褐煤的干燥技术思路
- 格式:doc
- 大小:24.50 KB
- 文档页数:5
褐煤提质技术发展现状与分析褐煤提质技术发展现状与分析褐煤是一种低质、低热值、高水分、高挥发分的煤种,通常不被视为传统化石燃料。
然而,随着全球能源需求的不断增长和化石燃料资源的日益枯竭,褐煤作为一种相对丰富的煤炭资源,逐渐引起了人们的关注。
通过提质技术,可以显著提高褐煤的热值、密度和稳定性,使其成为更高效的能源来源。
本文将介绍褐煤提质技术的发展现状,并对其进行分析。
一、褐煤提质技术发展现状1.干燥技术褐煤水分含量较高,导致其热值和燃烧效率较低。
干燥技术是褐煤提质的首要步骤,通过降低褐煤中的水分含量,提高其热值和燃烧性能。
目前,常用的干燥技术包括自然晾晒、热风干燥、微波干燥等。
其中,热风干燥和微波干燥具有处理速度快、节能环保等优点,受到广泛关注。
2.热解技术热解技术是通过高温加热褐煤,使其发生热分解,生成固体炭、液体产品和气体产物。
该技术可以有效提高褐煤的碳转化率和热值,同时还可以去除部分水分和挥发分。
常见的热解技术包括高温热解、中温热解和低温热解等,其中高温热解具有处理效果好、产品收率高等优点,但设备投资和运行成本较高。
3.气化技术气化技术是通过化学反应将褐煤转化为气体燃料,主要包括水蒸气气化和氧气气化等。
水蒸气气化是将褐煤与水蒸气在高温下反应,生成氢气、一氧化碳等可燃气体;氧气气化是将褐煤与氧气在高温下反应,生成二氧化碳、一氧化碳等可燃气体。
气化技术可以有效提高褐煤的能源利用效率和减少环境污染。
二、褐煤提质技术发展分析1.技术挑战褐煤提质技术发展面临的主要挑战包括:设备投资和运行成本较高、能效低、副产品处理困难等。
此外,由于褐煤的燃烧过程中会产生大量的二氧化碳等温室气体,如何减少温室气体排放也是褐煤提质技术发展面临的重要问题。
2.节能环保要求随着全球能源结构的转变和环保意识的提高,节能环保已经成为褐煤提质技术发展的重要趋势。
通过提高能效、减少废弃物排放和采用清洁生产工艺等措施,实现褐煤提质过程的节能环保。
褐煤干燥成型工艺技术综述褐煤是一种低质煤炭,其在开采和利用方面存在一些问题,如高水分含量、低热值和粉尘问题。
为了提高褐煤的使用效率和减少环境污染,研究人员开发了一种称为褐煤干燥成型工艺技术。
褐煤干燥成型工艺技术是利用褐煤的化学和物理特性,在一定的温度和湿度条件下,通过烘干和压制等工艺来提高褐煤的燃烧性能和热值,从而提高其利用效率。
褐煤干燥成型工艺技术的主要步骤包括煤炭的破碎、干燥和成型。
首先,褐煤需要经过破碎工序将其分解为小颗粒。
然后,利用热风或其他热源进行干燥,将褐煤的水分含量降低到一定的水平,一般在10%以下。
最后,将干燥后的褐煤进行成型,可以使用压力机或挤压机,将其压制成不同形状的颗粒或块状。
褐煤干燥成型工艺技术的优点是能够有效提高褐煤的热值和燃烧性能,减少水分含量可以提高煤炭的燃烧效率,减少烟气排放。
此外,成型后的褐煤颗粒较大,便于储运和使用。
同时,该工艺技术可以减少褐煤的粉尘问题,提高褐煤利用的安全性。
然而,褐煤干燥成型工艺技术也存在一些挑战和问题。
首先,干燥设备和成型设备的投资和运行成本较高,增加了工艺的成本。
其次,褐煤成型颗粒的强度较低,容易破碎,这将对储运和使用带来一些困难。
此外,干燥成型过程中的热能损失较大,需要提高能源利用效率。
目前,针对褐煤干燥成型工艺技术的研究主要集中在改进和创新烘干和成型设备,以提高工艺的经济效益和工艺的稳定性。
例如,一些研究人员通过改进烘干设备的结构和操作参数,提高了干燥效果和能源利用效率。
另外,一些研究人员还利用添加剂和改性技术,改善褐煤颗粒的强度和稳定性,提高其储运和使用性能。
总之,褐煤干燥成型工艺技术是一种有效提高褐煤利用效率和减少环境污染的方法。
随着研究的不断深入,相信该工艺技术将在褐煤开采和利用中发挥越来越重要的作用。
1褐煤干燥项目采用的工艺什么是褐煤?褐煤,又名柴煤,煤的一类。
煤化程度仅高于泥煤的精煤。
一种介于泥炭与沥青煤之间的棕黑色、无光泽的低级煤。
由于它富含挥发份,所以易于燃烧并冒烟。
剖面上可以清楚地看出原来木质的痕迹。
含有可溶于碱液内的腐殖酸。
含碳量60%~77%,密度约为1.1~1.2,挥发成分大于40%。
无胶质层厚度。
热值约为23.0~27.2兆焦/公斤(5500~6500千卡/公斤)。
多呈褐色或褐黑色,相对密度1.2~1.45。
1、振动混流干燥技术工艺其原理为:湿物料从顶部进入振动混流干燥器后在多层干燥床作用下分散形成物料长龙,一部分粒度小于床孔的细物料穿过床孔垂直下落,大部分粗粒物料在震动状态下形成震动疏松料层沿床面水平移动,移至端部洒落到下一层干燥床上。
低温大风量热气流分为垂直气流和水平气流,垂直气流在穿越物料的过程中与物料充分的、高强度的接触,将物料干燥。
水平气流在水平方向之间变速流动并与洒落物料充分的、高强度的接触物料干燥。
在干燥器内既有物料的垂直流动,又有物料的水平流动;热风与物料之间既有垂直方向的逆流,又有水平方向的逆流,形成特有的混流干燥作用。
粗细物料与热风在混流过程中经多次混合—分离—再混合—再分离的过程被均匀干燥,大部分物料从干燥器的底部输出,极小部分细物料随气流进入除尘器,除尘器分离出的物料作为产品回收。
采用该工艺的项目有2个:白音华褐煤提质试验项目总规模为1500万吨/年,一期规模300万吨/年,已备案,总投资3.6亿元。
华兴工贸褐煤干燥项目总规模为年处理褐煤500万吨,本期建设规模为年处理褐煤150万吨,已备案,总投资9320万元。
评论:唐山市神州机械有限公司的SZ振动混流干燥系统设备入口烟气温度低于200度,应该是安全的。
但是产量太小,能耗和设备投资太高,因为温差太小。
并且只能脱除表面水,无法脱除结合水。
以最大流化面积40平米,处理量为200吨每小时,而最大脱水量为15吨每小时。
褐煤新干燥技术褐煤是一种常见的燃料资源,其广泛应用于发电、供暖和工业生产等领域。
然而,传统的褐煤干燥技术存在能源浪费、环境污染和安全隐患等问题。
为了解决这些问题,研究人员开发了一种新的褐煤干燥技术,旨在提高能源利用效率、减少污染排放并确保安全生产。
褐煤新干燥技术的核心是利用热泵和低温热能进行煤炭的干燥。
传统的褐煤干燥过程中,常常使用高温热能进行加热,这不仅耗能且易导致燃烧或爆炸事故。
而新的干燥技术利用热泵将低温热能提升到高温,从而实现对褐煤的高效干燥。
这种技术相比传统方法,能够降低能源消耗,提高干燥效率,同时避免了安全隐患。
褐煤新干燥技术的实施步骤如下:首先,将褐煤放置在干燥设备中,然后通过热泵系统将低温热能提升到高温。
在干燥过程中,热泵系统不断循环利用热能,使得褐煤能够快速、均匀地干燥。
同时,该技术还可以通过控制干燥设备的温度和湿度,实现对干燥过程的精确控制,以适应不同种类和质量的褐煤。
褐煤新干燥技术的应用带来了多重好处。
首先,通过利用热泵和低温热能进行干燥,能够大幅度减少能源消耗,提高能源利用效率。
其次,由于干燥过程中不需要高温加热,可以有效降低煤炭的燃烧性和爆炸性,从而减少生产过程中的安全风险。
此外,褐煤新干燥技术还能够减少煤炭中的挥发分和硫分含量,降低污染物排放,对环境保护具有积极意义。
然而,褐煤新干燥技术也存在一些挑战和问题。
首先,该技术的设备和系统成本较高,需要进行投资和建设。
其次,干燥过程中的温度和湿度控制对设备和操作人员的要求较高,需要精确的监测和调节。
此外,褐煤干燥后的质量和性能是否能够满足用户要求,也是一个需要考虑的问题。
为了进一步推广和应用褐煤新干燥技术,需要加强相关研究和开发工作。
首先,需要针对不同褐煤种类和质量,进行干燥参数的优化和调整,以实现最佳的干燥效果。
其次,可以考虑将褐煤新干燥技术与其他清洁能源技术相结合,进一步提高能源利用效率和环境保护效果。
此外,还需要加强对干燥设备和系统的改进和创新,以降低成本并提高操作便利性。
褐煤干燥氧化技术
褐煤干燥氧化技术是一种将褐煤转化为高效能源的先进技术。
褐煤是一种含水率较高的煤种,其水分含量通常在20%至60%之间。
在传统燃烧过程中,褐煤的高水分含量会导致能源浪费和环境污染。
因此,干燥氧化技术应运而生。
干燥氧化技术通过对褐煤进行干燥处理,将其水分含量降低到可接受范围内。
这一过程的基本原理是利用热能将褐煤中的水分蒸发出来,使其变为干燥的固体燃料。
通过这种方式,褐煤的能量密度得以提高,燃烧效率也会显著提升。
干燥氧化技术的一个重要步骤是煤炭的干燥过程。
在干燥过程中,褐煤被加热至高温,使其内部的水分蒸发。
为了保证干燥过程的高效进行,通常会采用间接加热方式,即通过热介质将热能传递给褐煤。
这样不仅可以避免直接燃烧褐煤产生的污染物,还可以提高热能利用率。
干燥过程完成后,褐煤会变得干燥且易燃。
此时的褐煤已经具备了更高的能量密度,可以更有效地用于发电、供热等用途。
此外,干燥氧化技术还可以减少褐煤燃烧过程中产生的氮氧化物和二氧化硫等有害气体的排放,从而降低环境污染的程度。
通过褐煤干燥氧化技术,可以实现对褐煤资源的高效利用,提高能源利用效率,减少环境污染。
这对于提高能源供应的可持续性,保
护环境以及减少碳排放具有重要意义。
褐煤干燥氧化技术已经在许多地方得到了广泛应用。
不仅在能源领域,也在工业生产中得到了应用。
随着技术的不断进步和改进,相信褐煤干燥氧化技术将会在未来发挥更大的作用,并为能源转型和环境保护做出更大的贡献。
投入58万元;增产精煤收益12915万元;减少尾煤损失2115万元;扣除新增成本117万元,年平均经济效益可达200万元左右。
6 结论(1)浮选药剂乳化站已获国家专利,且在多家选煤厂投入使用。
(2)乳化站技术先进,节省药剂,提高了精煤产率。
(3)乳化站投资少、见效快、投资回报率高。
(4)乳化站投资风险小,即使出现了问题也不会影响生产,设备安装方便且不需停产。
(5)乳化站体积小、功率低、运转可靠、操作简单、维修量小。
参考文献:[1] 丁立亲,等1浮选的理论和实践[M]1北京:煤炭工业出版社,19871[2] 刘焕胜,刘瑞芹1浮选药剂连续乳化法的研究与试验[J]1煤炭加工与综合利用,2003,(4)1 [3] 刘文江,等1浮选药剂乳化工艺的应用及效果[J]1煤炭加工与综合利用,2002,(6)1[4] 廖祥国,等1浮选乳化调浆技术在田庄选煤厂的应用[J]1煤炭加工与综合利用,2005,(2)1 [5] 孙建中,龙占元,王军1浮选药剂乳化站在选煤生产中的应用[J]1选煤技术,2002,(6)1文章编号:1001-3571(2006)02-0019-03高水分褐煤燃烧发电的集成干燥技术常春祥1,熊友辉2,蒋泰毅2(11开滦集团公司,河北唐山 063018;21华中科技大学煤燃烧国家重点实验室,湖北武汉 430074)摘要:介绍了几种国外高水分褐煤的预干燥技术,提出了今后我国在褐煤干燥技术方面的研究思路。
关键词:管式干燥;流化床蒸汽干燥;蒸汽空气联合干燥;床混式干燥;热机械脱水中图分类号:T D94612+3 文献标识码:A1 概述褐煤主要分布在我国的云南、内蒙古、东北、四川等省区,其中以云南、内蒙古和黑龙江为最多。
在这些地区,褐煤主要用来直接燃烧发电。
由于褐煤中含有20%~50%左右的水分,如直接参与燃烧,一方面在着火过程中需要大量的能量,加之褐煤挥发分高,容易发生爆炸,因此在燃烧控制上有一定的难度;同时,由于水分蒸发的过程会带走大量热能,使得燃烧排烟热损失严重,电厂热效率低。
褐煤干燥技术2在黑龙江东部、吉林、河北、山东、广东、海南和四川等地也有少量分布,其中海南全部为褐煤,黑龙江以及广西褐煤储量分别占本区储量的34.7%和35.4%。
目前国内发现的煤炭资源中,褐煤约占总量的12.68%。
其主要分布在我国东北和西南,其中内蒙古东部地区的褐煤占全国该煤类的77.55%,占本区煤炭储量的45%,多属于老年褐煤;云南的褐煤占全国该煤类的11.88%,占本区煤炭储量的64%,多为年轻褐煤;另外,褐煤利用也越来越广了,褐煤主要用于发电厂的燃料,也可作化工原料、催化剂载体、吸附剂、净化污水和回收金属等。
通常有两种:(1)土状褐煤(brown coal),质地疏松而较软;(2)暗色褐煤(lignite),质地致密而较硬。
可直接用作家庭燃料、工业热源燃料及发电的燃料,也可用作气化、低温干馏等的原料。
焦化后的褐煤可制作为煤砖用于炊事和加热;它也作为活性炭的来源,用于水的处理、复原黄金和提取碘。
由于褐煤的水分大,不变运输,褐煤烘干设备设备也就应运而生了!褐煤干燥机结构分析:褐煤烘干机的主要组成部分有:粉碎机、输送机、进料器、热源设备、回转烘干机、出料器、引风系统、除尘设备、温控装置、电器系统等。
褐煤干燥技术特点分析:1 振动混流干燥该技术可脱去褐煤水分10%左右,热值提升至3500大卡左右,单台设备干燥能力较大,可以达到300万吨每年,但脱水率低。
其原理是将原煤破碎至35-50mm,经过热风干燥机干燥。
干燥机为密闭式箱体,内设4-5层“之”字型振动式斜面筛网。
热风炉产生的高温热风经过与冷风混合至230C°左右形成的中温热风从下而上的穿过干燥箱。
煤粒从上而下的经过振动筛面,细颗粒从网眼中漏下,很快完成干燥,粗颗粒则缓慢经过筛面滚落而下,经过热风与煤块的热交换,从而得到干燥。
干燥流程根据脱水率要求10-60分钟不等。
如果需要,干燥后的煤炭还可以进入选煤机进行分选,将矸石和泥块排出,使褐煤的热值得到进一步提升2 滚筒干燥技术该技术可以将褐煤水分降至15%左右,脱水率高,热值提升至4500大卡左右。
褐煤干燥引言褐煤是一种在煤系列中位于煤的生物质和无烟煤之间的一种煤炭类型。
它的水分含量比无烟煤高,燃烧时产生的污染物较多。
为了提高褐煤的燃烧效率和减少对环境的影响,褐煤通常需要经过干燥过程。
本文将介绍褐煤干燥的过程、方法和影响因素。
褐煤干燥的过程褐煤干燥的过程主要包括水分蒸发和温度升高两个阶段。
在水分蒸发阶段,褐煤中的水分会在一定温度下逐渐蒸发。
在温度升高阶段,褐煤的温度会逐渐升高,进一步蒸发残留的水分。
整个干燥过程需要控制适当的温度和湿度,以保证褐煤干燥的效果。
褐煤干燥的方法褐煤干燥的方法可以分为自然干燥和人工干燥两种。
自然干燥自然干燥是指将褐煤暴露在自然的环境下,利用自然的风力和太阳辐射将水分蒸发。
自然干燥的优点是成本低,无需额外设备,但缺点是干燥速度慢,受天气条件限制。
人工干燥人工干燥是指利用专门的设备和方法将褐煤进行干燥。
常见的人工干燥方法包括热风干燥、热板干燥和微波干燥。
•热风干燥是通过加热风传导热量给褐煤,从而使褐煤中的水分蒸发。
这种方法适用于大规模的干燥过程,但能耗较高。
•热板干燥是将褐煤放置在加热的板上,通过传导和辐射热量给褐煤进行干燥。
这种方法干燥速度较快,但需要较大的加热面积。
•微波干燥是通过微波能量使褐煤分子产生振动,从而产生热量进行干燥。
这种方法干燥速度快,能耗低,但设备成本较高。
褐煤干燥的影响因素褐煤干燥的效果受到多个因素的影响,下面列举了几个主要的因素。
温度温度是影响褐煤干燥效果的重要因素。
适当的加热温度可以促进水分的蒸发,但过高的温度可能会导致褐煤中挥发分的损失。
湿度湿度是指褐煤干燥环境中的水分含量。
较低的湿度可以加快褐煤水分的蒸发速度,但过低的湿度可能会导致褐煤干燥过程中的颗粒损失和燃烧特性的变化。
粒径褐煤的粒径也会影响干燥效果。
较大的粒径褐煤干燥速度较慢,而较小的粒径则可以提高干燥速度。
因此,在实际干燥过程中,需要根据褐煤的粒径选择合适的干燥方法和参数。
空气流速空气流速是指干燥过程中空气对褐煤的运动速度。
褐煤的提质干燥成型技术2.1 褐煤提质干燥技术富含水褐煤的干燥提质是在一定温度下经脱水后将褐煤转化成具有类似烟煤性质的提质煤。
现在的提质干燥技术有以下几种。
2.1.1流化床干燥技术流化床干燥技术是20世纪60年代发展起来的一种气固两相流干燥技术,热容量系数可达8000~25000kJ/(m3h℃)[2],热效率可达60%~80%,广泛应用于化工、医药、轻工、食品及建材工业中。
湿物料在气流干燥器中先除去表面水分,然后在流化床干燥器中去除结合水分。
目前流化床干燥机用于煤粉干燥的较少,仍处于实验室研究阶段,中国矿业大学对通辽褐煤在流化床干燥器中的干燥特性进行了研究。
对于褐煤而言,干燥技术的难点在于如何防止干燥过程中的燃烧爆炸、粒度分布范围广设备内停留时间不均匀以及处理量大(小时处理量数数以万吨记)等问题。
可以预见,以烟道气为干燥介质,采用部分废弃循环的流化床干燥系统具有很大的潜力,大连理工大学正在进行这方面的开发工作。
2.1.2滚筒干燥技术滚筒干燥机主要由倾斜转动的长筒构成。
湿物料在筒内前移过程中,直接或间接得到了干燥介质的传递热量而达到干燥的目的。
此类干燥器广泛应用于化工、食品、粮食、矿物等行业中各种散粒物料的干燥,现已发展到溶液及膏状物料的干燥上。
滚筒褐煤干燥技术脱水率高,可以将褐煤水分降至15%,热值提升至4500大卡左右。
其原理是放入充满约的滚筒。
与烟气充分,物料在干燥器内的停留时间一般在30分钟左右,从而使褐煤得到干燥。
褐煤干燥工艺流程图如图所示。
将原料煤破碎至0-50mm后,经胶带输送机和刮板输送机最终进入JNG节能滚筒干燥机。
在倾斜转动的滚筒内,由滚筒壁上的抄板使褐煤在干燥筒体内形成全断面料幕,与高达500℃的高温热风进行接触,交换热量,干燥后由排料箱排入密封式排料刮板输送机,经溜槽送入胶带输送机,最终送入料仓。
旋风除尘器收集的细煤粉经螺旋输送机和星型排料器送到出料刮板输送机,汇入干燥后煤输送系统。
褐煤的干燥技术要求褐煤Lignite (coal);brown coal ;wood coal 褐煤,又名柴煤,是煤化程度最低的矿产煤。
一种介于泥炭与沥青煤之间的棕黑色、无光泽的低级煤。
化学反应性强,在空气中容易风化,不易储存和远运。
褐煤的用途主要包括气化、液化、炼焦、燃烧等,几乎所有褐煤作为原料的煤炭加工都需要进行预先的煤炭干燥,针对褐煤的不同用途对褐煤干燥技术的要求在此简练总结,为公司干燥技术的精品工程研发及系统化研发提供一定的技术背景参考。
不同用途的褐煤对干燥产品的多项要求都不相同,其中粒度和湿含量是最基本的两项。
粒度生产不同用途的褐煤型煤,对褐煤破碎粒度要求是不同的,见表1。
对生产高温炼焦和低温干馏用的型煤,褐煤破碎粒度分别要求小于1mm和小于3mm,作动力用时则粒度可更粗些。
表1 生产不同用途的褐煤型煤对煤破碎粒度的要求(mm)型煤用途动力用低温干馏用高温炼焦用褐煤破碎粒度<8或<6 <3 <1湿含量满足不同褐煤用途之工艺要求,压块、炼焦、制备煤气、液态燃料合成以及现代蒸汽锅炉燃烧等用煤对湿含量都有严格的限制,褐煤水分究竟脱除多少合适,需要综合考虑诸如原煤水分、价格、脱水特性和运输距离等因素。
表2列出了若干用途之煤的允许湿含量范围。
表2 不同用途之褐煤的湿含量范围实验室的研究认为,决定褐煤脱水率的因素主要是热源温度和压力。
此外,处理时间、原料煤粒度、配管方式、热源和物料向干燥器内的流入方式,脱水过程中生成的分解气体与热水和褐煤的分离方法等均对脱水率有很大的影响。
除粒度和湿含量外,针对不同的褐煤用途,抑或同种用途选择的工艺不同,褐煤干燥工艺段的技术和产品要求各有不同。
气化原理上讲,现有的固定床气化法、流化床气化法和气流床气化法都可用于褐煤气化,气化方法选择时受到煤的性质、用途时等因素的制约。
表不同气化方法的比较综述,褐煤、长焰煤往往由于抗碎强度不高或成浆浓度较低,不适合在固定(移动)床气化炉或水煤浆气化炉中使用。
褐煤干燥提质技术一、褐煤的特性褐煤是一种煤化程度介于泥炭与沥青煤之间的棕黑色的低级煤。
是泥炭经成岩作用形成的腐殖煤,煤化程度最低,呈褐色、黑褐色或黑色,一般暗淡或呈沥青光泽,不具粘结性。
其物理、化学性质介于泥炭和烟煤之间。
水分大、挥发分高、密度小,含有腐殖酸,氧含量常达15~30%,在空气中易风化碎裂,发热量低。
按照中国煤炭分类标准还分为两小类:透光率PM大于30~50%的年老褐煤和PM小于或等于30%的年轻褐煤。
中国褐煤多属老年褐煤。
褐煤灰分一般为20%~30%。
东北地区褐煤硫分多在1%以下,广东、广西、云南褐煤硫分相对较高,有的甚至高达8%以上。
褐煤全水分一般可达20%~50%,分析基水分为10%~30%,挥发分高15%~30%、低位发热量一般只有11.71~16.73MJ/kg,易风化碎裂、易氧化自燃。
二、褐煤干燥提质的前景褐煤有着清洁、低挥发和低硫的优点,但同时又存在着湿度大、燃点低和二氧化碳排放量大的缺点,是导致全球温室效应的重要因素之一。
但是,在目前全球能源日趋紧张的形势下,褐煤的经济价值及其相关加工生产技术又重新被世界能源界所重视。
与烟煤、无烟煤相比,褐煤的优势是价格较低,反应活性高,但其热值相对较低,含水量较高,一般为25-60%。
褐煤中的水分增加运输成本,影响锅炉运行,降低电厂效率,增加温室效应气体排放,因此褐煤干燥和提质技术及装备的开发是清洁和有效利用褐煤的关键。
褐煤的提质是指褐煤在高温下经受脱水和热分解作用后转化成具有烟煤性质的提质煤。
褐煤脱水过程除脱去部分水分外,也伴随着一些煤的组成和结构的变化,它主要是由脱水作用和过程引起的。
所以,褐煤的提质过程主要是褐煤的脱水过程。
经过脱水后,褐煤的水分及氧化速度即降低,发热量提高,燃烧后温室气体的排放减小。
提质后的褐煤将更有利于利用、运输和贮存。
若是将褐煤中的50%的水分除去,则将会把褐煤燃烧后产生的温室气体的排放量降低15%。
实际测试得知,一种水分42.52%、发热量11.93MJ /kg的褐煤,经提质干燥后,水分降14.43%,发热量增至18.08MJ /kg,相当于提高了热值51.6%,这对于褐煤电厂的影响无疑是十分巨大的。
褐煤干燥简介褐煤是一种棕色到黑色的低级煤炭,含水率较高,需要经过干燥处理才能提高效能以及储存。
本文将介绍褐煤干燥的方法、设备以及干燥后的应用。
褐煤干燥的方法褐煤干燥可以通过以下几种方法进行:1.空气干燥:将褐煤暴露在空气中,利用自然风力和温度进行蒸发,降低其含水率。
这种方法成本较低,但是效率相对较低,需要较长的时间来完成干燥过程。
2.热风干燥:使用高温热风对褐煤进行干燥,这种方法可以加快干燥速度,提高效率。
热风干燥可以通过燃煤或燃气产生热风,同时也可以使用外部加热设备,如电加热方式。
3.旋转干燥器干燥:旋转干燥器是一种常用的干燥设备,通过旋转筒内的蒸发器,利用高温热风对褐煤进行干燥。
旋转干燥器具有体积小、干燥速度快、干燥均匀等优点。
4.流化床干燥:流化床干燥是一种高效的干燥方法,通过将褐煤放置在流态化的气固体颗粒床中,利用气体的搅拌和温度进行干燥。
流化床干燥具有干燥速度快、能耗低、干燥效果好等特点。
褐煤干燥设备褐煤干燥使用的设备根据不同的干燥方法有所不同,以下是几种常用的褐煤干燥设备:1.热风干燥炉:热风干燥炉是通过燃煤或燃气产生高温热风,将褐煤放置在炉内进行干燥。
热风干燥炉通常具有预热系统、干燥系统、排气系统等组成部分,可以根据需求进行定制。
2.旋转干燥器:旋转干燥器是一种以旋转筒为主体的设备,通过旋转筒内的蒸发器产生高温热风,对褐煤进行干燥。
旋转干燥器具有结构简单、维护方便等特点,适用于小型和中型生产线。
3.流化床干燥设备:流化床干燥设备是通过将褐煤放置在流态化的气固体颗粒床中,利用气体搅拌和温度进行干燥。
流化床干燥设备具有干燥速度快、能耗低、干燥效果好等优点,适用于大规模生产。
4.自然风干燥:自然风干燥是最简单的干燥方法,无需额外的设备,只需将褐煤暴露在自然风力下进行蒸发。
然而,由于自然风的不稳定性和季节变化,干燥时间比较长,适用于个别小规模场景。
褐煤干燥后的应用褐煤干燥后,其含水率大大降低,可以提高燃烧效率,延长燃烧时间,减少环境污染。
5种典型褐煤干燥技术工艺褐煤中的水分可分为外在水分、内在水分和结晶水。
褐煤干燥主要是通过改变褐煤周围环境的温度和压力,使水分从褐煤中脱除。
褐煤干燥技术总体尚处于工业化示范阶段,比较典型的技术有澳大利亚BCB工艺、神华HPU-06工艺、德国泽玛克管式干燥成型技术、美国K-Fuel工艺、神州干燥-干选联合工艺,下面由我们河南褐煤烘干机设备厂家技术小编一一为广大用户详细介绍这5种典型褐煤干燥技术工艺,希望对您有一定的帮助。
第1种:澳大利亚BCB工艺澳大利亚BCB工艺属无黏结剂辊压成型工艺。
将褐煤破碎到0~4mm,由热风炉产生的热烟气(400~600℃)将破碎后的褐煤输送到闪蒸提升管进行干燥,然后经两级旋风分离器分离,分离出的煤通过辊压成型机无黏结剂挤压成型,型煤(100~120℃)冷却后储存,热烟气循环使用。
第2种:热压成型HPU-06工艺将褐煤破碎至0~3mm,热风炉产生的热烟气(600℃左右)将破碎后的褐煤在气流干燥管中进行干燥,然后经过旋风分离器进行分离,分离出来的煤通过辊压成型机无黏结剂挤压成型,型煤(100℃左右)冷却后储存。
第3种:德国泽玛克管式干燥成型技术德国泽玛克管式干燥成型技术属蒸汽间接干燥技术,产品为型煤。
采用饱和蒸汽为加热介质进行间接加热干燥,其基本原理为热法干燥。
主要设备蒸汽管式烘干机类似于回转窑,鼓形体里为列管,鼓体呈倾斜状态。
原煤(-6.3mm)不断从上方送入烘干机管里,当鼓体旋转时,煤不停输送到出口。
煤料干燥所需热量由多管系统内的低压蒸汽(0.45MPa,165℃)提供。
低压蒸汽沿着鼓体轴向进入内部,并迅速向管外表面扩散。
与煤-起进入机体内的空气吸收水分后,在除尘器内与干燥粉分离,-部分重新压缩进入烘干机,另外-部分分排入大气。
第4种:美国K-Fuel工艺K-Fuel工艺是将褐煤粉碎到6~75mm后,通过皮带输送机输送带运至进料漏斗,等待进入上锁漏斗,上锁漏斗封闭,同时向干燥器中充入高温(204~260℃)、高压(2.5~3.8MPa)蒸汽。
若干用途之褐煤的干燥技术要求褐煤的用途主要包括气化、液化、炼焦、燃烧等,几乎所有褐煤作为原料的煤炭加工都需要进行预先的煤炭干燥,针对褐煤的不同用途对褐煤干燥技术的要求在此简练总结,为公司干燥技术的精品工程研发及系统化研发提供一定的技术背景参考。
不同用途的褐煤对干燥产品的多项要求都不相同,其中粒度和湿含量是最基本的两项。
粒度生产不同用途的褐煤型煤,对褐煤破碎粒度要求是不同的,见表1。
对生产高温炼焦和低温干馏用的型煤,褐煤破碎粒度分别要求小于1mm和小于3mm,作动力用时则粒度可更粗些。
表1 生产不同用途的褐煤型煤对煤破碎粒度的要求(mm)湿含量满足不同褐煤用途之工艺要求,压块、炼焦、制备煤气、液态燃料合成以及现代蒸汽锅炉燃烧等用煤对湿含量都有严格的限制,褐煤水分究竟脱除多少合适,需要综合考虑诸如原煤水分、价格、脱水特性和运输距离等因素。
表2列出了若干用途之煤的允许湿含量范围。
表2 不同用途之褐煤的湿含量范围实验室的研究认为,决定褐煤脱水率的因素主要是热源温度和压力。
此外,处理时间、原料煤粒度、配管方式、热源和物料向干燥器内的流入方式,脱水过程中生成的分解气体与热水和褐煤的分离方法等均对脱水率有很大的影响。
除粒度和湿含量外,针对不同的褐煤用途,抑或同种用途选择的工艺不同,褐煤干燥工艺段的技术和产品要求各有不同。
气化原理上讲,现有的固定床气化法、流化床气化法和气流床气化法都可用于褐煤气化,气化方法选择时受到煤的性质、用途时等因素的制约。
表不同气化方法的比较综述,褐煤、长焰煤往往由于抗碎强度不高或成浆浓度较低,不适合在固定(移动)床气化炉或水煤浆气化炉中使用。
因为料层的孔隙率很难保证,会产生大量粉末堵塞块间的空隙或煤灰软化熔融粘连,使整个料层不透气,难以维持生产。
由于褐煤的灰分和水分太高,对气流床气化炉的气化过程不利,一般采用先经预干燥处理,然后再入炉气化。
其研发投入较高,产气能力最强,当要求气化炉容量很大时则可以考虑用加压气流床气化。
浅谈褐煤的干燥技术研究思路
摘要:介绍了几种褐煤干燥技术,提出了今后我国在褐煤干燥技术方面的研究思路。
关键词:管式干燥;流化床蒸汽干燥;蒸汽空气联合干燥;床辊式干燥;热机械脱水
中图分类号:tb 文献标识码:a 文章编号:1007-0745(2013)05-0351-01
1 褐煤提质干燥概述
富含水褐煤属于煤化程度较低的煤种,主要分布在我国内蒙古、云南、东北、四川等地。
褐煤的特点是水分高、孔隙度大、挥发分高、热值低,含有不同数量的腐植酸。
褐煤的氧含量高达15% 一30% ,化学反应性强,热稳定性差,块煤加热时破碎严重,存放在空气中容易风化变质,碎裂成小块甚至粉末状,使热值更加降低。
由于褐煤中含有15%—50% 的水分,将其直接参与燃烧或煤的气化,一方面在着火过程中需要消耗大量的能量;另一方面褐煤挥发分高,容易发生爆炸。
此外,由于水分蒸发的过程会带走大量热能,使得燃烧排烟热损大,发电热效率低,温室气体的大量排放以及对褐煤气化工艺的要求苛刻,使富含水褐煤的使用面临特殊的挑战。
大量开采水分高的褐煤直接用于燃烧,不仅锅炉燃烧不稳定,而且效率低。
高水分含量使得这些煤种只能在当地使用,不可能长距离运输,极大地限制了煤炭的开采规模。
因此,开发先进的富含水褐煤干燥成型技术和设备,对于提高富含水褐煤的市场竞争力,降低
使用成本具有重要意义。
富含水褐煤的干燥提质是在一定温度下经脱水后转化成具有类似烟煤性质的提质煤。
提质后的褐煤将更有利于综合利用、运输和贮存。
国内外主要的褐煤脱水技术有:热脱水技术,机械脱水技术,机械,热脱水技术以及热干燥技术。
2 褐煤的热干燥技术
2.1 旋转管式干燥技术。
旋转管式干燥机为一回转窑系统,.. 其干燥方法是在常压下,用低压蒸气通过管式干燥机将煤加热到大约100。
c,使水分蒸发,并利用和煤一起进入干燥机的空气作为脱水介质,通过除尘器将煤粉分离,部分空气经压缩进入干燥机循环,部分排入大气。
此法为目前工业应用最为成熟的褐煤干燥方法。
2.2 蒸汽流化床干燥技术(dwt)。
在流化床干燥器内,过热蒸汽将高水分褐煤流从干燥机的底部吹向沸腾床上部产生流化状态,从而对褐煤进行干燥。
在流化床的蒸气吸收褐煤原煤中蒸发出的水分,原煤从干燥机的上部输入进去经过旋风分离器,蒸汽再被部分导回干燥机。
干燥机所需能量是由从汽轮机出来的蒸汽提供。
该工艺过程的特点是蒸汽不仅作为干燥介质而且还作为流化介质,干燥蒸发的蒸汽是不含空气和其他杂物的。
2.3 床混式干燥机技术。
床混式干燥机(bmd)适合于电厂的预干燥过程,利用流化床燃烧技术可实现热电联产。
开发该技术的目的是利用流化床热床料的热量。
过热蒸汽高速进入干燥管底部,从流化床分出1股热床料流在干燥机燃料人口前与过热蒸汽混合。
蒸汽携带燃料同床料一起经过干燥器后进入旋流分离器,干燥燃料
和床料从蒸汽流中分离后直接送往流化床锅炉燃烧。
一部分蒸汽从旋流分离器回收后返回干燥机底部重新与新的床料混合,其他蒸汽则由蒸汽循环管路分离后引入热交换器冷凝。
2.4 蒸汽空气联合干燥技术。
该技术利用从冷凝器出来的热水作为干燥介质,虽然热水干燥比过热蒸汽干燥在干燥速度和干燥程度上相对较差,但用热水作为干燥介质对于电厂来说是一种“废热”此工艺为美国pwevrbai利用的最佳选择orriesn发电厂近年开发的集成干燥技术。
空气被热循环水加热到约43℃后作为流化床干燥器的流化介质,同时5o℃的热水作为流化床的干燥热源介质。
2.5 褐煤的机械、热脱水技术。
机械\热脱水技术综合了热法脱水和机械力脱水的优点,将褐煤加热到2200℃的条件下,通过机械挤压将水挤出。
该工艺过程分为4个阶段:①用工艺热水预热;
②过热蒸气加热;③加压脱水;④闪蒸进一步脱水。
为了使干燥介质均匀分布在煤层中,原煤必须用压盘稍微预压一下预压时,热水从压盘里的喷洒系统均匀地分布在煤层表面。
在饱和蒸汽压力下,水进入压力室,热水经过煤层并且向煤施放所有的热量,然后用蒸汽加热并使煤中的水分部分从煤层中脱离出来。
最后再经机械压力和进一步闪蒸过程,脱除大部分水分。
3 我国褐煤发电的干燥技术研究思路
干燥是一项古老的技术。
在我国,对煤炭干燥主要针对选煤厂的烟煤和无烟煤,大都采用烟气干燥。
对于褐煤,由于挥发分高,易着火发生爆炸,此外,由于水分高,传统热风干燥损失大,干燥
效率低,产品水分也不稳定。
我国在褐煤这种高水分含能材料的干燥技术上缺乏经验。
在内蒙、云南等褐煤资源丰富的省份,大量开采水分高达30%~50%的褐煤直接用于燃烧,不仅锅炉燃烧不稳定,而且电厂效率也很低;高水分使得这些煤种只能在当地使用,不可能长距离运输,极大地限制了煤炭的开采规模。
因此,开发先进的褐煤干燥技术和设备,对于提高褐煤的市场竞争力,降低发电成本具有重要意义。
过热蒸汽干燥这几年已成为国际上干燥技术研究开发的重点。
借鉴国外经验,我国在低阶煤的先进干燥技术的研发方面应主要围绕以下几个思路进行:
(1)水分蒸发废热可以循环利用。
(2)干燥强度要大,以利于大型化
(3)通过与电厂热力循环集成,提高电厂整体效率。
此外,对于我国北方现有以高水分褐煤为燃料的流化床热电厂,可以借鉴国外已经成熟的床混式(bmd)干燥技术。
该技术已经在欧洲得到广泛认可,现已延伸到诸如高水分生物质、污泥、垃圾等处理过程中。
改变我国高水分褐煤发电采用传统的直接燃烧方法效率低下、设备可利用率差的关键是,降低褐煤电厂入炉煤水分。
因此有必要对褐煤干燥技术进行研究,在褐煤干燥技术选择、设备与设计工艺、干燥过程的理论计算与数学模拟等方面取得经验,进一步提高褐煤燃烧发电的市场竞争力。
4.结语
在我国,对煤炭干燥主要针对选煤厂的烟煤和无烟煤,大都采
用烟气干燥。
而对于褐煤,由于挥发分高,易着火发生爆炸,此外,由于水分高,传统热风干燥损失大。
干燥效率低,产品水分也不稳定,在我国大力提倡节能减排的社会形势下,需要高效、低能耗的褐煤脱水技术来改变我国传统直接燃烧方法效率低下、设备利用率差的现状。
参考文献:
[1]尹立群.我国褐煤资源及其利用前景[j].煤炭科学技术,2004,32(8):12—14
[2]常春祥。
熊友辉,蒋泰毅.高水分褐煤燃烧发电的集成干燥技术ej3.选煤技术,2006(2):19—21.
[3]王天威.褐煤改质的基础研究ej3.应用能源技术,2007,(9)。