神经发生的概念
- 格式:doc
- 大小:10.74 KB
- 文档页数:2
高中生物选择性必修一第二章神经调节一、神经系统的结构基础1、神经系统的基本结构(1)注意区分脑和大脑;神经中枢和中枢神经系统。
(2)大脑是调节机体活动的最高级中枢;下丘脑有体温调节中枢、水平衡调节中枢,还与生物节律等有关;小脑维持平衡;脑干连接脑和脊髓,有生命中枢。
(3)脑神经12对,管理头面部的感觉和运动;脊神经31对,管理躯干和四肢的感觉和运动,脑神经和脊神经都有支配内脏的神经。
(4)人体处于兴奋状态时,交感神经活动占优势,心跳加快,支气管扩张,胃肠蠕动和消化腺的分泌活动减弱;人体处于安静状态时,副交感神经的活动占优势,心跳减慢,胃肠蠕动和消化腺分泌加强,有利于食物的消化和营养物质的吸收。
2、组成神经系统的细胞—神经元和神经胶质细胞3、神经系统结构和功能的基本单位:神经元。
细胞体神经元树突(接受传导信息)突起轴突(传递信息)+ 髓鞘= 神经纤维+ 神经纤维+......+包膜=神经4.神经胶质细胞数量大,对神经细胞起辅助作用,具有支持、保护、营养、修复神经元等多种功能。
二、神经调节的基本方式1.反射与反射弧(1)概念:在中枢神经系统的参与下,机体对外界刺激所产生的规律性应答,叫做反射。
(2)神经调节的基本方式是反射,反射的结构基础是反射弧。
反射弧包括感受器、传入神经、神经中枢、传出神经和效应器(传出神经末梢和它所支配的肌肉或腺体)。
要完成一个反射,必须具备完整的反射弧。
(3)传入和传出神经的判断:小进大出;神经节(传入);突触结构。
(4)关于反射弧完整性检测(5)关于有无感觉和有无反射的情况分析:思路:感觉需要传到大脑,反射需要传到效应器,只要路径完整就可以有反射或感觉。
(6)兴奋:兴奋是指动物体或人体内的某些组织或细胞感受到外界刺激后,由相对静止状态转变为相对活跃状态的过程。
2、条件反射和非条件反射(1)条件反射与非条件反射的比较(2)条件反射建立在非条件反射的基础之上,通过学习和训练而建立的。
神经元迁移与神经发生的关系神经元迁移是指神经元在胚胎发育过程中从原始位置迁移到最终定位的过程。
这个过程是非常重要的,因为神经元只有到达正确的位置才能正确的形成神经回路,产生正确的功能。
而神经发生则是指神经元的生成和发育过程,这些过程和神经元迁移之间密切相关。
本文将详细讨论神经元迁移与神经发生之间的关系。
神经元的生成和迁移是一个非常复杂的过程,它涉及到多种信号通路和分子机制。
在神经发生过程中,神经干细胞会分化成神经元或胶质细胞。
一旦神经元产生,它们需要迁移到正确的位置,并形成特定的突触连接。
这一过程的核心是化学信号和细胞黏着分子。
化学信号包括多种信号分子,例如脑源性神经营养因子、神经生长因子、神经递质等。
这些信号通过与细胞表面上的受体结合来调节神经元的形态和迁移。
脑源性神经营养因子是一种神经元存活和发育所必需的蛋白质。
神经生长因子是一种可以通过诱导神经元新生、突起形成和突起增长等功能来促进神经元生长和分化的蛋白质。
神经递质是一种神经元内分泌物,通过与神经元的受体结合来传递化学信息,调节神经元的兴奋性和活动。
此外,细胞黏着分子对于神经元迁移和突触形成也是至关重要的。
细胞黏着分子是一种可以调节细胞间粘附和移动的分子。
神经元在移动过程中,它们需要粘附在细胞黏着分子上以获得支持和指引。
而在突触形成方面,神经元之间的黏附和识别是非常重要的。
神经元通过突触接触而形成功能上的联系。
这一过程需要细胞间黏附分子介导的黏附和识别事件来进行。
神经元的迁移和定位受到许多因素的控制,包括环境信号、胚胎组织形态、某些细胞特异性因子和生长因子的存在以及中间分子的作用。
这些因素合作调控神经元的生成、迁移和定位,从而使神经元能够正确形成突触、建立复杂的神经回路,并产生正确的功能。
总体来看,神经元的迁移与神经发生密切相关。
神经元的生成和迁移是神经系统形成和发育的重要基础。
神经元的迁移过程中,化学信号和细胞黏附分子在神经元迁移和突触形成中起着重要的作用。
神经生物学中的神经可塑性:探索神经可塑性的分子机制与在学习、记忆中的作用摘要神经可塑性是大脑适应环境变化、学习新知识和形成记忆的基础。
本文将深入探讨神经可塑性的分子机制,包括突触可塑性、神经发生和神经环路重塑。
同时,我们将重点阐述神经可塑性在学习和记忆过程中的关键作用,并探讨其在神经系统疾病治疗中的潜在应用。
1. 引言神经可塑性是指神经系统在一生中不断改变和重塑自身结构和功能的能力。
这种能力使大脑能够适应环境变化、学习新技能、形成记忆,并在受伤后进行修复。
神经可塑性是神经科学研究的核心领域之一,其分子机制的揭示对于理解大脑功能和开发神经系统疾病治疗方法具有重要意义。
2. 神经可塑性的分子机制2.1 突触可塑性突触是神经元之间传递信息的连接点。
突触可塑性是指突触连接强度随经验和学习而变化的能力。
长时程增强(LTP)和长时程抑制(LTD)是两种主要的突触可塑性形式。
LTP 增强突触连接强度,被认为是学习和记忆形成的基础。
LTD 则削弱突触连接强度,有助于神经环路精细化和记忆清除。
突触可塑性的分子机制涉及多种信号通路和分子。
谷氨酸受体,特别是 NMDA 受体,在LTP 中起关键作用。
钙离子内流激活一系列信号通路,包括钙调蛋白激酶 II (CaMKII)、蛋白激酶 C (PKC) 和丝裂原活化蛋白激酶 (MAPK),导致突触后膜受体数量增加和突触形态改变。
2.2 神经发生神经发生是指神经干细胞分化产生新的神经元的过程。
成年哺乳动物大脑的某些区域,如海马齿状回和侧脑室下区,仍然保留着神经发生的能力。
神经发生在学习、记忆和情绪调节中起重要作用。
神经发生的分子机制涉及多种生长因子和转录因子。
脑源性神经营养因子 (BDNF) 是促进神经发生的关键分子。
BDNF 激活受体酪氨酸激酶 B (TrkB),启动一系列信号通路,促进神经干细胞增殖、分化和存活。
2.3 神经环路重塑神经环路重塑是指神经元之间连接模式的改变。
●什么是神经生物学、它的范畴1.神经生物学是一门在各个水平,研究人体神经系统的结构、功能、发生、发育、衰老、遗传等规律,以及疾病状态下神经系统的变化过程和机制的科学。
2.它涉及神经解剖学、神经生理学、发育神经生物学、分子神经生物学、神经药理学、神经内科学、神经外科学、精神病学等等。
●什么是行为—-有动机、有目的的行动●行为的决定因素——人类行为由基因和环境相互作用形成。
●行为在诺贝尔得奖上的争论?●脑的基本结构、组成——脑包括端脑、间脑、中脑、脑桥和延髓,可分为大脑、小脑和脑干三部分。
(小延站在桥的中间端)●神经元和神经胶质细胞组成神经系统,具有的1.共性:细胞核;线粒体;高尔基体;内质网;细胞骨架等2.神经元特性1)细胞轴突和树突2)特殊的结构(如突触)和化学信号(如神经递质)3)通过电化学突触相互联系4)不能复制5)膜内外的盐溶液;磷脂膜;跨膜蛋白质3.神经胶质细胞特性1)无突触。
2)与神经元不同,可终身具有分裂增殖的能力3)低电阻通路的缝隙连接,无动作电位4)星形胶质细胞:参与神经组织构筑的塑型、修复、参与血脑屏障的形成、物质转运对谷氨酸和γ-氨基丁酸等代谢的调节、维持微环境的稳定、通过对细胞间液中K+的缓冲作用影响神经活动、参与脑的免疫应答反应、神经元新生●细胞骨架:微管;神经丝;微丝1.微管:组成→微管蛋白和微管相关蛋白,tau(与老年痴呆症相关)异二聚体为单位,有极性。
功能:细胞器的定位和物质运输2.微丝:成分→Actin肌动蛋白,组装需要ATP修饰蛋白,微丝是由球形-肌动蛋白形成的聚合体,生长锥运动3.神经丝:星形胶质细胞标记物;调节细胞和轴突的大小和直径●什么是轴浆运输,它的分子马达?1.指化学物质和某些细胞器在神经元胞体和神经突起之间的运输,是双向性的。
1)快速轴浆运输顺向运输:囊泡、线粒体等膜结构细胞器逆向运输:神经营养因子病毒如狂犬病毒、单纯疱疹病毒2)慢速轴浆运输顺向运输:胞浆中可溶性成分和细胞骨架成分2.分子马达:驱动蛋白动力蛋白3.应用:追踪脑内突触连接●髓鞘是什么?髓鞘是包裹在神经细胞轴突外面的一层膜,一般只出现在脊椎动物的轴突,在树突没有分布。
神经发生的概念
神经发生是指在胚胎发育过程中,神经元(神经细胞)的产生、分化、迁移、结构形成和突触连接的过程。
这个过程在胚胎发育的早期开始,然后延续到婴幼儿和儿童期,最终形成成熟的神经系统。
具体地,神经发生的主要过程包括:
1. 神经前体细胞的产生:在胚胎发育初期,神经前体细胞会产生神经元和神经胶质细胞的前体。
2. 神经元的分化:神经前体细胞会分化成不同类型的神经元,如感觉神经元、运动神经元和中间神经元等。
3. 神经元的迁移:分化出来的神经元会通过迁移,从原始位置移动至最终分布的区域。
这是神经前体细胞在大脑和脊髓中形成正确的神经回路的关键过程。
4. 神经元的突起和轴突导向:持续的神经发生过程涉及新产生的神经元给出突起和轴突,即神经元的延伸部分,用于在神经元之间传递
信息。
5. 神经连接的形成:碰触其它神经元或靶细胞后,神经突起会在特定区域聚集成突触,形成神经连接。
这些连接是神经信息传递的基础。
在神经发生过程中,许多复杂的细胞相互作用、信号分子的介导和遗传机制参与其中。
这些过程的准确调控非常重要,以确保神经系统正确地发育和功能正常。
对神经发生的研究有助于我们理解神经系统形成的基本原理,并对神经发育相关疾病的治疗和预防提供理论依据。