四足机器人国内研究情况
- 格式:ppt
- 大小:1.33 MB
- 文档页数:40
国内外四足机器人的发展历程1. 介绍四足机器人是一种模拟动物行走的机器人,它们使用四肢来支撑身体并移动。
近年来,四足机器人在军事、救援、娱乐等领域展示出巨大的潜力。
本文将深入探讨国内外四足机器人的发展历程,包括其起源、关键技术突破和应用领域。
2. 起源四足机器人的概念最早可以追溯到20世纪60年代,当时的研究主要集中在仿生学领域。
然而,由于当时计算能力和传感技术的限制,四足机器人的发展非常困难。
直到近年来,随着计算机和传感器技术的快速发展,四足机器人取得了重大突破。
3. 关键技术突破3.1 机械设计四足机器人的机械设计是实现其运动能力的基础。
目前,国内外研究机构已经设计出了各种形状和尺寸的四足机器人,包括仿生动物模型和抽象形态模型。
通过不断改进机械设计,使得四足机器人在各种地形下都能实现稳定的行走。
3.2 动力系统四足机器人的动力系统是保证其运动能力的关键。
常见的动力系统包括电池、液压系统和气动系统。
目前,随着电池技术的不断进步,越来越多的四足机器人采用电池作为主要的动力来源,以提高机器人的移动性和灵活性。
3.3 传感技术传感技术是四足机器人感知环境的关键。
常见的传感器包括摄像头、激光雷达、压力传感器等。
通过这些传感器,四足机器人可以感知到周围的地形、障碍物和其他物体,从而调整自身姿态和行动。
3.4 控制算法控制算法是实现四足机器人智能运动的核心。
通过合理的控制算法,四足机器人可以实现行走、奔跑、跳跃等各种动作。
目前,主要的控制算法包括传统的PID控制、模糊控制和基于机器学习的控制方法。
4. 应用领域四足机器人在各个领域都有广泛的应用。
以下是几个具有代表性的应用领域:4.1 军事应用四足机器人在军事领域具有重要的应用价值。
它们可以被用作侦查和救援任务中的越野机器人,可在各种恶劣环境下执行任务,并减少士兵的伤亡。
此外,四足机器人还可以携带重型装备和武器,提供战场支援。
4.2 救援应用四足机器人在救援行动中能够起到重要作用。
四足机器人定位方法研究与实现的开题报告一、选题背景近年来,四足机器人越来越受到人们的关注,成为机器人领域的热点之一。
四足机器人可以在各种复杂的环境下工作,如灾难救援、矿山勘探、军事侦察等。
在这些场景下,机器人需要准确的定位能力,才能实现精准的运动和感知目标,从而完成各种任务。
因此,四足机器人的定位方法研究变得尤为重要。
当前四足机器人的定位方法主要分为两类:基于传感器的定位和基于视觉的定位。
传感器定位通常采用GPS、IMU、激光雷达等传感器,但存在精度不高、易受外界干扰和昂贵等问题;而视觉定位则利用摄像头采集环境图像,通过图像处理和识别技术得到机器人的位置信息,但其本身也存在一些问题,如对光照条件和场景变化敏感,识别准确性不高等。
因此,本文将探讨一种新的四足机器人定位方法——基于深度学习的视觉定位方法。
此方法利用深度学习中的卷积神经网络,通过学习传感器和视觉的信息,使机器人能够在未知环境下进行高精度定位。
这种方法具有可靠性高、适应性强、成本低等优点,是未来四足机器人定位技术的重要研究方向。
二、研究目的本文旨在探究基于深度学习的四足机器人视觉定位方法,研究基于卷积神经网络的视觉定位算法,并通过实验验证其可行性和准确性。
具体研究目的包括:1. 分析四足机器人定位方法的现状和存在的问题,探讨基于深度学习的视觉定位方法的优劣。
2. 研究卷积神经网络,提出适用于视觉定位的基于卷积神经网络的算法,并比较不同算法的性能。
3. 建立实验系统,测试所提出的算法在不同场景下的定位精度和稳定性,验证其实用性和可行性。
三、研究内容本文的主要研究内容包括:1. 文献综述:对四足机器人定位方法进行综合分析,总结各种定位方法的特点和局限性,重点分析视觉定位的发展现状和存在的问题,为后续研究提供参考。
2. 算法设计:根据视觉定位的要求和场景特点,设计适用于四足机器人视觉定位的基于卷积神经网络的算法。
包括输入数据的处理、网络结构的设计、损失函数的定义等。
摘要:对四足机器人研究应用的历史与现状做了介绍,列举出国内外主要研究机构及其主要研究成果,对四足机器人研究的热点和难点问题进行了归纳总结,并展望了四足机器人的发展趋势。
关键词:四足机器人;研究与应用;历史与现状;难点与热点;发展趋势1. 引言移动机器人按移动方式大体分为两大类;一是由现代车辆技术延伸发展成轮式移动机器人(包括履带式);二是基于仿生技术的运动仿生机器人。
运动仿生机器人按移动方式分为足式移动、蠕动、蛇行、游动及扑翼飞行等形式,其中足式机器人是研究最多的一类运动仿生机器人。
自然环境中有约50%的地形,轮式或履带式车辆到达不了,而这些地方如森林,草地湿地,山林地等地域中拥有巨大的资源,要探测和利用且要尽可能少的破坏环境,足式机器人以其固有的移动优势成为野外探测工作的首选,另外,如海底和极地的科学考察和探索,足式机器人也具有明显的优势,因而足式机器人的研究得到世界各国的广泛重视。
现研制成功的足式机器人有1足,2足,4足,6足,8足等系列,大于8足的研究很少。
曾长期作为人类主要交通工具的马,牛,驴,骆驼等四足动物因其优越的野外行走能力和负载能力自然是人们研究足式机器人的重点仿生对象。
因而四足机器人在足式机器人中占有很大的比例。
长期从事足式机器人研究的日本东京工业大学的広濑茂男等学者认为:从稳定性和控制难易程度及制造成本等方面综合考虑,四足机是最佳的足式机器人形式[1],四足机器人的研究深具社会意义和实用价值。
2. 国内外四足机器人研究历史与现状四足机器人的研究可分为早期探索和现代自主机器人研究两个阶段。
2.1 四足机器的早期探索中国古代的“木牛流马”以及国外十九世纪由Rygg设计的“机械马”,是人类对足式行走行机器的早期探索。
而Muybridge在1899年用连续摄影的方法研究动物的行走步态,则是人们研究足式机器人的开端。
20世纪60年代,机器人进入了以机械和液压控制实现运动的发展阶段。
美国学者Shigley(1960)和Baldwin(1966)都使用凸轮连杆机构设计了机动的步行车[2]。
四足步行机器人研究现状及展望(郑州轻工业学院机电工程学院河南郑州)摘要:文章对国内外四足步行机器人研究现状进行了综述,归纳分析了四足机器人质心距离测量系统研究的关键技术,并展望了四足机器人的发展趋势。
关键词:四足步行机器人;研究现状;关键技术;发展趋势引言:目前,常见的步行机器人以两足式、四足式、六足式应用较多。
其中,四足步行机器人机构简单且灵活,承载能力强、稳定性好,在抢险救灾、探险、娱乐及军事等许多方面有很好的应用前景,其研制工作一直受到国内外的重视。
1国内外研究四足步行机器人的历史和现状20世纪60年代,四足步行机器人的研究工作开始起步。
随着计算机技术和机器人控制技术的研究和应用,到了 20 世纪 80 年代,现代四足步行机器人的研制工作进入了广泛开展的阶段。
世界上第一台真正意义的四足步行机器人是由 Frank 和 McGhee 于 1977 年制作的。
该机器人具有较好的步态运动稳定性,但其缺点是,该机器人的关节是由逻辑电路组成的状态机控制的,因此机器人的行为受到限制,只能呈现固定的运动形式[1]。
20 世纪 80、90 年代最具代表性的四足步行机器人是日本 Shigeo Hirose 实验室研制的 TITAN 系列。
1981~1984年Hirose教授研制成功脚部装有传感和信号处理系统的TITAN-III[2]。
它的脚底部由形状记忆合金组成,可自动检测与地面接触的状态。
姿态传感器和姿态控制系统根据传感信息做出的控制决策,实现在不平整地面的自适应静态步行。
TITAN-Ⅵ[3]机器人采用新型的直动型腿机构,避免了上楼梯过程中各腿间的干涉,并采用两级变速驱动机构,对腿的支撑相和摆动相分别进行驱动。
2000-2003 年,日本电气通信大学的木村浩等人研制成功了具有宠物狗外形的机器人Tekken-IV,如图1所示。
它的每个关节安装了一个光电码盘、陀螺仪、倾角计和触觉传感器。
系统控制是由基于 CPG 的控制器通过反射机制来完成的。
四足研究现状及其展望四足研究现状及其展望1.引言四足是指具有四只腿的,能够模拟动物行走的动作。
近年来,随着技术的快速发展,四足的研究也取得了突破性进展。
本文将对四足的研究现状进行详细探讨,并展望未来的发展趋势。
2.四足的分类2.1 基于机构结构的分类2.2 基于控制方法的分类2.3 基于应用领域的分类3.四足的运动学与动力学分析3.1 运动学建模3.2 动力学分析3.3 步态规划与运动控制4.四足的感知与导航技术4.1 传感器技术4.2 环境感知与地图构建4.3 导航算法与路径规划5.四足的机器学习与智能技术5.1 强化学习在四足中的应用5.2 迁移学习与适应性控制5.3 深度学习与感知能力增强6.四足的应用领域6.1 搜索与救援6.2 巡逻与安防6.3 农业与军事6.4 残疾人辅助与康复7.四足的未来展望7.1 技术的发展趋势7.2 四足的研究挑战与机遇7.3 未来应用领域的拓展附件:1.四足运动学与动力学模型代码示例2.四足感知与导航系统设计图纸3.强化学习算法在四足中的应用案例分析法律名词及注释:1.:根据《法》(Robotics Act)第2条,是指具有自主感知、决策、执行能力的机械装置。
2.强化学习:根据《发展法》(Artificial Intelligence Development Act)第5条,强化学习是一种机器学习方法,通过观察、试错和奖励机制使自主学习与适应环境。
3.深度学习:根据《发展法》(Artificial Intelligence Development Act)第6条,深度学习是一种基于神经网络的机器学习方法,通过多层次的非线性变换进行特征提取与模式识别。
多足机器人国内外研究现状---------------------------------------------------------------范文最新推荐------------------------------------------------------ 多足机器人国内外研究现状最早对多足仿生机器人的研究可追溯到中国古代的“木牛流马”以及1893年Rygg设计的“机械马”。
对多足仿生机器人样机的研制来说,四足、六足、八足都是国内外多足仿生机器人研究的热点,目前,美国、日本和德国在多足仿生机器人样机领域的研究成果比较突出。
125261913年,每个人Bechtolsheim设计了一台四足机器人。
20世纪60年代初,美国的Shigley(1960年)和Baldwin(1966年)就使用凸轮连杆机构设计出比轮式车或履带车更为灵活的步行机。
其他比较典型的是美国的Mosher于1968年设计的四足车“WalkingTruck”,步行车的四条腿由液压伺服马达系统驱动,安装在驾驶员手臂和脚上的位置传感器完成位置检测功能。
虽然整机操作比较费力,但实现了步行1 / 5及爬越障碍的功能,被视为是现代步行机发展史上的一个里程碑。
但从步态规划的角度看,这种要人跟随操纵的步行机并没有体现步行机器人的实质性意义,只能算作是人操作的机械移动装置。
上世纪90年代初,美国罗克威尔公司及Is机器人公司在DARPA资助下研制了一种可对付岸边的水雷的的机器人ALUV,ALUV仿造螃蟹的外形,具有两栖运动性能,可以说是最早的两栖多足机器人。
随后,iRobot公司及美国国防先进计划研究署共同研制了机器人Ariel,Ariel前后侧各有3条腿,可以像螃蟹一样侧行,其机构设计巧妙,即使被水浪打翻了,不需做出任何的机械调整仍可行走自如。
四足机器人研究报告
报告摘要:
本报告对四足机器人的研究进行了综合分析和评估。
首先介绍了四足机器人的发展历程和应用领域,并分析了目前研究的热点和难点。
然后,报告针对四足机器人的运动控制、感知和导航、智能算法等关键技术进行了深入探讨。
在运动控制方面,研究重点是如何实现高效稳定的步态控制和机器人姿态调整。
在感知和导航方面,研究重点是如何实现机器人对环境的感知和理解,以及路径规划和避障等导航任务。
在智能算法方面,研究重点是如何通过机器学习和人工智能等方法,提升四足机器人的智能水平和自主决策能力。
报告同时对国内外四足机器人研究的进展和成果进行了梳理和总结。
指出了目前四足机器人研究存在的问题和挑战,例如机器人的能源管理、机械结构的优化、系统的鲁棒性等。
最后,报告对未来四足机器人研究的发展趋势进行了展望,提出了一些可能的解决方案和研究方向,包括机器人的智能化、机器人的多任务协同、机器人的实时学习等。
综上所述,四足机器人研究具有广阔的应用前景和深远的意义。
然而,要实现四足机器人的高效稳定运动和智能决策,需要进一步攻克一系列技术难题。
相信在不久的将来,随着技术的不断突破和研究的不断深入,四足机器人必将在各个领域展现出更广阔的应用潜力。
227科研与教育2020年第4期汪世庆,单 鑫,刘逸驰(湖南农业大学机电工程学院,湖南 长沙 410000)摘 要:文章简要分析了四足机器人的发展背景,并结合2019年全国大学生机器人电视大赛实例,分析了第十八届全国大学生机器人大赛中四足机器人的应用情况,对四足机器人的发展趋势作出合理预测。
在此基础上,提出未来四足机器人的特点及发展趋势。
关键词:四足机器人;全国机器人电视大赛;机器人发展趋势中图分类号:TP242 文献标志码:A 文章编号:2096-3092(2020)04-0227-021 研究背景随着科技进步,社会生产力迅猛发展,机器人行业得到了蓬勃发展,其中四足机器人发展迅速,被广泛应用。
传统的机器人如轮式、履带式,虽然具有很快的移动速度,但受地形约束。
四足机器人是一种仿生机器人,在跨越地形障碍方面具有很大优势,足式移动机器人对行走路面的要求很低,它可以跨越障碍物,在各种崎岖不平的复杂路面上行进。
在户外,车辆或履带式机器人无法应对大部分的复杂崎岖地形,四足式机器人以其灵活机动的特性在野外勘测和信息传递方面发挥重要的作用。
四足机器人是一个综合性极强的研究产物,它以机电一体化技术为主导,综合应用了单片机技术、液压、传感器等多方面的知识[1]。
四足仿生机器人具有高机动性,负载能力和适应能力强,可运用于物资运输、抢险救援等方面,具有广阔前景[2]。
2 四足机器人的发展历程早前,美国GE公司为美国军方设计研发了一款四足机器人Walking Truck,该机器人被设计用于崎岖泥泞的地形。
其显著特点是腿部修长,操作者将其与机械装置耦合,机器臂将跟随操作员手臂运动,12英尺长的腿也会采取同样的操作。
机器人的机身足够大,可以容纳电子电路、伺服单元和电源驱动器。
操作者在机器人体内通过换向阀控制四肢的动作来实现机器人的整体运动。
美国波士顿动力学公司于2005年研发了四足机器人Big Dog,它是四足仿生机器人中的杰出代表,具有高机动能力,不仅可以适应复杂的地理环境,还可以承载较重负荷的货物。
四足机器人研究报告总结
根据我的研究,四足机器人是一种模仿动物四肢运动的机器人。
它使用四只腿来实现行走、奔跑和其他复杂动作。
以下是对四足机器人研究的报告总结:
1. 功能与应用:四足机器人具有多种功能与应用。
它们可以用于探险任务,如在不适宜人类进入的恶劣环境中搜救、勘察等。
此外,它们还可以用于军事、救援和农业领域,提供辅助力量。
2. 动力系统:四足机器人通常使用电池或者内部燃气发电机作为动力系统。
根据不同的设计需求,还可以采用液压或气压系统。
3. 步态与运动控制:为了实现高效稳定的运动,四足机器人需要采用恰当的步态和运动控制算法。
一些常见的步态模式包括奔跑、行走和爬行。
4. 传感器与感知系统:为了能够适应复杂的环境,四足机器人通常配备各种传感器来感知周围环境,如视觉、声音、力传感器和测距仪等。
5. 自主导航:四足机器人需要具备自主导航能力以实现复杂任务。
为此,研究人员开发了各种导航算法和定位系统,如SLAM(同时定位与地图构建)和GPS。
6. 机械结构与材料:四足机器人的机械结构和材料选择对其性能和可靠性至关重要。
目前常用的结构材料有金属合金、复合
材料和聚合物。
总的来说,四足机器人研究目前面临一些挑战,如精确的步态控制、自主导航的算法改进和更轻巧的机械结构。
然而,它们的应用前景广阔,可以在多个领域为人类提供协助和创造价值。
四足机器人稳定行走规划及控制技术研究一、本文概述随着机器人技术的不断发展,四足机器人作为一种重要的移动机器人,在救援、勘探、物流等领域的应用日益广泛。
然而,四足机器人在复杂环境下的稳定行走仍然是一个挑战性问题。
因此,本文旨在深入研究四足机器人的稳定行走规划及控制技术,以提高其在各种环境下的运动性能和稳定性。
本文首先介绍了四足机器人的研究背景和意义,阐述了四足机器人在不同领域的应用现状和发展趋势。
接着,文章综述了国内外在四足机器人稳定行走规划及控制技术方面的研究成果,分析了现有技术的优缺点,为后续的研究提供了理论支持和参考。
在四足机器人的稳定行走规划方面,本文重点研究了步态规划、轨迹规划以及稳定性控制等问题。
通过合理的步态规划,可以使四足机器人在行走过程中保持稳定的姿态和高效的移动性能。
轨迹规划则涉及到机器人腿部运动的轨迹生成和优化,以实现平滑且节能的运动过程。
同时,稳定性控制是四足机器人行走规划中的重要环节,通过调整机器人的姿态和运动参数,可以确保机器人在复杂环境下保持稳定的行走状态。
在控制技术方面,本文探讨了基于传感器融合的姿态感知技术、力控技术以及基于机器学习的自适应控制策略等。
通过集成多种传感器数据,实现精确的姿态感知和运动控制。
力控技术则通过感知和调整机器人与地面之间的相互作用力,以提高机器人在不平坦地形上的适应能力。
基于机器学习的自适应控制策略可以使机器人在面对未知环境时自主学习和调整行走策略,进一步提高其适应性和鲁棒性。
本文总结了四足机器人稳定行走规划及控制技术的研究现状和未来发展方向,为相关领域的研究人员提供了有益的参考和启示。
通过不断深入研究和探索新的技术方法,相信四足机器人在未来的应用前景将更加广阔。
二、四足机器人运动学建模运动学建模是四足机器人行走规划和控制技术研究的基础。
通过构建精确的运动学模型,我们可以理解机器人各关节之间的运动关系,进而为行走规划和控制算法的设计提供理论支持。
仿生四足机器人的研究:回顾与展望摘要:本文侧重于仿生四足机器人。
在这一领域的主要挑战是如何设计高动力性和高负载能力的仿生四足机器人。
本文首先介绍了仿生四足机器人,尤其是具有里程碑意义的四足机器人的历史。
然后回顾了仿生四足机器人驱动模式的现代技术。
随后,描述了四足机器人的发展趋势。
基于仿生四足机器人的技术现状,简要回顾了四足机器人的技术难点。
又介绍了山东大学研制的液压四足机器人。
最后是总结和展望未来的四足机器人。
一、导言代替人类在复杂和危险的环境中工作的移动机器人的需求引起越来越多的关注,如煤矿井下,核电站,以及打击恐怖主义的战争。
一般移动机器人可分为三种类型:空中机器人,水下机器人和地面机器人。
地面机器人的开发主要是运用轨道或轮子。
轮式和履带式机器人可以在平整地面工作,但大多数是无法在凹凸不平的地面上工作。
换句话说,现有的地面机器人只能在部分地面工作。
与轮式和履带式机器人相比,腿式机器人有可能适应更为广泛的地形,就像如同有腿的动物,几乎可以行走在所有的地形。
例如,羚羊具有很强的运动能力,即便在高度复杂的环境中也一样。
因此,近些年人们积极地投入腿式机器人的研究中。
腿式机器人可以去动物能够到达的地方,应该要构建并运用于实际。
尽管机器人技术领域取得了巨大成就,腿式机器人仍然远远落后于它们的仿生学 [1,2]。
基于机械结构,腿式机器人可分为步行机器人和爬行机器人。
与爬行动物的机器人相比,步行机器人几乎与躯干垂直的腿被认为更适应载重。
步行机器人可以有效地承受更大的载重。
具有联合执行机构的步行机器人具有良好的行走速度和运输能力。
因此,基于哺乳类动物的仿生机器人的研究已成为机器人领域的重要发展方向。
现已有一、二、三、四甚至更多条腿的腿式机器人。
最普遍的是具有高效率步态和稳定性能的偶数条腿的腿式机器人[3]。
在腿式机器人中,四足机器人具有良好的机动性和运动稳定性,而典型的双足机器人,缺乏运动的稳定性。
从系统和控制器的设计上来看,四足机器人也是一个不错的选择。
四足机器人发展现状
随着科技的不断进步,四足机器人的发展已经取得了显著的进展。
这些机器人的设计灵感源自于动物的四肢运动,通过仿生学原理来模仿和实现四足动物的步态,从而使得它们能够在各种复杂环境中行走和移动。
目前,许多公司和研究机构都投入了大量的资源和精力来开发四足机器人。
这些机器人的应用领域非常广泛,包括救援任务、军事侦察、工业生产等。
它们具有承载重物、稳定性强、通过复杂地形等优点,能够完成一些人类难以完成的任务。
四足机器人的运动控制是其发展的关键技术之一。
研究人员通过对动物行走方式的研究和模拟,设计了一系列复杂的运动规划与控制算法,使得机器人能够在不同环境下自主地行走和躲避障碍物。
同时,传感器技术在四足机器人中起到了至关重要的作用,如激光雷达、摄像头、惯性测量单元等,能够提供丰富的环境信息,使得机器人能够做出准确的判断和决策。
此外,四足机器人的机械设计也在不断改进。
为了提高运动效率和稳定性,研究人员利用轻质材料和高效驱动系统,设计了一些轻便、灵活的机械结构。
同时,还研究了机器人的力学特性和动力学模型,以进一步优化其运动性能。
尽管四足机器人在某些方面已经取得了显著的进展,但仍然存在许多挑战和难题需要解决。
例如,机器人的能源供应问题、运动稳定性的提高、环境适应能力的增强等。
此外,尽管四足机器人在直线行走和平坦地形上表现出色,但在复杂地形和不
同场景下的应用仍然面临一定的困难。
综上所述,四足机器人的发展正处于快速发展的阶段,其在多个领域具有广阔的应用前景。
通过不断的研究和创新,相信四足机器人未来将能够更好地模拟和实现动物的步态,成为人类的有力助手。
四足机器人研究综述摘要四足机器人是一种仿生机器人,具有类似于生物四肢的结构和运动能力。
本文综述了四足机器人的研究现状、应用领域和未来发展趋势,探讨了其优点和不足,以及未来可能的研究方向。
关键词:四足机器人,仿生机器人,应用领域,未来发展引言四足机器人作为一种仿生机器人,具有广阔的应用前景和巨大的发展潜力。
它们可以在复杂环境中实现稳定行走和运动,模拟生物四肢的结构和运动能力,具有很高的适应性和灵活性。
本文将介绍四足机器人的研究现状、应用领域和未来发展趋势,旨在为相关领域的研究提供参考和借鉴。
内容一:四足机器人的研究现状1、应用领域四足机器人的应用领域非常广泛,主要包括以下几个方面:(1)军事应用:四足机器人可以在复杂环境中实现稳定行走和运动,为军事行动提供支持,如侦查、排雷等。
(2)救援抢险:在地震、火灾等灾害现场,四足机器人可以协助救援人员进行搜救和抢险工作。
(3)公共服务:四足机器人可以用于公共场所的清洁、消毒等工作,提高公共服务效率和质量。
(4)娱乐产业:四足机器人可以用于电影、动画等娱乐产业中,实现逼真的特效和场景。
2、优点和不足四足机器人的优点主要包括以下几点:(1)适应性强:四足机器人的四肢结构可以适应各种复杂环境,实现稳定行走和运动。
(2)灵活性高:四足机器人的结构类似于生物四肢,可以完成多种复杂的动作和姿态。
(3)负载能力强:四足机器人的结构可以分散负载,提高机器人的承载能力。
然而,四足机器人也存在一些不足之处,如以下几点:(1)控制难度大:四足机器人的运动涉及到多个关节和自由度,实现其协调运动和控制具有一定的难度。
(2)能耗较高:四足机器人在运动过程中需要消耗大量的电能,对于长时间、长距离的应用场景,需要解决能源供给和续航能力的问题。
(3)制造成本高:四足机器人的制造需要涉及到多种技术和材料,制造成本相对较高。
内容二:四足机器人的研究方法1、算法设计四足机器人的算法设计是实现其协调运动和控制的关键。
车辆工程技术53机械电子 四足机器人相较于轮式、蠕动式等机器人具有机体结构稳定、运动灵活、受地形限制少等优势,在航空航天、预警侦察,补给运输等领域具有广泛的应用前景[1]。
随着时代的发展以及科学技术的进步,四足机器人的实用价值逐渐凸显。
同时,计算科学、新材料等科学技术的迅速发展使得四足机器人的性能有了极大的提高。
1 国外发展现状 20世纪中叶,国外就已经出现针对液压驱动足式机器人的研究。
其中,美国是最早进行该项研究的国家之一[2]。
1968年美国通用电气公司将一辆汽车的车轮更换为液压腿足,成功改造出一款四足机器车——Walking Truck [3]。
1985年美国俄亥俄州立大学在国防高级计划研究局的资助下开发了一款液压六足机器车(Adaptive Suspension Vehicle,ASV),如图1所示。
ASV 可以看作是第一款实际意义上的液压足式机器人。
ASV 整车质量约2.7吨,长约5.6m,拥有多种控制模式,可以在复杂地形环境中行走[4]。
但是其运动需要人工控制且体积重量巨大,没有实用价值。
2005年美国波士顿动力公司(Boston Dynamic)在国防高级研究计划局资助下开发出第一代BigDog,并在随后的几年里对其进行研究和完善,先后开发出第二、三代BigDog,各代BigDog 如图2所示。
通过图2可以看出,通过不断的升级,BigDog 的实用性越来越强。
对比第一代BigDog,第二代BigDog 主要对腿部膝关节结构进行了改进,使得BigDog 稳定性得到了极大的提高;第三代BigDog 在髋关节位置增添了一个新的自由度,该自由度的添加使得BigDog 腿部着地时小腿与地面的夹角始终处于一定范围内,提高了BigDog 在复杂地形下的通过能力[5]。
在波士顿动力发布的视频中,BigDog 能够在沙滩、雪地甚至泥泞地面等复杂地形下平稳行走,受到突然性侧向冲击时能够快速自主调节身体状态以保持平衡。