【人教版】九年级下册数学《锐角三角函数》专项训练(含答案)

  • 格式:doc
  • 大小:392.00 KB
  • 文档页数:31

下载文档原格式

  / 31
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第28章锐角三角函数专项训练

专训1“化斜为直”构造直角三角形的方法

名师点金:

锐角三角函数是在直角三角形中定义的,解直角三角形的前提是在直角三角形中进行,对于非直角三角形问题,要注意观察图形特点,恰当作辅助线,将其转化为直角三角形来解.

无直角、无等角的三角形作高

1.如图,在△ABC中,已知BC=1+3,∠B=60°,∠C=45°,求AB的长.

(第1题)

有直角、无三角形的图形延长某些边

2.如图,在四边形ABCD中,AB=2,CD=1,∠A=60°,∠D=∠B=90°,求四边形ABCD的面积.

(第2题)

有三角函数值不能直接利用时作垂线

3.如图,在△ABC中,点D为AB的中点,DC⊥AC,sin∠BCD=1

3

,求tan A

的值.

(第3题)

求非直角三角形中角的三角函数值时构造直角三角形

4.如图,在△ABC中,AB=AC=5,BC=8.若∠BPC=1

2

∠BAC,求tan∠BPC

的值.

(第4题)

专训2巧用构造法求几种特殊角的三角函数值名师点金:

对于30°、45°、60°角的三角函数值,我们都可通过定义利用特殊直角三角形三边的关系进行计算;而在实际应用中,我们常常碰到像15°、22.5°、67.5°等一些特殊角的三角函数值的计算,同样我们也可以构造相关图形,利用

数形结合思想进行巧算.

巧构造15°与30°角的关系的图形计算15°角的三角函数值

1.求sin15°,cos15°,tan15°的值.

巧构造22.5°与45°角的关系的图形计算22.5°角的三角函数值

2.求tan22.5°的值.

巧用折叠法求67.5°角的三角函数值

3.小明在学习“锐角三角函数”中发现,将如图所示的矩形纸片ABCD沿过点B的直线折叠,使点A落在BC边上的点E处,还原后,再沿过点E的直线折叠,使点A落在BC边上的点F处,求出67.5°角的正切值.

(第3题)

巧用含36°角的等腰三角形中的相似关系求18°、72°角的三角函数值

4.求sin18°,cos72°的值.

巧用75°与30°角的关系构图求75°角的三角函数值

5.求sin75°,cos75°,tan75°的值.

专训3应用三角函数解实际问题的四种常见问题名师点金:

在运用解直角三角形的知识解决实际问题时,要学会将千变万化的实际问题转化为数学问题,要善于将某些实际问题中的数量关系归结为直角三角形中的元素(边、角)之间的关系,若不是直角三角形,应尝试添加辅助线,构造出直角三角形进行解答,这样才能更好地运用解直角三角形的方法求解.其中仰角、俯角的应用问题,方向角的应用问题,坡度、坡角的应用问题要熟练掌握其解题思路,把握解题关键.

定位问题

1.某校兴趣小组从游轮拍摄海河两岸美景.如图,游轮出发点A与望海楼B的距离为300 m,在A处测得望海楼B位于A的北偏东30°方向,游轮沿正北方向行驶一段时间后到达C,在C处测得望海楼B位于C的北偏东60°方向,求

此时游轮与望海楼之间的距离BC.(3取1.73,结果保留整数)

(第1题)

坡坝问题

2.如图,水坝的横断面是梯形,背水坡AB的坡角∠BAE=45°,坝高BE=20米.汛期来临,为加大水坝的防洪强度,将坝底从A处向后水平延伸到F处,使新的背水坡BF的坡角∠F=30°,求AF的长度 .(结果精确到1米,参考数据:

2≈1.414,3≈1.732)

(第2题)

测距问题

3.一条东西走向的高速公路上有两个加油站A,B,在A的北偏东45°方向上还有一个加油站C,C到高速公路的最短距离是30千米,B,C间的距离是60千米,想要经过C修一条笔直的公路与高速公路相交,使两路交叉口P到B,C 的距离相等,请求出交叉口P到加油站A的距离.(结果保留根号)

测高问题

4.如图,在大楼AB的正前方有一斜坡CD,CD=4米,坡角∠DCE=30°,小红在斜坡下的点C处测得楼顶B的仰角为60°,在斜坡上的点D处测得楼顶B 的仰角为45°,其中点A,C,E在同一直线上.

(1)求斜坡CD的高度DE;

(2)求大楼AB的高度.(结果保留根号)

(第4题)

专训4利用三角函数解判断说理问题

名师点金:

利用三角函数解答实际中的“判断说理”问题:其关键是将实际问题抽象成数学问题,建立解直角三角形的数学模型,运用解直角三角形的知识来解决实际问题.

航行路线问题

1.如图,某货船以24海里/时的速度将一批重要物资从A处运往正东方向的M处,在点A处测得某岛C在北偏东60°的方向上.该货船航行30分钟后到达B处,此时再测得该岛在北偏东30°的方向上,已知在C岛周围9海里的区域内有暗礁.若继续向正东方向航行,该货船有无触礁危险?试说明理由.

(第1题)

工程规划问题

2.A,B两市相距150千米,分别从A,B处测得国家级风景区中心C处的方位角如图所示,风景区区域是以C为圆心、45千米为半径的圆,tanα=1.627,tanβ=1.373.为了开发旅游,有关部门设计修建连接A,B两市的高速公路.问连接A,B两市的高速公路会穿过风景区吗?请说明理由.

(第2题)

拦截问题

3.如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60°方向前进实施拦截,红方行驶1 000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏西45°方向前进了相同的距离,刚好在D处成功拦截蓝方,求拦截点D处到公路的距离.(结果不取近似值)

(第3题)

台风影响问题

4.如图所示,在某海滨城市O附近海面有一股强台风,据监测,当前台风中心位于该城市的南偏东20°方向200 km的海面P处,并以20 km/h的速度向北偏西65°的PQ方向移动,台风侵袭的范围是一个圆形区域,当前半径为60 km,且圆的半径以10 km/h的速度不断扩大.

(1)当台风中心移动4 h时,受台风侵袭的圆形区域半径增大到________km;当台风中心移动t(h)时,受台风侵袭的圆形区域半径增大到____________km.

(2)当台风中心移动到与城市O距离最近时,这股台风是否会侵袭这座海滨城市?请说明理由.(参考数据:2≈1.41,3≈1.73)