白车身模态分析流程及建模标准
- 格式:ppt
- 大小:1.81 MB
- 文档页数:33
白车身结构设计规范1、范围本标准归纳了白车身结构设计的一些基本方法和注意事项。
旨在指导汽车白车身的设计开发工作,使在新车型设计开发或改型设计过程中,避免或减少因经验不足造成的设计缺陷或错误,提高设计效率和设计质量。
2、基本原则2.1白车身设计是一个复杂的系统并行设计过程,要彻底地摒弃孤立地单个零件设计方法,任何一个零件只是其所处在的分总成的一个零件,设计时均应考虑其与周边相关零部件的相互关系。
2.2任何一种车型的白车身结构均可按三层板的设计思想去构思结构设计,即最外层是外板,最内层是内板,中间是加强板,在车身附件安装连接部位应考虑设计加强板。
2.3所设计的白车身结构在满足整车性能上、结构上、冲压工艺、焊接工艺、涂装工艺、总装工艺是否比参考样车或其他车型更优越,是否符合国内(尤其是客户)的实际生产状况,以便预先确定结构及工艺的改良方案。
2.4白车身在结构与性能上应提供车身所需的承载能力,即强度和刚度要求。
3、白车身钣金的材料选取原则:3.1汽车覆盖件所用材料一般是冷轧钢板。
3.2按国家标准选取钣金材料3.3钣金按表面质量分有I,II两级:I级质量最好,适用于外板;II 级次之,适用于内板与加强板3.4钣金按冲压拉延等级分有P,S,Z,F,HF,ZF六级:P:普通拉深级,适用于拉延深度浅的零件;S:深拉深级,适用于拉延深度一般的零件;Z:最深拉深级,适用于拉延深度较深的零件;F:复杂拉深级,适用于结构复杂且拉延深度较深的零件;HF:很复杂拉深级,适用于结构较复杂且拉延深度较深的零件;ZF:最复杂拉深级,适用于结构非常复杂且拉延深度较深的零件;3.5钣金按强度等级分有:普通强度,高强度,超高强度;3.6按宝钢标准选取钣金材料3.6.1钢板及钢带按用途分:牌号用途DC01(St12)一般用(水箱外壳,制桶等)DC03(St13)冲压用(汽车门、窗、白车身件等)DC04(St14、St15)深冲用(汽车门、窗、白车身件等)DC05(BSC2)特深冲用(汽车门、窗、白车身件等)DC06(St16、St14-T、BSC3)超深冲用(汽车门、窗、白车身件等)3.6.2钢板及钢带按表面质量分:级别代号较高级的精整表面FB(O3)高级的精整表面FC(O4)超高级的精整表面FD(O5)3.6.3钢板及钢带按表面结构分:表面结构代号麻面D光亮表面B3.6.4使用部位及选用牌号标记使用部位牌号标记备注1外覆盖件DC04-XX-FD Q/BQB403—2003DC04-XX-FB Q/BQB403—2003 2内板大件(复杂、深)3内板大件(一般)DC03-XX-FB Q/BQB403—20034其它结构件DC03-XX-FB Q/BQB403—20033.6.5牌号标记说明Q/BQB403——2003材料厚度企业标准号此牌号为冷连轧、深冲用、高级精表面质量的低碳汽车用钢板。
车身声腔模态仿真分析方法1范围木标准规定了汽车车身声腔模态仿立分析的分析条件和分析过程。
木标准适用于本公司所有车型。
2术语和定义下列术语和定义适用于本标布.2.1白车身 body in white年身结构件及故盗件的总成,又称“车身木体”.注!包括原盖,翼子板、发动机罩,打李箱荔和车门,但不包括总裳附件及装的件的木涂强的车身总成.2.2声腔 acoustic车辆钊独室内形成的空气密封腔体°2.3声腔模态 acoustic modest内空气在其固有频率下声压的振动情况。
3分析条件3.1分析软件分析软件包括:a)前处理:利用Hypprmesh进行声腔边界有限元税犯处理:利用IMS Virt.ua I. I «h进行声腔网格建模:b)解算;利用LMS ViitudLLub进行声腔模态求解;c)后处理।利用郎Virtual. Lab进行声腔模态结构分析。
3.2模型输入3 2 1白车身、座椅表皮、玻璃有限元网格模型。
3 2 2 CAE分析数据输入消叶,见附录A.4分析过程4.1声腔边界模型处理利用前处理软件HypeiMoshM行白车身、座椅表皮及桢态有限元网格模型的装配.胴除在身外板件及机舲部件,只保超与与驶室空腔相接触的结构部件网格模型,并确保无人于30皿的间隙产生c同时, 对前围、车门底板、后背门内板、地板中大于50的的结构孔洞进行畜时处理a母终形成声腔的边界模型,如图1所示.图1声腔边界模型4.2声腔模型建立4.2.1声腔边界模型导入利用LMS Virtual. Lab软件Structures—Caw"y Meshing模块导入声腔边界网格。
同时导入各板件属性,并在模型中利用List/Mudi£y Properties…命令插入网格属性,如图2所示,以便后续组选择操作.图2声腔边界网格导入4 2.2声腔网格划分设置点ili 插入一Pr“Acoustic MoshersIIex4i-only Cavity Meshcrs Insert Cavity Mesh Part Scan/Me$her出现Cavity Global Specification对话槁如图3所示§中?EloiDonl Sizu设置声学网络的单元尺寸.一般为35 innr-50 anitStructure Grid选项块定了声腔四格边界组成成分,即导入的所有结构网格;Snooih FaRurgy选项选准1顶荔组.玻璃组.A柱、BQ- C柱及叱胸板组,以平滑处理对应结何区域i SharpFeMutes选项选择,的用组、车门内板组.地板组、座椅表皮组,以保留这些区域结构特征.图3声腔网格划分设置面板4.2.3生成声学网格 4. 2.3.1利用人2. 2划分声,腔网格后,由于整个声腔边界组成了不止一个封闭腔体如:驾驶史声腔、座椅表皮声腔、车门声腔等n因此.为生成显线的驾驶空声腔,应在CaKlyXesher (声腔网格组选择面板,如图4所示)中选择网格数(Kb Element)最大的部分作为最终的驾驶室声腔.4 2.3.2生成网格后点击应用、确定.隙藏边界网格和Global Specifications Cavity. 1后,生成声施网格如图5所示。
某SUV白车身模态分析及优化设计文章介绍了某SUV车型的白车身模态分析,并针对计算结果对车身结构和布局进行优化,使整车刚度趋于合理。
优化结果显示:优化后结构、刚度更加合理,并且一阶扭转提高了4HZ,车身重量减少1.5KG。
标签:模态分析;结构优化;有限元分析前言现代汽车设计领域,有限元分析得到了广泛的运用。
车身作为汽车的关键总成,其力学特征对整车的动力学特征起关键作用。
车身模态分析则关系到整车刚度、常规震动和车身减重。
实践证明对白车身结构进行有限元分析可以提前发现、避免相关的设计缺陷,及时整改、优化设计。
从而缩短开发周期,节约试验费用。
文章通过对白车身的模态分析对设计进行结构优化,使得车身结构局部模态和整体刚度特征满足模态规划要求。
1 有限元模型有限元分析基本是利用一组离散化单元组集代替连续体机构进行分析,这种单元组集体称结构力学模型。
车身模型建立原则为能反映车身主要力学结构特征和边界约束条件,其次可考虑在保证正确性的基础上对模型进行适当的简化。
模型建立过程需考虑:模型的简化、网络划分、材料属性确定、单元选择及模型的连接与装配。
为此对模型建立进行了如下处理:1.1 模型建立采用了基准尺寸为10mm的QUASD4划分SHELL单元,局部采用了大于3mm的小尺寸划分,在非关键区域几何过度区少量采用了TRIA3单元。
TRIA3单元占总数的比率小于5%。
1.2 孔径6mm~10mm,用方孔代替;孔径大于10mm,保留孔,孔周围两圈偶数个单元,其他非重要小孔可忽略。
1.3 翻边至少要划分两排网格,圆角大于3mm可以保留,螺栓用RIGID或梁连接。
1.4 焊点采用CWELD/ACM单元,方向同连接壳单元法向量平行。
焊缝则采用CQUAD4和CTRIA3模拟,对不考察局部应力的情况下,有选择性采用节点重合,并保证网络的几何匹配。
根据车身提供的数字模型,最终白车身带玻璃有限元模型单元547,219,节点569,580个,见图1。
BIP建模标准1.0引言这个程序详述了构件BIP模型的方法,对于正确预测车身结构系统性能级别必须要求具有高度的可信性。
BIP是汽车的主要系统,包括:●白车身结构包括了金属钣金件的所有焊点●安装玻璃(挡风玻璃,角窗)●要判断对白车身结构的强度刚度有重大影响的所有螺栓安装的零件●所有的底盘架构和副车架都是刚性连接在车身结构上的图1:BIP有限元模型的图例1.1 汽车/系统/零件需求N/A1.2 限制N/A1.3 参考模型/分析步骤●工装车身建模●焊点建模●粘胶连接建模2.0 软件/计算机硬件和要求2.1 软件要求对有限元前处理没有特殊要求2.2 计算机硬件要求对硬件没有特殊要求2.3 其他要求2.3.1 硬件测试支持N/A2.3.2 预算时间需求/资源●适当修饰BIP模型需要1-5个工作日●大量修饰或合并新的设计理念到BIP模型中需要1-3工作周●依靠可用的CAD表面数据,完全建立一个新的BIP模型需要2-4工作周3.0 数据要求3.1输入数据形式● CAD数据,焊点文件,重量信息,材料属性,适当的有限元模型3.2 输入数据源和检索CATIA,IDEAS,Digital Buck或者其他工具应用于几何,焊接和重量数据3.3 输入数据检查CAD数据和重量信息在开始建模之前应当被检查3.4 输出数据形式●模型建立假设:用一个总结了数据源,布置和方法的文件建立每一个零部件。
● CAE蓝皮书:一个文档列出了模型的零部件和装配信息。
● NASTRAN文件数据包含了几何信息和属性。
4.0 模型,分析和后处理要求4.1 模型4.1.1 模型目录BIP模型包括以下内容:●结构面板(金属板和玻璃)●铸件●焊接(点焊,缝焊)●结构粘胶●其他结构零件的连接,用螺栓或者铆钉更进一步,BIP有以下的子系统组成:●车身板壳:车身底部,天窗,顶棚,车身侧面,角窗●前后:前部结构(水箱支架),前金属面板,前挡泥板,轮舱,前围●安装玻璃:挡风玻璃,角窗●保险杠:前保险杠,后保险杠,吸能单元●副车架:螺栓安装(刚性安装)车架5.0 操作顺序5.1 检验车辆程序信息研究和理解车辆程序信息,包括车身风格,战略规划和假设。
白车身零部件三维设计规范前言车身三维设计是汽车工程化设计的关键阶段。
主要设计工具是三维设计软件CATIA_V5:设计需要完成车身上各个零件的三维模型,焊接打点图、挤胶图及螺母、螺栓图,零件的定位位置、零件的压紧位置,零件的料厚方向等。
本规范的主要目的是让车身设计人员进行车身三维设计时,依据规范的设计规则,了解设计的方法、设计步骤及注意事项,对车身三维设计具有指导作用,从而缩短设计周期,节省研制经费,提高产品可靠性。
编制:校核:审定:批准:车身三维设计规范1 适用范围本规范规定了车身三维设计的规则及方法。
本规范适用于M、N类汽车的车身设计。
2 引用标准CATIA_V5的start model 文件。
《汽车常用术语统一规定》3 术语3.1 设计前的相关工作在用CATIA对零件进行设计时,要求使用start model格式。
为此,先进行下面工作:a)、将Start Model模板文件“start model Changan automotive engineering institute part”和“start model Changan automotive engineering institute welding”下载到本地机器上。
b)、新建一个PART时,采用“File—New from”菜单命令,然后找到“start model Changan automotive engineering institute part”文件。
图3.1c)、单击“打开”按钮,进入start model模板界面。
3.2 白车身设计规范3.2.1 基本要求a) 模型一律采用整车坐标系,适用右手定则。
b) 模型一律采用毫米作长度单位。
c) 左右对称零件,只设计左件;否则,左右均设计。
3.2.2 命名要求a) 三维数据文件的命名:零件的英文名称零件的件号车型代号●设计完成日期设计者单位、名字简称焊接标记零件的件号车型代号b) Start model 模板中PART的命名要求PART的名字是由项目名称和零件的件号加版本号组成。
文件名称:白车身参数化建模过程示例文件编号:SLSS-TS-A031-01保密等级:★拟制:何林峰日期:2006-10-10 审核:简洁日期:2006-11-18 批准:胡峥楠日期:2007-01-01更改记录:目录前言: (3)白车身参数化建模过程示例的定义 (4)前围板建模方法示例 (4)零件属性确认 (4)处理点云 (5)规则特征的建立 (6)孔特征的建立 (7)焊接边关系的建立 (7)重要检查事项 (8)本文是对上海龙创汽车设计有限公司白车身参数化建模过程示例描述,包括建模操作的详细过程和本文件的管理本文由上海龙创汽车设计有限公司工程支持部起草本文由上海龙创汽车设计有限公司工程支持部管理和解释本文的主要起草人员:何林峰相关链接文件及参考资料:白车身参数化建模过程示例的定义上海龙创汽车设计有限公司白车身参数化建模过程示例描述是公司前围白车身建模详细过程,作为学习白车身建模的样例性文件。
本示例旨在使公司在学习白车身建模过程中更加规范和高效,提高白车身设计的可操作性和可控制性,提高新人快速掌握参数化建模方法。
前围板建模方法示例零件属性确认打开BIW_Start_Model.CATPart,根据Bom表命名另存为E00-5301101A,完善属性:打开找到该零件对应的拆车图片,点云从图片可以看出,该零件的焊点分布,边界情况;处理点云找出点云1检查点云有没有在整车坐标下,装配到位,对点云进行判断,点云是否完整,是否有变形(有变形的须跟主管沟通确定)。
对点云进行稀疏切割处理(imagwear或catia里面操作均可),处理多余的点云,尽量使点云数据量最小,便于提高操作效率;导入到catia零件里面;特征的建立在建模之前我们必须先对零件进行分析,是对称件、不对称件还是局部对称(原则是建模只做左半部分,再镜像到右边,再加局部不对称特征)。
再看特征,建模前在心里对零件构成有一个思路。
特征的建立非常重要,在建立之前一定需要搞清楚这些特征的功用。
车身模态试验研究作者0. 引言乘坐舒适性是轿车的重要性能之一,日益受到广大用户和厂家的重视,已经成为评价整车性能的一项关键指标。
车内振动和噪声是衡量整车乘坐舒适性的重要因素,车身结构作为无激励源的被动结构在整车运行中会受到来自动力总成、传动系和路面的激励而产生中低频的结构振动、结构噪声和辐射噪声。
此外当车辆行驶中受到各种激励源的动载荷某分量与车身某阶模态的固有频率接近时,可能引发结构共振产生较高的动应力导致车身疲劳破坏。
因此车身的固有动态特性对整车的NVH 表现甚至疲劳寿命至关重要,在车身设计过程中要考虑车身动力学特性对整车振动和噪声的影响,避免因车身模态规划不合理而导致的NVH 问题甚至疲劳破坏。
白车身模态试验是了解白车身固有动态特性的主要方法,运用模态试验分析技术, 可以有效识别车身结构的模态参数,为车身结构的动态设计、故障诊断、有限元模型验证等提供重要的依据。
车身的装备如前后风挡、副车架等对车身模态的固有频率和振型有很大影响,本文以XX 车型为对象,进行了6种装备的车身模态试验,得到各种装备下的模态参数,研究了前后风挡玻璃、副车架等部件对车身模态的影响。
1. 模态试验理论N 自由度线性定常系统的运动微分方程为:F KX X C XM =++ (1) 其中,M ,C, K 分别表示系统的质量、阻尼和刚度矩阵。
X ,F 表示系统各测点的位移响应和激励力向量。
进行拉氏变换,得到)()()(2s F s X K sC M s =++ (2)可以得到传递函数矩阵为12)()()()(-++==K sC M s s F s X s H (3) 当拉氏因子ωj s =就可以得出傅氏域中的频响函数矩阵12)()()(-+-==C j M K H s H ωϖω (4)简单的说,模态试验就是要测得各响应点和激励点之间的频率响应函数来构建频率响应函数矩阵。
对于多输入多输出情况,频响函数为一个矩阵方程{}{}11)()()(⨯⨯=iO N N F X H ωωω (5)其中o N 代表响应通道数,i N 代表输入通道(激励)数。
白车身计算模态分析中的几个简单问题探讨1 引言白车身模态分析是主机厂所有CAE分析项中最简单的,没有之一。
考虑到大家在模态空间公众号中看惯了高深的文章(谭祥军注:博士过奖了!),所以今天给大家换换口味,讨论一下这个最简单的分析项。
在这篇文章里,我们不谈模态分析理论,只探讨几个基本问题:做模态分析的有限元模型该不该带风挡玻璃?根据白车身模态如何估算内饰车身模态?整体弯扭模态如何识别?模态频率的目标值如何设置?模态频率不达标该怎么办?2 白车身模态分析方法白车身模态分析方法几乎人人都会,但为了文章的完整性,我还是坚持把它写出来。
白车身模态分析为自由模态分析,即模型不加任何形式的约束。
分析的频率范围设定为1-100Hz;下限设为1Hz,其目的是避免计算前6阶的刚体模态,以节约计算时间。
通常我们使用NASTRAN软件的SOL103求解序列,算法选用兰索士法(对应卡片为EIGRL)。
结果输出设置中,我们除设定输出位移(DISP)和应力(STRESS)外,还应设定输出应变能密度(ESE)。
在Hypermesh中完成以上操作非常简单;当然也可以将以上设置写成一个Nastran头文件模版,每次分析只要在头文件文本中将模型文件名include一下,无需重新设置。
3 问题之一:究竟应该用BIW还是BIP做模态分析?做白车身模态分析,一般会考虑两种模型。
一种叫BIW, 指焊接车身的本体部分,包括通过螺栓连接的碰撞吸能结构,不包括通过螺栓连接或粘接在车身本体上的玻璃、车门、发动机罩板、天窗、行李箱盖以及翼子板、仪表板支撑横梁等。
另一种叫做BIP,也叫做Glazed BIW,是在BIW基础加上前后风挡玻璃和三角窗,如果天窗玻璃是直接粘在顶棚上不能开启的,BIP还应包含天窗玻璃。
BIW的前几阶整体模态中,通常没有整体扭转模态,而是代之以Match Box模态(即顶盖左右错动模态)。
BIW粘上风挡玻璃后,Match Box模态就不存在了,所以我们很难界定这阶模态跟整车NVH 响应之间有何种关联。
车辆工程技术56 车辆技术 伴随现代科技快速进步,汽车制造厂商也在日益提升生产能力,相应的汽车结构设计也备受重视。
在汽车设计中,白车身的质量至关重要,与整车质量直接相关。
而伴随先进计算机技术的广泛普及和快速发展,在白车身结构设计中,也越来越多地用到计算机辅助技术。
尤其是模态分析法,可以促进白车身结构设计的优化及汽车产品质量的进一步提升,值得加以分析探讨。
1 模态分析 (1)重要作用。
通过模态分析,可以得出白车身的实际一阶频率,再与发动机怠速条件下的激励频率比较,便能判断结构的共振问题,以防增大车身振动或噪声,并且供结构优化参考。
最后,利用试验中尚未模态分析对比验证,还能深入分析白车身优化模型的可信度。
在本文中,已经固定了车型外形、材料等,所以考虑通过优化厚度,来模态优化白车身结构。
针对白车身,采用一阶模态频率,来分析车身零部件质量灵敏度及板厚的模态,以及板厚、结构一阶频率、灵敏度模态间存在的关系,并得出结构优化中涉及的零部件,再通过一定的算法,来优化白车身模态。
(2)分析研究过程。
通过分析灵敏度,能针对某部位,得出最有效的结构修改方法,并且初步估计出,期望动态改变所要修正的区域。
根据灵敏度理论,算出白车身结构模态分析下,固有一阶频率与汽车质量在零部件板厚上的灵敏度结果。
据以上灵敏度分析显示,通过强化后门框,能最明显地增大结构的固有一阶频率,而通过强化后裙板,也可以得到明显增大的效果,并且外板的效果优于内板。
而分析结果还显示,通过加强后门框支柱的板件,却会影响固有一阶频率的改善。
这样的板件主要包含顶棚、后翼子板、后侧围板等。
通过进一步分析,得出了一阶模态下的正负灵敏度板件分别图。
此外,通过更改不同板件厚带给车身质量的具体影响,也通过模态分析得出。
因为要顾及对白车身适当轻量化的要求,所以为了增大固有一阶频率,不可直接强化对增大固有一阶频率贡献最大的结构板件,而应注意与其质量灵敏度相结合,也适当修改贡献不大的板件,以此来通过增大固有一阶频率来达到白车身质量上的要求。
白车身模态分析与识别Analysis and Identify of Body In White刘红,朱凌,门永新吉利汽车研究院,浙江杭州 310000摘要:白车身的模态分析可以通过试验和CAE两种途径进行。
试验虽然能相对真实地反应试验车辆的性能,但周期长、成本高且干扰因素多。
CAE仿真分析白车身模态可以有效避开这些问题。
同时,结合模态识别的4点和24点法,CAE仿真能更准确、便捷地了解白车身模态性能。
尤其在车辆开发前期,能有效指导车身设计。
关键词:白车身,NVH,模态,试验,识别,HyperGraphAbstract: BIW’s mode can be obtained through testing and CAE. Although testing can relatively reflect the true performance of the vehicle, it is expensive in both cost and time, as well as other unpredictable factors. Meanwhile, CAE can easily avoid these problems, and can more accurately and conveniently to obtain the performance, combining with the 4-point and 24-point method for the modal identification. Especially in the early stage of the vehicle development, CAE method can effectively guide the design of body.Key words: BIW, NVH, mode, test, identify, HyperGraph1 概述白车身模态分析作为整车NVH分析的一个基础环节,对整车NVH性能管控起着关键的作用。
2.07×10MPa,泊松比取μ=0.3,密度取ρ=7.83×10Ton/mm。
图1白车身有限元模型1.4白车身连接方式轿车白车身上大约有4000多个的焊点,一般由车身的六大部件焊接成型,包括地板总成、左右侧围、顶盖、下程为:式中:M、C、K分别为系统的质量、阻尼及刚度矩阵;为用物理坐标描述的位移列阵,ẋ(t)为用物理坐标描述将式1)两边通过拉氏变换可得令得其中Z(s)称为阻抗矩阵,代替s进行博氏域处理可得设有一点l,则可得其相应表达式如式(7)其中q r(ω)为阶模态坐标,φl r为测点动系数,N个测点的各阶振动系数组成向量,称为态向量。
由式(8)(9)(10)可得:将式(11)代入式(4)可得:自由振动,F(x)=0,C忽略不计,其运动微分方程可简化为式(13)的解得形式为将式(14)代入式(13)得故该方程有非零解的充要条件是其系数行列式为零,式(16)是特征值问题式的n次代数方程。
1459.09图2白车身第七阶模态振型云图3.2模态结果分析对车身结构的振动影响最大的因素是整车一阶弯曲模态频率与车身结构的整车一阶扭转模态频率,应着重考虑其影响。
因此应保证两者模态频率值至少相差3Hz,以防止一阶扭转模态频率与一阶弯曲模态频率相近或相等而出现耦合现象。
由表2所示,一阶弯曲模态频率与车身一阶扭转模态频率相差大于3Hz,可以防止发生耦合现象,所以设计符合要求。
4结论对某乘用车白车身通过Hyper Mesh软件来建立了车身结构有限元模型,分析了白车身结构模态特性,从而确定了白车身的振型和固有频率,得出了以下结论:①经过分析白车身结构模型一阶模态频率应该大于30Hz,而模态分析中白车身结构的一阶模态频率36.30Hz,设计符合要求。
②经分析白车身车身结构模型,得到一阶弯曲模态频率与一阶扭转模态频率数值相差大于3Hz,可以有效防止图3白车身第八阶模态振型云图图4白车身第九阶模态振型云图图5白车身第十阶模态振型云图图6白车身第十一阶模态振型云图心式旁通滤清器。