > 5,0- > 4.2-> 3-D .3-> ()2-->4.2-> 5.0-4.乘积为1-的两个数叫做互为负倒数,则2-的负倒数是〔 〕A . 2-B . 21-C . 21 D .2 5.7.951保留2个有效数字是〔 〕A . 8.00B . 7.9C . 8.0D . 86.()34--等于〔 〕 A . 12- B . 12 C . 64- D . 647.0<ab ,以下各式成立的是〔 〕A . b a =B . 0<<b aC . b a <<0D . b a <<08.一个有理数的相反数和它本身的绝对值的差是以下情形中的〔 〕A . 必为非负数B . 必为正数C . 必为非正数D . 必为09、以下计算结果错误的一个是〔 〕A 、613121-=+-B 、72213-=÷- C 、632214181641⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛=⎪⎭⎫ ⎝⎛= D 、()122133=-⨯⎪⎭⎫ ⎝⎛- 10、如果a+b <0,并且ab >0,那么〔 〕A 、a <0,b <0B 、a >0,b >0C 、a <0,b >0D 、a >0,b <0三、计算题〔要求写出过程,每题5分,共30分〕〔1〕31)51(32+-+ 〔2〕2)5()2(10-⨯-+〔3〕24)612141(⨯+-〔4〕41)6.04824()6(⨯--÷-〔5〕2)4(31513297-⨯-⎪⎭⎫ ⎝⎛-÷- 〔6〕322436)12(3211⎪⎭⎫ ⎝⎛-⨯⎥⎦⎤⎢⎣⎡÷-+--五、已知:m 是正有理数,n 是负有理数,而且m =2,n =3,求n m +〔此题5分〕六、小康家里养了8只猪,质量的千克数分别为:104,98.5,96,91.8,102.5,100.7,103,95.5,按以下要求计算:⑴观察这8个数,估计这8只猪的平均质量约为 千克;⑵计算每只猪与你估计质量〔实际质量-估计质量〕分别为:⑶计算偏差的平均数〔精确到十分位〕所以这8只猪的平均质量约为七.观察算式: 21211211=-=⨯ 323121211321211=-+-=⨯+⨯ 4341313121211431321211=-+-+-=⨯+⨯+⨯ 按规律填空(2分) =⨯+⨯+⨯+⨯541431321211_______________ (2分)=⨯+⨯+⨯+⨯+⨯651541431321211_________ …… ……(2分)=⨯++⨯+⨯+⨯+⨯100991541431321211 ______________ 假设n 为正整数,试求:)100)(99(1)4)(3(1)3)(2(1)2)(1(1)1(1++++++++++++++n n n n n n n n n n 的值,并写出求值过程。
七年级数学有理数单元测试题附答案
七年级数学有理数单元测试题附答案
以下是为您推荐的七年级数学有理数单元测试题(附答案),希望本篇文章对您学习有所帮助。
七年级数学有理数单元测试题(附答案)
一、认真选一选(每题5分,共30分)
1.下列说法正确的是( )
A.有最小的正数
B.有最小的自然数
C.有最大的有理数
D.无最大的负整数
2.下列说法正确的是( )
A.倒数等于它本身的数只有1
B.平方等于它本身的数只有1
C.立方等于它本身的数只有1
D.正数的绝对值是它本身
3.如图,那么下列结论正确的是( )
A.a比b大
B.b比a大
C.a、b一样大
D.a、b的大小无法确定
4.两个有理数相除,其商是负数,则这两个有理数( )
A.都是负数
B.都是正数
C.一正数一负数
D.有一个是零
5.我国杂交水稻之父袁隆平主持研究的某种超级杂交水稻平均亩产820千克.某地今年计划栽插这种超级杂交水稻3 000亩,预计该地今年收获这种超级杂交水稻的总产量 (用科学记数法表示)是( )
A.2.5106千克
B.2.5105千克
C.2.46106千克
D.2.46105千克
6.若︱2a︱=-2a,则a一定是( )
A.正数
B.负数
C.正数或零
D.负数或零
二、认真填一填(每空2分,共30分)
7. -23 的相反数是 ;倒数是 ;绝对值是 .
8.计算:19972 48(-6) = ;
-12 (-13 ) = ; -1.25(-14 ) = .
9.计算:(-2)3= ;(-1)10= ;--32= .
10.在近似数6.48中,精确到位,有个有效数字.
11.绝对值大于1而小于4的整数有个;冬季的某日,上海最低气温是3oC,北京最低气温是-5 oC,这一天上海的最低气温比北京的最低气温高 oC.
12.如果x0,y0且x2=4,y2 =9,那么x+y=
三、计算下列各题(每小题6分,共24分)
13.(-5)6+(-125) (-5) 14.312 +(-12 )-(-13 )+223
15. (23 -14 -38 +524 )48 16. -18(-3)2+5(-12 )3-(-15) 5
四、应用题(每题8分,共16分)
17.某班抽查了10名同学的期末成绩,以80分为基准,超出的记为正数,不足的记为负数,记录的结果如下:+8,-3,+12,-7,-10,-3,-8,+1,0,+10.
(1)这10名同学中最高分是多少?最低分是多少?
(2)10名同学中,低于80分的.所占的百分比是多少?
(3)10名同学的平均成绩是多少?
18.一个病人每天下午需要测量血压,下表为病人周一到周五收缩压的变化情况,该病人上周日的收缩压为160单位.
星期一二三四五
收缩压的变化(与前一天相比较) +30 -20 +17 +18 -20
问:(1)本周哪一天血压最高?哪一天最低?
(2)与上周日相比,病人周五的血压是上升了还是下降了?
七年级上学期数学第一章测试题
一、 1. B 2. D 3. B 4. C 5. C 6. D
二、 7. 23 ;-32 ; 23 . 8. 0;-8 ; 16 ; 5.
9. -8 ;1 ; -9 . 10.百分,三. 11. 四; 8 12. 1
三、13.5 14.6 15.1 16.38
四、17.(1)最高分是:80+12=92(分)最低分是:80-10=70(分)
(2)510 100%=50%
(3)[8010+(8-3+12-7-10-3-8+1+0+10)]10=80(分)
18.(1)周一最高,周二和周五最低(2)周五的血压为:160-
20=140是下降了
七年级数学(上)自主学习达标检测
一、填空题
1. 2. 3. 或1 4.
5.9
6.
7.
8.55% ,33
9. 10.1,0,非负数 11.
12.2 13.5 14. 15. 16.4
二、解答题
17.(1) ;(2)20;(3) ;(4)65 18.回到了原来的位置;(2)12;(3)54
19.(1) ,验证略;(2) 。
下载全文。