2.算法-哈夫曼编码
- 格式:doc
- 大小:60.00 KB
- 文档页数:4
数据压缩算法中的哈夫曼编码原理及应用哈夫曼编码是一种常用的数据压缩算法,它的原理是通过对待压缩的数据进行频率统计,将频率较高的字符赋予较短的编码,频率较低的字符赋予较长的编码,从而实现对数据的高效压缩。
哈夫曼编码的应用广泛,包括文件压缩、通信传输、数据存储等方面。
哈夫曼编码的原理可以简单描述为以下几个步骤:1.频率统计:将待压缩的数据进行频率统计,统计每个字符出现的次数,得到字符频率表。
2.构建哈夫曼树:根据字符频率表,构建哈夫曼树。
哈夫曼树是一种特殊的二叉树,其中每个叶子节点对应着一个字符,其路径长度代表该字符的编码长度。
3.生成编码:从哈夫曼树的根节点开始,对每个叶子节点进行编码生成。
从根节点到叶子节点的路径上的边分为0和1,路径上的0表示向左走,1表示向右走,从而得到每个字符的哈夫曼编码。
4.压缩数据:将原始数据按照生成的哈夫曼编码进行压缩,将每个字符替换为对应的哈夫曼编码。
5.解压数据:根据压缩后的数据和哈夫曼树,进行解压还原。
从根节点开始,按照压缩数据的0和1进行路径遍历,当遇到叶子节点时,即可找到对应的字符。
哈夫曼编码的应用非常广泛,下面介绍几个常见的应用领域:1.文件压缩:哈夫曼编码在文件压缩中有着重要的应用。
通过统计文件中每个字符的出现频率,构建哈夫曼树,并生成对应的哈夫曼编码,将字符替换为哈夫曼编码后,可以大大减少文件的存储空间。
当文件中存在一些频率较高的字符时,哈夫曼编码的效果尤为显著。
2.图片压缩:在图片压缩中,哈夫曼编码通常用于无损压缩。
将图像中的像素点表示为字符,通过统计每个字符出现的频率,构建哈夫曼树,并生成对应的哈夫曼编码。
将像素点替换为哈夫曼编码后,图像的存储空间可以大大减小,同时保证了图像的质量不受损失。
3.音频压缩:在音频压缩中,哈夫曼编码常用于有损压缩,例如MP3格式的音频文件。
在有损压缩中,通过对音频数据进行量化和编码,可以减小文件的大小,从而方便传输和存储。
数学编码知识-回复什么是数学编码?数学编码是一种将信息转化为数学语言的技术,通过特定的编码算法将信息压缩成更简洁的形式。
它在信息论、通信工程、计算机科学等领域有着广泛的应用。
本文将详细介绍数学编码的基本概念、常用算法及其应用。
1. 信息量与信息熵在数学编码中,我们首先需要了解信息量与信息熵的概念。
信息量是指信息的量度大小,一般用信息量的比特表示。
而信息熵是指信息的不确定性或信息量的期望值。
信息熵越大,信息的不确定性越高。
2. 哈夫曼编码哈夫曼编码是一种常用的变长编码算法,通过构建哈夫曼树来实现信息的压缩。
该算法根据字符出现的概率分布来为每个字符分配唯一的编码,使得出现概率较高的字符具有较短的编码,而出现概率较低的字符具有较长的编码。
这样可以有效地减少信息的传输量,从而实现压缩的目的。
3. 香农编码香农编码又称为最优编码,是一种按照信息量分配编码的算法。
它使用概率分布来为不同的字符分配编码,使得出现概率较高的字符具有较短的编码,而出现概率较低的字符具有较长的编码。
香农编码的特点是编码长度与信息的概率分布有关,出现概率越高的信息具有越短的编码长度。
4. 等长编码与变长编码等长编码是一种每个字符都分配相同长度编码的方法,每个字符的编码长度都相等。
这种编码方法可以保证编码的唯一性,但对于概率分布不均衡的情况下,会造成信息的传输量增大。
而变长编码是根据字符出现的概率分布分配不同长度的编码,可以在一定程度上减少信息的传输量,提高编码效率。
5. 数学编码的应用数学编码在实际应用中有许多重要的应用,其中最常见的是数据压缩。
通过使用各种编码算法,可以将数据以更紧凑的方式进行存储和传输,节省存储空间和传输带宽。
另外,数学编码还在信道编码、图像压缩、音频压缩等领域有着广泛的应用。
总结:数学编码是一种重要的信息处理技术,可将信息转化为数学语言,并采用不同的编码算法进行压缩和解压缩。
常见的数学编码算法包括哈夫曼编码、香农编码等,这些算法可以根据信息的概率分布分配不同长度的编码,实现信息的压缩。
哈夫曼编码python一、什么是哈夫曼编码?哈夫曼编码(Huffman Coding)是一种可变长度编码(Variable Length Code),它可以将不同长度的字符编码成等长的二进制串,从而实现数据压缩的目的。
哈夫曼编码是由David A. Huffman在1952年发明的,它是一种贪心算法,可以得到最优解。
二、哈夫曼编码原理1.字符频率统计在进行哈夫曼编码之前,需要先统计每个字符出现的频率。
通常使用一个字典来存储每个字符和其出现的次数。
2.构建哈夫曼树根据字符出现频率构建一个二叉树,其中频率越高的字符离根节点越近。
构建过程中需要用到一个优先队列(Priority Queue),将每个节点按照频率大小加入队列中,并将队列中前两个节点合并为一个新节点,并重新加入队列中。
重复这个过程直到只剩下一个节点,即根节点。
3.生成哈夫曼编码从根节点开始遍历哈夫曼树,在遍历过程中,左子树走0,右子树走1,直到叶子节点。
将路径上经过的0和1分别表示为0和1位二进制数,并把这些二进制数拼接起来,就得到了该字符的哈夫曼编码。
三、哈夫曼编码Python实现下面是一个简单的Python实现:1.字符频率统计```pythonfrom collections import Counterdef get_char_frequency(text):"""统计每个字符出现的频率"""return Counter(text)```2.构建哈夫曼树```pythonimport heapqclass HuffmanNode:def __init__(self, char=None, freq=0, left=None, right=None): self.char = charself.freq = freqself.left = leftself.right = rightdef __lt__(self, other):return self.freq < other.freqdef build_huffman_tree(char_freq):"""根据字符频率构建哈夫曼树"""nodes = [HuffmanNode(char=c, freq=f) for c, f inchar_freq.items()]heapq.heapify(nodes)while len(nodes) > 1:node1 = heapq.heappop(nodes)node2 = heapq.heappop(nodes)new_node = HuffmanNode(freq=node1.freq+node2.freq, left=node1, right=node2)heapq.heappush(nodes, new_node)return nodes[0]```3.生成哈夫曼编码```pythondef generate_huffman_codes(node, code="", codes={}): """生成哈夫曼编码"""if node is None:returnif node.char is not None:codes[node.char] = codegenerate_huffman_codes(node.left, code+"0", codes) generate_huffman_codes(node.right, code+"1", codes)return codes```四、使用哈夫曼编码进行压缩使用哈夫曼编码进行压缩的方法很简单,只需要将原始数据中的每个字符用对应的哈夫曼编码替换即可。
哈夫曼编码原理及方法哈夫曼编码(Huffman Coding)是一种变长编码(Variable Length Code)的压缩算法。
它的原理是将频率较高的字符用较短的编码,频率较低的字符用较长的编码,以此降低数据的传输成本。
下面将详细介绍哈夫曼编码的原理及方法。
一、哈夫曼编码的原理哈夫曼编码的原理基于贪心算法(Greedy Algorithm),即对每个要编码的字符进行评估,按照字符在文本中出现的频率多少,将频率高的字符赋予较短的编码,频率低的字符赋予较长的编码。
这样在实际使用中,字符出现频率越高的编码长度越短,从而达到压缩数据的目的。
二、哈夫曼编码的方法1. 构建哈夫曼树(Huffman Tree)构建哈夫曼树的过程首先要确定每个字符在文本中出现的频率,然后将每个字符看作一个节点,并按照其频率大小建立一个小根堆(Min Heap)。
接下来,选取频率最小的两个节点,将它们合并到一起作为一个新的节点,并更新频率值,然后继续重复以上步骤,直到堆中只剩下一个节点,即为哈夫曼树的根节点。
2. 生成哈夫曼编码生成哈夫曼编码可以采用递归的方式,从根节点开始向左遍历时,将标记为 0,向右遍历时,将标记为 1,直到叶节点为止,然后向上回溯,将遍历的结果保存下来,得到该叶节点的哈夫曼编码。
遍历完所有的叶子节点后,即可得到所有字符的哈夫曼编码。
3. 压缩数据在使用哈夫曼编码进行数据压缩时,将字符替换为其对应的哈夫曼编码,这样可以将原始数据压缩为更小的数据量,达到压缩数据的目的。
在解压数据时,需要根据已生成的哈夫曼树,将压缩后的数据转换为原始数据,即将哈夫曼编码转换为对应的字符。
三、哈夫曼编码的优缺点哈夫曼编码的优点是具有压缩比高、压缩速度快、压缩后的数据无损还原等特点,可以广泛用于图像、音频、视频等多种数据类型的压缩。
同时,由于哈夫曼编码采用变长编码方式,所以可以使用相对较短的编码表示经常出现的字符,从而达到更好的压缩效果。
哈夫曼编解码算法设计1.引言1.1 概述概述部分将对哈夫曼编解码算法进行简要介绍,包括该算法的产生背景、主要特点以及应用领域等方面的内容。
哈夫曼编解码算法是一种基于权重分布的压缩算法,它通过对输入的数据流进行编码和解码来实现数据的压缩和恢复。
该算法由大卫·哈夫曼(David A. Huffman)于1952年提出,是一种被广泛应用于信息论和数据压缩领域的有效算法。
该算法的主要特点是根据输入数据的权重分布构建一棵哈夫曼树,通过不等长的编码方式来表示输入数据中出现频率较高的字符或数据块。
编码时,出现频率较高的字符使用较短的二进制编码,而出现频率较低的字符则使用较长的二进制编码,以此来实现数据的压缩效果。
哈夫曼编码算法在数据压缩领域有着广泛的应用。
由于压缩后的数据长度较短,可以大大节省存储空间和传输带宽,因此被广泛应用于各种数据传输和存储场景中,如文件压缩、图像压缩、语音压缩等。
此外,哈夫曼编码算法的设计思想也对后续的数据压缩算法提供了重要的借鉴和参考价值。
本文将详细介绍哈夫曼编码算法的原理、设计与实现,并通过实例和实验验证算法的性能和效果。
通过对哈夫曼编码算法的研究与分析,可以更好地理解该算法的优势和不足,并为后续的算法改进和优化提供参考。
最后,本文将总结哈夫曼编码算法的主要特点和应用场景,并对未来的研究方向提出展望。
1.2 文章结构文章结构部分主要介绍本文的各个部分以及每个部分的内容安排。
在本文中,共包含引言、正文和结论三个部分。
引言部分主要介绍了整篇文章的背景和目的。
在概述部分,简要说明了哈夫曼编解码算法的概念和作用,以及该算法在通信领域的重要性。
然后,文章结构部分具体说明了本文的组织结构,以便读者能够清晰地了解文章的整体脉络。
正文部分是本文的主体,分为两个部分:哈夫曼编码算法原理和哈夫曼编码算法设计与实现。
在哈夫曼编码算法原理部分,将详细介绍哈夫曼编码算法的基本原理,包括频率统计、构建哈夫曼树和生成哈夫曼编码等步骤。
哈夫曼编码算法的原理及应用随着信息技术的快速发展和数字化时代的到来,数据量的增加、存储和传输的要求也愈加严格。
如何用最少的存储空间传输最多的信息,成为了数字化时代数据处理的重要问题。
哈夫曼编码算法由于它对数据的高效压缩和快速解压,已经成为信息技术领域中常用的压缩算法之一。
一、哈夫曼编码算法的原理哈夫曼编码算法是由美国数学家哈夫曼在1952年发明的一种高效的数据压缩算法,它是一种前缀编码方式,利用不同字符出现的频率不同,将频率小的字符用较短的编码表达,频率大的字符则用较长的编码表示。
在编码表中,任何一个字符的编码都不会是另一个的编码的前缀,这就是哈夫曼编码的前缀编码优势。
采用哈夫曼编码算法最终压缩得到的数据是无损的,因为压缩后的数据是通过编码表进行翻译的,不会出现错误的情况。
哈夫曼编码算法的实现包括两个主要步骤:创建哈夫曼树和生成哈夫曼编码。
创建哈夫曼树:哈夫曼树是由哈夫曼算法创建的,其基本思想是将每个字符看作一棵树,以该字符出现的频率为权值,进行递归合并,直到所有的树合并为一棵哈夫曼树。
哈夫曼树的结构可以用一棵二叉树来表示,每个节点代表一个字符或者一个由多个字符组成的字符串。
生成哈夫曼编码:通过哈夫曼树可以生成哈夫曼编码表,哈夫曼编码表可以用一个映射关系来表示,将每个字符与对应的编码对应起来。
在哈夫曼树的遍历过程中,当向左走时,添加0到编码中,向右走时,添加1到编码中,直到到达叶子节点时,记录下该字符的哈夫曼编码。
二、哈夫曼编码算法的应用哈夫曼编码算法的应用非常广泛,除了在数据压缩中广泛应用外,它在通信、数据存储等领域也有很多应用。
下面我们介绍几个典型的应用场景。
1. 压缩和解压缩作为一种高效的数据压缩算法,哈夫曼编码算法被广泛应用于文件和图像等数据的压缩和解压缩中。
哈夫曼编码通过对数据进行更高效的压缩,可以节约存储空间和传输带宽。
在压缩文件的过程中,压缩后的文件大小通常能缩小到原来的50%以下。
哈夫曼树及哈夫曼编码的算法实现c语言1.引言1.1 概述哈夫曼树及哈夫曼编码是数据压缩和编码中常用的重要算法。
哈夫曼树由大卫·哈夫曼于1952年提出,用于根据字符出现的频率构建一种最优的前缀编码方式。
而哈夫曼编码则是根据哈夫曼树构建的编码表将字符进行编码的过程。
在现代通信和计算机领域,数据传输和存储中往往需要大量的空间。
为了有效利用有限的资源,减少数据的存储和传输成本,数据压缩成为一个重要的技术。
而哈夫曼树及哈夫曼编码正是数据压缩中常用的技术之一。
哈夫曼树的概念及原理是基于字符的频率和概率进行构建的。
在哈夫曼树中,字符出现频率越高的节点越接近根节点,出现频率越低的节点离根节点越远。
这种构建方式保证了哈夫曼树的最优性,即最小化编码的总长度。
哈夫曼编码的算法实现是根据哈夫曼树构建的编码表进行的。
编码表中,每个字符都与一段二进制编码相对应。
在进行数据压缩和解压缩时,通过查表的方式将字符转化为相应的二进制编码,或将二进制编码解析为原始字符。
本文旨在介绍哈夫曼树及哈夫曼编码的概念和原理,并通过C语言实现算法。
通过深入理解哈夫曼树及哈夫曼编码的实现过程,可以更好地理解数据压缩和编码的原理,为后续的研究和应用提供基础。
接下来,我们将首先介绍哈夫曼树的概念和原理,然后详细讲解哈夫曼编码的算法实现。
最后,我们将总结哈夫曼树及哈夫曼编码的重要性,并提出对哈夫曼树和哈夫曼编码进一步研究的方向。
让我们一起深入探索哈夫曼树及哈夫曼编码的奥秘吧!1.2 文章结构文章结构部分的内容可以包括以下内容:文章结构部分主要介绍了本文的组织结构和各个章节的内容概述,以帮助读者更好地理解全文的逻辑结构和内容安排。
首先,本文包括引言、正文和结论三个部分。
引言部分主要对哈夫曼树及哈夫曼编码的算法实现进行了概述,包括相关的概念、原理和目的。
正文部分则深入介绍了哈夫曼树的概念和原理,以及哈夫曼编码的算法实现。
最后,结论部分对本文的主要内容进行了总结,并提出了对哈夫曼树和哈夫曼编码的进一步研究方向。
哈夫曼编码的压缩与解压缩1.引言1.1 概述哈夫曼编码是一种常用的数据压缩算法,它采用了一种变长编码方式,将出现频率高的字符用较短的编码表示,出现频率低的字符用较长的编码表示,以达到压缩数据的目的。
该编码方法由美国数学家大卫·哈夫曼于1952年提出,被广泛应用于各种数据压缩和传输领域。
在传统的固定长度编码中,每个字符都使用相同的位数来表示,因此在表示不同概率出现的字符时,可能会浪费大量的位数。
而哈夫曼编码则是根据字符在文本中出现的频率来确定其对应的编码,使得高频出现的字符用更短的编码表示,低频出现的字符用较长的编码表示。
哈夫曼编码的核心思想是构建一棵哈夫曼树,将出现频率作为权值,频率越高的字符离根节点越近。
通过从叶子节点到根节点的路径确定每个字符的编码,即将左子树标记为0,右子树标记为1。
在对文本进行压缩时,将文本中的字符转换为其对应的哈夫曼编码,即可将原始数据压缩为较短的二进制串。
相比于传统固定长度编码,哈夫曼编码具有显著的优势。
首先,它可以根据文本中字符出现的实际情况进行编码,使得频率高的字符用较短的编码表示,从而大幅度减少了编码后的数据长度。
其次,哈夫曼编码是一种前缀编码,即任何一个字符的编码都不是其他字符编码的前缀,这样在解码时可以直接根据编码找到对应的字符,无需回溯查表,提高了解码效率。
哈夫曼编码的应用广泛,它被用于无损图像压缩、音频压缩、文本压缩等领域。
随着互联网和大数据时代的到来,数据的传输和存储成为重要的问题,如何高效地压缩和解压缩数据成为一个热门的研究方向。
哈夫曼编码作为一种简单而有效的压缩算法,具有广阔的应用前景。
然而,哈夫曼编码也存在一些问题,如编码时需要构建哈夫曼树,需要额外的空间和时间开销,对于小规模数据可能会影响压缩效率。
因此,在实际应用中,需要综合考虑数据规模和应用场景,选择合适的压缩算法。
1.2 文章结构本文主要介绍了哈夫曼编码的压缩与解压缩。
文章分为引言、正文和结论三个部分。
哈夫曼编码算法详解在计算机科学中,哈夫曼编码是一种压缩算法,也叫做霍夫曼编码,是由霍夫曼(Huffman)在1952年首创的。
霍夫曼编码是一种无损压缩算法,可以对文本文件、音频文件、图像文件等各种类型的文件进行压缩。
1. 哈夫曼编码的原理哈夫曼编码是基于频率统计的思想,通过统计每个字符在文件中出现的频率,选择出现频率最高的字符,将其映射为一组比特位,出现频率较低的字符则映射为比高的比特位,从而实现对文件的压缩。
通过哈夫曼编码,可以将文件压缩到原始大小的一半甚至更小。
2. 哈夫曼编码的实现哈夫曼编码的实现需要进行几个步骤:2.1 统计字符的出现频率从文件中读取字符,统计每个字符在文件中出现的次数,可以使用一个数组或字典来保存每个字符的出现次数。
对于英文文本来说,出现频率最高的字符是空格,其次是字母“e”。
2.2 构建哈夫曼树将所有的字符按照出现频率从小到大排序,选出出现频率最小的两个字符作为左右子节点,其父节点的出现频率为左右子节点出现频率之和。
重复这个过程,直到节点数为1,这样就得到了一棵哈夫曼树。
2.3 生成哈夫曼编码从哈夫曼树的根节点开始,遍历所有的节点,将左子节点标记为0,将右子节点标记为1,将所有的叶子节点的字符和对应的哈夫曼编码保存到一个字典中。
最终得到了每个字符对应的哈夫曼编码。
2.4 进行压缩将文件中每个字符替换为对应的哈夫曼编码,然后将所有的哈夫曼编码拼接成一个二进制数,在最后不足8位的位置补零,将其存储到文件中。
这样就完成了文件的压缩。
3. 哈夫曼编码的优点哈夫曼编码具有以下优点:3.1 压缩率高由于哈夫曼编码是根据不同字符的出现频率来进行编码的,出现频率高的字符用较短的编码表示,出现频率低的字符用较长的编码表示,能够最大限度地减少文件的大小,从而达到高的压缩率。
3.2 唯一解哈夫曼编码是通过构建哈夫曼树来得到每个字符对应的编码,哈夫曼树的构建是唯一的,因此哈夫曼编码也是唯一的。
哈夫曼编码算法哈夫曼编码算法是一种基于编码理论的高效数据压缩算法。
它是由美国数学家大卫·哈夫曼于1952年提出的,被广泛应用于数据压缩、图像处理、音频处理、通信传输等领域。
哈夫曼编码算法的核心思想是利用字符出现的频率来设计一种最优的编码方式,使得压缩后的数据长度最短。
具体来说,它将出现频率较高的字符用较短的编码表示,而将出现频率较低的字符用较长的编码表示,从而实现了数据的压缩。
在哈夫曼编码算法中,首先需要统计待压缩数据中各个字符出现的频率,并将其构建成一棵二叉树。
在构建二叉树的过程中,每个字符都被看作是一个叶子节点,其出现频率越高,其在二叉树中的位置越靠近根节点。
构建完二叉树后,再对每个叶子节点进行编码,将其路径上的0和1分别表示为0和1的编码序列,这样就得到了每个字符的哈夫曼编码。
对于任意一段待压缩数据,可以根据字符的哈夫曼编码将其转换为一串由0和1组成的二进制序列。
由于哈夫曼编码是一种前缀编码,即任何一个字符的编码序列都不是另一个字符的编码序列的前缀,因此在解压缩时,可以根据编码序列逐位识别出每个字符,并将其还原成原始数据。
哈夫曼编码算法的优点在于它能够实现高效的数据压缩,尤其是对于出现频率较高的字符,其编码长度非常短,可以显著减少数据的存储空间。
此外,哈夫曼编码算法还具有良好的可扩展性和适应性,能够适应不同类型、不同大小的数据集。
然而,哈夫曼编码算法也存在一些限制和缺陷。
首先,由于需要统计字符出现的频率,因此在压缩较小的数据集时,其效果可能不如其他压缩算法。
其次,由于哈夫曼编码算法需要在解压缩时构建二叉树,因此对于大规模数据集,其解压缩的时间复杂度可能较高。
为了克服哈夫曼编码算法的这些限制和缺陷,研究者们提出了许多改进和优化的方法。
例如,可以利用哈夫曼编码算法的可扩展性,将其与其他压缩算法结合使用,以实现更高效的数据压缩。
此外,还可以利用多种哈夫曼编码算法的优点,设计出更加灵活、高效的数据压缩方案。
昆明理工大学信息工程与自动化学院学生实验报告
(2012 —2013 学年第 1 学期)
课程名称:算法设计与分析开课实验室:信自楼445 2012 年11月 8日
一、上机目的及内容
1.上机内容
设需要编码的字符集为{d1, d2, …, dn},它们出现的频率为{w1, w2, …, wn},应用哈夫曼树构造最短的不等长编码方案。
2.上机目的
(1)了解前缀编码的概念,理解数据压缩的基本方法;
(2)掌握最优子结构性质的证明方法;
(3)掌握贪心法的设计思想并能熟练运用。
二、实验原理及基本技术路线图(方框原理图或程序流程图)
(1)证明哈夫曼树满足最优子结构性质;
(2)设计贪心算法求解哈夫曼编码方案;
(3)设计测试数据,写出程序文档。
三、所用仪器、材料(设备名称、型号、规格等或使用软件)
1台PC及VISUAL C++6.0软件
四、实验方法、步骤(或:程序代码或操作过程)
#include<stdio.h>
#include<stdlib.h>
#define MAXSIZE 30
typedef struct
{
int weight;//节¨²点Ì?权¨¡§值¦Ì
int parent;
int rchild;
int lchild;
int flag;//是º?否¤?用®?过y的Ì?标À¨º志?
}HufmTree;
int p1,p2;
void CreatHuffman(HufmTree tree[],int i);//构1造¨¬函¡¥数ºy
void Select(HufmTree tree[],int i);//选?择?最Á?小?两¢?个?森¦-林¢?的Ì?函¡¥数ºy void DisplayTree(HufmTree tree[],int Number);//输º?出?函¡¥数ºy
void main()
{
int InputNumber;
printf("结¨¢果?");
HufmTree mytree[MAXSIZE];//声¦¨´明¡Â树º¡Â
printf("输º?入¨?节¨²点Ì?个?数ºy");
scanf("%d",&InputNumber);
CreatHuffman(mytree,InputNumber);//构1造¨¬树º¡Â
DisplayTree(mytree,InputNumber);//输º?出?树º¡Â
}
void CreatHuffman(HufmTree tree[],int n)
{
int i,m;
if(n<=1)//森¦-林¢?个?数ºy小?于®¨²或¨°等̨¨于®¨²一°?
{
return;
}
m=2*n;
for(i=1;i<m;i++)
{
tree.parent=0;
tree.lchild=0;
tree.rchild=0;
tree.weight=0;
tree.flag=0;
}
printf("节¨²点Ì?的Ì?数ºy值¦Ì");
for(i=1;i<=n;i++)//增?加¨®n-1个?新?节¨²点Ì?
{
Select(tree,i-1);//选?出?当Ì¡À前¡ã森¦-林¢?中D的Ì?最Á?小?两¢?个?仅?最Á?小?权¨¡§值¦Ì的Ì?节¨²点Ì?下?标À¨ºtree[p1].flag=i;//构1造¨¬新?的Ì?节¨²点Ì?并¡é赋3值¦Ì
tree[p2].parent=i;
tree[p2].flag=1;
tree.lchild=p1;
tree.rchild=p2;
tree.weight=tree[p1].weight+tree[p2].weight;
}
}
void Select(HufmTree tree[],int Number)
{
int MinValue1,MinValue2,i,j;
for( i=1;tree.flag!=0;i++)
{
MinValue1=tree.weight;
p1=i;//下?标À¨º值¦Ì
}
for( j=i+1;j<=Number;j++)
{
if((tree.flag!=1)&&(MinValue1>tree[j.weight]))
{MinValue1=tree[j].weight;
p1=j;
}
}
tree[p1].flag=1;//从䨮森¦-林¢?中D去¨£¤掉Ì?
for( i=1;tree.flag!=0;i++)
{
MinValue2=tree.weight;
p2=i;
}
for( j=i+1;j<=Number;j++)
{
if((tree.flag!=1)&&(MinValue2>tree[j.weight]))
{MinValue1=tree[j].weight;
p2=j;
}
}
}
void DisplayTree(HufmTree,int Number)
{
for(int i=1;i<2*Number;i++)
{
printf("%2d",tree.weight);
}printf("\n");
for( i=1;i<2*Number;i++)
{
printf("HufmTtree[%2d].parent=%2d\n",i,tree.parent);//输º?出?当Ì¡À前¡ã元a素?的Ì?parent值¦Ì
printf("HufmTtree[%2d].parent=%2d\n",i,tree.weight);
printf("HufmTtree[%2d].parent=%2d\n",i,tree.lchild);
printf("HufmTtree[%2d].parent=%2d\n",i,tree.rchild);
}
}
五、实验过程原始记录( 测试数据、图表、计算等)
请给出各个操作步骤的截图和说明;
六、实验结果、分析和结论(误差分析与数据处理、成果总结等。
其中,绘制曲线图时必须用计算纸或程序运行结果、改进、收获)
请结合实验的结果分析算法原理;在实验中遇到了些什么问题,如何解决;有什么收获等;
注:教师必须按照上述各项内容严格要求,认真批改和评定学生成绩。