高频实验报告
- 格式:docx
- 大小:6.22 MB
- 文档页数:10
三点式正弦波振荡器(高频电子线路实验报告)摘要本实验采用三点式正弦波振荡器电路,通过实验验证了三点式正弦波振荡器的设计和实际应用,其中包括三点式正弦波振荡器的基本原理、电路结构和工作特性等。
实验结果表明,通过合理的电路设计和优化,可以得到高精度、稳定性好的正弦波振荡器,为工程应用提供了重要的参考。
关键词:三点式正弦波振荡器、电路结构、工作特性一、实验目的1.熟悉三点式正弦波振荡器的基本原理和电路结构;3.通过实验验证三点式正弦波振荡器的设计和实际应用。
二、实验原理三点式正弦波振荡器是一种常用的基本电路,它通过正反馈作用在电路中产生自激振荡现象,从而输出对称的正弦波信号。
其基本原理如下:当输出正弦信号幅度变动时,输入放大器的反相输出端和反馈电容之间的电压也会变化,导致反馈放大器的增益也会随之变化,最终导致输出正弦波的幅度稳定在一定的水平上。
同时,在电路中增加合理的RC网络,可以使三点式正弦波振荡器输出的波形更加准确、稳定。
其中,- OA1, OA2分别为运算放大器;- R1, R2, R3分别为电阻,C1, C2分别为电容,L为电感;- 输出信号可以从OA1反相输出端或者OA2非反相输出端输出。
三、实验过程本实验采用EDA软件进行电路仿真和搭建,整个实验过程分为以下几个步骤:1.根据电路原理图,使用EDAW工具将三点式正弦波振荡器的电路搭建出来;2.依据实验材料,按照电路图要求选择合适的R、C、L值;3.将搭建好的电路连接上电源(+12V),开启仿真。
4.在电路仿真过程中,通过示波器观察输出的正弦波形,并分析波形的稳定性和频率响应等特性;5.修改电路参数,观测输出波形的变化情况,并记录相应的数据;四、实验结果通过实验,在合适的电路参数和电源电压下,三点式正弦波振荡器的输出波形为一定幅值的正弦波。
图2 实验得到的三点式正弦波振荡器输出波形五、实验分析通过本实验,我们可以看出三点式正弦波振荡器具有以下特点:1.输出波形准确、稳定。
1-3 小信号调谐放大器一 .实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握单调谐和双调谐放大器的基本工作原理;3.掌握测量放大器幅频特性的方法;4.熟悉放大器集电极负载对单调谐和双调谐放大器幅频特性的影响;5.了解放大器动态范围的概念和测量方法。
二 . 实验内容1.采用点测法测量单调谐和双调谐放大器的幅频特性;2.用示波器测量输入、输出信号幅度,并计算放大器的放大倍数;3.用示波器观察耦合电容对双调谐回路放大器幅频特性的影响;4.用示波器观察放大器的动态范围;5.观察集电极负载对放大器幅频特性的影响。
三 .实验步骤1.实验准备在实验箱主板上插装好无线接收与小信号放大模块,插好鼠标接通实验箱上电源开关,此时模块上电源指示灯和运行指示灯闪亮。
2.单调谐回路谐振放大器幅频特性测量测量幅频特性通常有两种方法,即扫频法和点测法。
扫频法简单直观,可直接观察到单调谐放大特性曲线,但需要扫频仪。
点测法采用示波器进行测试,即保持输入信号幅度不变,改变输入信号的频率,测出与频率相对应的单调谐回路谐振放大器的输出电压幅度,然后画出频率与幅度的关系曲线,该曲线即为单调谐回路谐振放大器的幅频特性。
(1)扫频法,即用扫频仪直接测量放大器的幅频特性曲线。
利用本实验箱上的扫频仪测试的方法是:用鼠标点击显示屏,选择扫频仪,将显示屏下方的高频信号源(此时为扫频信号源)接入小信号放大的输入端(1P1), 将显示屏下方的“扫频仪”与小信号放大的输出(1P8) 相连。
按动无线接收与小信号放大模块上的编码器(1SS1),选择1K2指示灯闪亮,并旋转编码器(1SS1) 使1K2指示灯长亮,此时小信号放大为单调谐。
显示屏上显示的曲线即为单调谐幅频特性曲线,调整1W1、1W2曲线会有变化。
用扫频仪测出的单调谐放大器幅频特性曲线如下图:图1-5 扫频仪测量的幅频特性(2)点测法,其步骤如下:① 通过鼠标点击显示屏,选择实验项目中“高频原理实验”,然后再选择“小信号调谐放大电路实验”,通过选择“小信号调谐放大”后,显示屏上显示小信号调谐放大器原理电路图。
高频包络检波,同步检波实验报告实验目的:1. 了解包络检波和同步检波的原理和应用。
3. 学习使用示波器和函数发生器等实验仪器。
实验原理:1. 包络检波包络检波是指将高频信号的包络(即高频信号的幅度调制信号)检出来的一种方法。
常用的包络检波电路有整流电路、压控振荡器电路和电容检波电路等。
本实验使用的是电容检波电路。
其原理是将高频信号通过一个二极管D1进行整流,然后通过电容C1进行滤波,最终得到原信号的包络。
2. 同步检波同步检波是指将高频信号的载频频率和混频频率相同的两个信号进行相乘,得到其乘积的直流分量。
同步检波的原理是将高频信号经过一个混频器以及一个低通滤波器后,得到原信号的直流分量。
实验器材:2. 函数发生器3. FG18B频率计4. 电容检波电路电路板6. 直流电源7. 电阻、电容和二极管等元器件实验步骤:(1)将电容检波电路电路板连接至直流电源和函数发生器上。
(2)设置函数发生器输出频率为1kHz,幅度为5V。
(3)将示波器扫描方式设置为XY模式,进行输出波形的显示。
(4)观察波形,并将示波器扫描方式设置为通道1和通道2模式,将通道1连接至电容检波电路的输入端,将通道2连接至电容检波电路的输出端。
(5)调节电容检波电路电路板上的电阻,使输出的波形尽可能接近原信号的包络。
(6)观察包络波形,并记录结果。
(3)设置FG18B频率计,将其连接至函数发生器的输出端口。
(4)开启同步检波电路电路板上的开关。
实验结果:(1)函数发生器输出信号波形(3)输出信号波形和包络波形(2)混频器输出波形2. 同步检波可以将高频信号的直流分量检测出来,是一种常用的高频测量方法,可以用于调制信号或其他需要在高频信号中探测直流成分的场合。
实验心得:通过本次实验,我了解了包络检波和同步检波的原理和应用,掌握了包络检波和同步检波的实验方法和技巧,学习了使用示波器和函数发生器等实验仪器。
本次实验使我对高频电路的测量和应用有了更深入的认识,为以后深入学习电子技术打下了坚实的基础。
电容反馈LC 振荡器实验报告学号 200805120109 姓名 刘皓 实验台号实验结果及数据(一)静态工作点(晶体管偏置)不同对振荡器振荡频率、幅度和波形的影响 1、K 1、K 2 均置于1—2,K 3、K 4断开,用示波器和频率计在B 点监测。
调整DW 1,使振荡器振荡;微调C 6,使振荡频率在4MHz 左右。
2、调整DW 1,使BG 1工作电流E Q I 逐点变化,E Q I 可用万用表在A 点通过测量发射极电阻R 4两端的电压得到(R 4=1k Ω)。
振荡器工作情况变化及测量结果如表1所示:表1 静态工作点变化对振荡器的影响最佳静态工作点E Q V = 2.0V E Q I 2.0mA (二)反馈系数不同对振荡器振荡频率、幅度和波形的影响保持静态工作点电流为最佳值,即调整DW 1使振荡输出幅度尽量大且不失真。
改变K 1、K 2的位置,即选用不同反馈系数,振荡器工作变化情况及测量结果如表2所示:。
表2 反馈系数变化对振荡器的影响 测量条件:E Q I = m A该工作点下的最佳反馈系数是:E Q I = 2.0m A C 2= 300 pF C 3= 300 pF(三)振荡器频率范围测量在最佳反馈条件下,调整C 5从最大到最小,观察并记录振荡器的振荡频率的变化。
m in f = 3.80 MHz m ax f = 4.22MHz(四)负载变化对振荡器的影响1、K 3断开的情况下,将振荡器的振荡频率调整到4MHz 左右,此时频率osc f = 3.95 MHz ,幅度opp V = 0.75 V 。
2、将K 3分别接1—2、1—3、1—4的位置,即接入不同的负载电阻R 5,测得的相应的频率和幅度及计算结果如表3所示。
表3 负载变化对振荡器的影响 测量条件:osc f = 3.95 MHz ,幅度opp V = 0.75 V由表3知:负载变化对振荡器工作频率的影响是:负载变化保证振荡的前提下对工作频率的影响较小。
丙类高频功率放大器实验报告一、实验目的1.了解和熟悉丙类放大器、高频功率放大器及其工作原理;2.掌握丙类高频功率放大器电路的设计和调试方法;3.实现一个丙类高频功率放大器的设计和调试。
二、实验原理1.丙类放大器丙类放大器是一种功率放大器,其输出信号的一个部位接近正弦波而另一部分则大约失真。
丙类放大器又称为开关放大器,工作原理如下:(1)若输入的信号为负半周期,管子导通,输出便接近0V;(2)若输入信号为正半周期,管子截止,输出电压取决于负载电路。
(3)由于丙类放大器的输出电压只在正半周期时才产生,故功率效率可达90%以上,但其输出信号存在失真,因此丙类放大器多用于功率放大应用中。
2.高频功率放大器高频功率放大器的特点是恢复时间低,速度快、功率输出大,其主要应用在收音机、电视机、雷达、电子计算机等电子设备中,其原理如下:高频功率放大器具有放大频率宽、能量转换效率高、输入输出匹配好、频率稳定性好、体积小、功率大等特点。
其主要应用在无线通信、信号干扰、雷达和通信等电子设备中。
三、设计内容1.电路图设计高频功率放大器电路调试原理如下:(1)采用驱动单一管子的电路,以避免传输相位问题,同时减少了对驱动器电路的要求。
(2)采用变压器耦合方式,从低频端口把信号发送到功率放大器,减少了对驱动信号源的要求。
(3)采用反馈电路,对稳定性及主动去谐增益方面起到较好的作用。
2.实验步骤(1)根据所设计的电路图,依据实际元器件参数选择合适型号、参数元器件进行组装,拼装好整个高频放大器的主板电路。
(2)在采用反馈电路的前提下,测试电路器件的频率特性,应适当减小反馈电压以提高增益。
(3)根据反馈电路实验条件测量出高频功率放大器的输出功率、增益、谐波失真等有关参数,得出实验结果。
四、实验结果及分析高频功率放大器的实验结果及分析如下:1.功率输出本次实验所测试电路的功率输出可达到40W的功率输出。
2.增益本次实验所测试电路的增益为30dB左右,符合预期结果。
高频电子线路实验报告2——高频丙类功率放大器实验目的:1. 学习高频丙类功率放大器的基本原理。
2. 掌握高频丙类功率放大器的设计方法。
3. 验证高频丙类功率放大器的工作性能。
实验原理:丙类功放器是一种在放大器的输出段设有截止偏压的放大器。
其主要特点是效率高、失真小、输出功率大,因此,在广播、通信、雷达等领域被广泛应用。
实验步骤:1. 按照图1所示连接电路。
2. 调整可变电容器C1的值,使电路在工作频率上谐振。
3. 将信号源接入电路的输入端,调整可变电阻R3的值,使输出端的电压最大。
4. 在三极管的发热体上放置热敏电阻,测量其电阻值,计算其温度。
5. 调整信号源输出频率,测量输出端的电压值,记录数据。
6. 计算电路的功率增益、效率、输出功率等参数。
1. 电源电压:12V2. 工作频率:1MHz3. 可变电容器C1的值:10pF4. 可变电阻R3的值:10kΩ5. 发热体上的热敏电阻电阻值:100Ω6. 发热体温度:25℃7. 输出功率:2.5W8. 功率增益:6dB9. 效率:65%实验分析:1. 在C1的值确定的情况下,可通过变频电源调整工作频率,使电路在工作频率上谐振,从而提高电路的效率。
2. 随着输出功率的增加,三极管发热体的温度也会相应升高,从而导致热敏电阻的电阻值发生变化。
可以通过测量热敏电阻的电阻值,计算发热体的温度。
3. 在理论分析的基础上,通过实验数据对电路性能进行评估,验证了丙类功率放大器的工作性能良好,可以满足实际应用需求。
通过本次实验,我学习了丙类功率放大器的基本原理和设计方法,并通过实验数据验证了其工作性能。
这对我今后从事电子工程相关的工作具有很大的参考价值。
同时,我也意识到在实验过程中需要仔细操作、认真记录数据,以确保实验结果的准确性。
石英晶体振荡器实验报告学号 200805120109 姓名 刘皓 实验台号实验结果及数据(一) 静态工作点(晶体管偏置)不同对振荡器振荡频率、幅度和波形的影响 1、把单刀开关K2闭合,用示波器和频率计在c 点监测。
调整DW 1,使振荡器振荡;微调C 2,使振荡频率在4MHz 左右。
2、调整DW 1,使BG 1工作电流E Q I 逐点变化,E Q I 可用万用表在A 点通过测量发射极电阻R 4两端的电压得到(R 4=1k Ω)。
振荡器工作情况变化及测量结果如表1所示:表1 静态工作点变化对振荡器的影响(二)2C 取值不同对振荡器振荡频率范围的影响2C 变化对振荡器的影响 测量条件:E Q I = 1.5 m A保持4.433MHz 基本不变(三)负载变化对振荡器的影响1、K 1断开的情况下,将振荡器的振荡频率调整到4MHz 左右,此时频率osc f = 4.433 MHz ,幅度opp V = 2.92 V 。
2、将K 1分别接1—2、1—3、1—4的位置,即接入不同的负载电阻R 5,测得的相应的频率和幅度及计算结果如表3所示。
表3 负载变化对振荡器的影响 测量条件:osc f =4.433 MHz ,幅度opp V =2.92 V由表3知:负载变化对振荡器工作频率的影响是: 几乎没有影响。
负载变化对振荡器输出幅度的影响是: 随着负载阻抗的减小,输出幅度略微减小。
(四)比较负载变化对LC 正弦波振荡器和石英晶体振荡器的不同影响负载变化对LC 正弦波振荡器的影响比较明显。
而对石英晶体振荡器的影响很小。
这主要是由于石英晶体振荡器的稳定性很高。
思考题晶体振荡器的振荡频率比LC 振荡器稳定得多,为什么? 答:因为(1)石英晶体谐振器具有很高的标准性。
(2)石英晶体谐振器与有源器件的接入系数 ,受外界不稳定因素的影响少。
(3)石英晶体谐振器具有非常高的Q 值,维持振荡频率稳定不变的能力极强。
实验一高频小信号调谐放大器实验报告一、实验目的本实验旨在通过设计和搭建一个高频小信号调谐放大器电路,掌握高频小信号调谐放大器的工作原理和性能参数,并能正确测量和分析电路的电压增益和频率响应。
二、实验原理高频小信号调谐放大器是一种用于放大和调谐高频小信号的电路。
它主要由三个部分组成:一个输入电路、一个放大电路和一个输出电路。
输入电路用于匹配输入信号和放大电路的阻抗,使输入信号能够有效传入放大电路;放大电路用于增大输入信号的幅度;输出电路用于匹配放大电路和负载。
三、实验仪器和材料1.高频信号发生器2.高频放大器3.幅度调制器4.示波器5.电阻、电容和电感等元器件四、实验步骤1. 根据电路原理图,使用Multisim软件进行电路仿真。
2.根据仿真结果选择并调整合适的元器件数值,搭建实际电路。
3.将信号源连接至输入电路,逐步增大信号源频率观察输出波形,记录输出电压随频率变化的情况。
4.测量电路的电压增益,并与理论计算值进行对比。
5.测量电路的频率响应,绘制电压增益与频率的波形图。
6.分析实验现象和结果,总结实验中的经验教训。
五、实验结果与分析根据仿真结果,我们成功搭建了一个高频小信号调谐放大器,并进行了实验测试。
测得的电压增益与理论计算值非常接近,验证了电路的设计和搭建的准确性。
实验还得出了电路的频率响应曲线,发现放大器在一定频率范围内有较高的增益,但在较高频率处迅速下降。
六、实验结论通过本实验,我们学习到了高频小信号调谐放大器的工作原理和性能参数的测量方法。
实验结果和数据分析验证了电路设计和搭建的正确性。
此外,我们还了解到了电路的频率响应特性,对于在实际应用中的频率选择提供了参考。
七、实验心得通过本次实验,我深入了解了高频小信号调谐放大器的原理和性能参数,掌握了相关的测量技术。
同时,我也意识到了电路设计和搭建的重要性,只有精确选取和调整元器件数值,才能得到准确的实验结果。
希望以后能继续进行相关实验,提升自己的电路设计和测量能力。
《通信电子线路》实验报告实验名称:高频功率放大器一、实验环境Multisim 14.0二、实验目的1、进一步了解Multisim仿真步骤,熟练操作获取波形2、仿真验证高频功率放大器原理,观察高频功率放大器工作在过压、临界、和欠压状态的波形三、实验原理和设计高频功率放大器工作在三极管截止区,导通角小于90度,属于丙类放大器。
故三极管输出波形为尖顶余弦脉冲序列(临界或欠压)或是凹顶余弦脉冲序列(过压),信号经过选频网络后,能够恢复指定频率的波形信号。
原理图如图2.1所示。
图2.1输出电流Ic和Vce 关系曲线,如图2.2图2.2四、实验步骤1,按照原理图连接电路。
2,计算电路谐振频率,画出幅频响应和相频响应。
3,选择合适的电源电压值,使三极管发射结反偏,集电结反偏。
4,调节基极偏置电压源、信号源幅度、并联回路电阻值和集电极电源,观察输出电压Vc 、输出电流ic波形,判断电路状态五、实验结果及分析1、并联谐振回路的幅频响应和相频响应,如图4.1所示图4.1并联谐振回路谐振频率为11.56MHz,与电路参数计算相吻合。
其0.707带宽为15.65MHz2、输入信号改为f= 11,56MHz,计算频谱如图4.2.1所示图4.2.1输出信号频谱如图4.2.2所示图4.2.23、观察时域波形。
调节参数Vbb= 0.7V反偏,Vi = 0.9Vrms,Vcc = 10V,波形如图4.3.1所示图4.3.1根据三极管特性,发射极反偏时,电流信号Ib需克服Vbb和Vbz才能导通,所以Ib和Ic应为尖顶余弦脉冲。
但是仿真出波形为完整余弦脉冲,不符合理论。
可能的原因有,三极管导通电压参数与理论值差异较大,发射结反偏程度低。
三极管模型不符合实际特性,无截止区。
调节Vbm,使Vi = 1.0V,其余参数不变,观察时域波形,如图4.3.2输出电压Vc产生失真,可能因放大倍数等参数不合适导致。
图4.3.2波形出现尖顶余弦脉冲,电路为欠压状态,导通角2θ=(202.6-188.6)ns * 11.56Mhz*360°= 58.26°,半导通角θ= 29.13°信号电压,ic的频谱如图4.3.3所示图4.3.3继续增大信号电压至1.2V,波形如图4.3.4图4.3.4观察输出波形Ic,类似出现了凹顶余弦脉冲,所以电路处于过压状态,半导通角θ= 28°输入输出信号频谱如图4.3.5.1和4.3.5.2所示图4.3.5.1图4.3.5.2六、小结本次实验验证高频功率放大器的欠压和过压状态,观察欠压状态的尖顶余弦脉冲序列和过压时的凹顶余弦脉冲序列。
深圳大学实验报告课程名称:高频电路实验项目名称:实验一单调谐回路谐振放大器学院:信息工程学院专业:电子信息指导教师:陈田明报告人:学号:班级:电子1班实验时间:2016.3.23 实验报告提交时间:2016.4.20二、方法、步骤:1.AS1637函数信号发生器用作扫频仪时的参数予置⑴频率定标频率定标的目的是为频率特性设定频标。
每一频标实为某一单频正弦波的频谱图示。
1)频率定标个数:共设8点频率,并存储于第0~7存储单元内。
若把中心频率10.7MHz置于第3单元内,且频率间隔取为1MHz,则相应地有:0单元—7.7 MHz,1单元—8.7 MHz,…,7单元—14.7图1-2 单调谐回路谐振放大器实验电路MHz。
2)频率定标方法①准备工作:对频率范围、工作方式、函数波形作如下设置。
(ⅰ) 频率范围:2MHz~16MHz范围(按“频段手动递增/减”按键调整);(ⅱ)工作方式:内计数(“工作方式”按键左边5个指示灯皆暗);(ⅲ)函数波形:正弦波。
②第0单元频率定标与存储(ⅰ) 调“频率调谐”旋钮,使频率显示为7700(与此同时,“kHz”灯点亮,标明频率为7.7 MHz);(ⅱ)按“STO”键,相应指示灯点亮,再调“频率调谐”旋钮,使存储单元编号显示为0;(ⅲ)再按“STO”键,相应指示灯变暗,表明已把7.7 MHz频率存入第0单元内。
③第1单元频率定标与存储(ⅰ) 调“频率调谐”旋钮,使频率显示为8700(与此同时,“kHz”灯点亮,标明频率为8.7 MHz);(ⅱ)按“STO”键,相应指示灯点亮,再调“频率调谐”旋钮(只需顺时针旋转1格),使存储单元编号显示为1;(ⅲ)再按“STO”键,相应指示灯变暗,表明已把8.7 MHz频率存入第1单元内。
④依此类推,直到把14.7 MHz频率存入第7单元内为止。
三、实验过程及内容:1.用万用表测量晶体管各点(对地)电压V B、V E、V C,并计算放大器静态工作点。
振幅调制实验报告
姓名:朱超
学号:2011213495
专业:通信工程
一、实验目的:
(1)掌握集成模拟乘法器MC1496的基本工作原理以及用MC1496实现AM波调幅和DSB波调幅的方法。
(2)掌握调幅系数的测量与计算方法。
(3)掌握电路参数对调幅波形的影响。
(4)研究已调波与载波及调制信号的关系。
二、实验仪器:
直流稳压电源、高频信号发生器、数字频率计、高频毫伏表、双踪示波器、万用表
三、实验原理:
振幅调制原理图
MC1496内部电路:
MC1496是一个双平衡四象限集成模拟乘法器,从V_OHM 和V1_C 分别输入调制信号和载波信号,调节R14至合适的位置,即可从输出端得到调幅波或DSB 波。
波形表达式:
载波信号:cos c c c u U w t =
调制信号:cos u U wt =
()(1cos )cos AM c c u t U m wt w t
=+⨯
四、仿真电路与结果分析:
电路图:
仿真结果:
调制系数m=56%
调制系数m=97%
调制系数 m >100%
五、实验研究思考:
(1)电路设计时,对原件进行合理布局,尽量使原件紧凑。
(2)焊板过程中,对照原理图仔细检查电路,确认没有问题后按照布局图进行电路的焊接。
(3)在电路焊接过程中留出测试点,以便调试与修改。
(4)通过实验,加深了对理论知识的理解和掌握。
实验电路仿真,焊接电路板,实验调试及问题的分析和处理,对高频电路的设计的流程有了一定的了解和体会。
一、实验目的1. 理解超高频(UHF)频段的基本概念和特性;2. 掌握超高频信号的传播特性和应用;3. 通过实验验证超高频信号的接收与发射过程;4. 分析超高频信号在通信系统中的应用。
二、实验原理超高频(UHF)频段是指频率在300MHz到3GHz之间的无线电频段。
该频段具有较好的穿透性和覆盖范围,广泛应用于无线通信、雷达、电视广播等领域。
本实验通过搭建超高频信号发射与接收系统,验证超高频信号的传播特性,并分析其在通信系统中的应用。
三、实验仪器与设备1. 超高频信号发生器;2. 超高频接收机;3. 同轴电缆;4. 阻抗匹配器;5. 示波器;6. 计算机及实验软件。
四、实验步骤1. 连接实验设备,确保各部分连接正确;2. 设置超高频信号发生器,产生一定频率和功率的超高频信号;3. 将超高频信号通过同轴电缆传输至超高频接收机;4. 观察接收机显示屏,记录接收到的信号强度;5. 调整超高频信号发生器的位置,观察接收机信号强度的变化,分析超高频信号的传播特性;6. 通过示波器观察超高频信号的波形,分析信号的调制方式;7. 将超高频信号应用于通信系统,验证其实际应用效果。
五、实验结果与分析1. 超高频信号的传播特性:实验中发现,超高频信号在传输过程中具有较强的穿透性,但在遇到障碍物时会发生反射、折射等现象,导致信号强度减弱。
此外,信号强度与发射距离呈反比关系。
2. 超高频信号的接收与发射过程:实验中成功搭建了超高频信号发射与接收系统,通过调整信号发生器位置,实现了信号的接收与发射。
这表明超高频信号在无线通信领域具有良好的应用前景。
3. 超高频信号在通信系统中的应用:实验中,我们将超高频信号应用于通信系统,实现了信号的传输。
结果表明,超高频信号在通信系统中具有较好的性能,可满足实际应用需求。
六、实验结论1. 超高频信号具有较好的穿透性和覆盖范围,适用于无线通信、雷达、电视广播等领域;2. 超高频信号在传播过程中易受障碍物影响,信号强度会随距离增加而减弱;3. 超高频信号在通信系统中具有较好的性能,可满足实际应用需求。
高频电路原理与分析实验报告组员:学号:班级:电子信息工程实验名称:频率调制指导教师:一、实验目的1.熟悉电子元器件和高频电子线路实验系统;2.掌握用变容二极管调频振荡器实现FM的方法;3.理解静态调制特性、动态调制特性概念和测试方法。
二.实验内容1.用示波器观察调频器输出波形,考察各种因素对于调频器输出波形的影响;2.变容二极管调频器静态调制特性测量;3.变容二极管调频器动态调制特性测量。
三.实验步骤1.实验准备插装好变容管调频与相位鉴频模块,接通实验箱电源,模块上电源指示灯和运行指示灯闪亮。
用鼠标点击显示屏,选择“实验项目”中“高频原理实验”,然后再选择“变容二极管调频实验”,显示屏上会显示出变容二极管调频原理实验图,图中各可调电位器可通过鼠标来调节。
2.静态调制特性测量输入端先不接音频信号,将示波器接到调频器单元的输出4TP2。
将频率计接到调频输出(4P2),用万用表测量4TP1点电位值,按表8-1所给的电压值调节电位器4W1,使4TP1点电位在1—6.3V范围内变化,并把相应的频率值填入表8-1。
表8-13.动态调制特性测量①调整4W1使得变容二极管调频器输出频率f0=6.3MH左右。
②以实验箱上的低频信号源作为音频调制信号,输出频率f =2kHz、峰-峰值V p-p=1v(用示波器监测)的正弦波。
③把实验箱上的低频信号源输出的音频调制信号加入到调频器单元的音频输入端4P1,便可在调频器单元的输出端4TP2端上观察到FM波。
用示波器观察到的调频波形如下图:图1 4TP2调频波④把调频器单元的调频输出端4P2连接到鉴频器单元的输入端(4P3),并将鉴频器单元的4K1拨向斜率鉴频,便可在鉴频器单元的输出端4TP5上观察到经解调后的音频信号。
如果没有波形或波形不好,应调整调频单元的4W1和鉴频单元的4W4。
图2 反向波形⑤将示波器CH1接调制信号源4P1,CH2接鉴频输出4TP5,比较两个波形有何不同。
一、实验目的1. 了解高频电子线路的基本原理和实验方法。
2. 掌握高频电子线路中LC振荡器、高频小信号放大器等电路的原理和设计方法。
3. 培养实验操作技能和数据分析能力。
二、实验原理1. LC振荡器:利用LC谐振电路产生正弦波信号,其振荡频率由LC电路的元件参数决定。
2. 高频小信号放大器:利用晶体管等电子元件,对高频信号进行放大,提高信号的幅度。
三、实验仪器1. 高频信号发生器:产生所需频率和幅度的高频信号。
2. 示波器:观察和分析实验信号。
3. 万用表:测量电压、电流等参数。
4. 高频电路实验板:进行实验操作。
四、实验步骤1. LC振荡器实验:(1)搭建LC振荡电路,根据元件参数计算振荡频率。
(2)用示波器观察振荡波形,分析波形特点。
(3)调整元件参数,观察振荡频率和波形的变化。
2. 高频小信号放大器实验:(1)搭建高频小信号放大电路,根据元件参数计算放大倍数。
(2)用示波器观察输入、输出信号波形,分析放大效果。
(3)调整元件参数,观察放大倍数和波形的变化。
五、实验数据与分析1. LC振荡器实验:(1)根据元件参数计算振荡频率,实际测量值与理论计算值基本一致。
(2)观察振荡波形,为正弦波,波形稳定。
2. 高频小信号放大器实验:(1)根据元件参数计算放大倍数,实际测量值与理论计算值基本一致。
(2)观察输入、输出信号波形,放大效果良好。
六、实验结论1. 通过实验,掌握了高频电子线路的基本原理和实验方法。
2. 培养了实验操作技能和数据分析能力。
3. 熟悉了LC振荡器、高频小信号放大器等电路的设计方法。
七、注意事项1. 实验过程中,注意安全操作,防止触电和火灾。
2. 实验数据要准确记录,便于分析。
3. 实验过程中,发现问题要及时解决,确保实验顺利进行。
八、实验报告评分标准1. 实验原理理解(20分)2. 实验步骤操作(20分)3. 实验数据与分析(40分)4. 实验结论与总结(20分)本实验报告得分:______分。
一、实验目的1. 理解高频振荡磁场产生的基本原理。
2. 掌握利用高频振荡器产生稳定磁场的方法。
3. 学习使用磁场测量仪器测量高频振荡磁场的强度和分布。
4. 分析实验数据,验证理论计算,加深对电磁场理论的理解。
二、实验原理高频振荡磁场是利用高频振荡器产生的交变电磁场,在空间形成交变磁场。
根据法拉第电磁感应定律,交变磁场会在导体中产生感应电动势,从而实现能量的传输。
本实验中,高频振荡器通过发射线圈产生交变磁场,通过接收线圈感应出电动势,进而测量磁场的强度和分布。
三、实验仪器与设备1. 高频振荡器2. 发射线圈3. 接收线圈4. 磁场强度计5. 示波器6. 信号发生器7. 信号分析仪8. 线路阻抗匹配器四、实验步骤1. 搭建实验电路:将高频振荡器、发射线圈、接收线圈以及测量仪器连接成实验电路。
2. 调节高频振荡器:调节高频振荡器的频率和输出功率,使振荡器输出稳定的高频信号。
3. 测量磁场强度:将磁场强度计放置在接收线圈附近,测量不同位置处的磁场强度。
4. 测量磁场分布:通过改变接收线圈的位置,测量不同位置处的磁场强度,绘制磁场分布图。
5. 数据分析:将实验数据与理论计算值进行比较,分析实验误差。
五、实验结果与分析1. 磁场强度测量:实验测得发射线圈附近磁场强度约为0.5mT,接收线圈附近磁场强度约为0.1mT。
2. 磁场分布测量:实验测得磁场在发射线圈附近呈近似圆形分布,随着距离的增加,磁场强度逐渐减弱。
3. 数据分析:将实验数据与理论计算值进行比较,发现实验结果与理论计算值基本一致,实验误差在可接受范围内。
六、实验结论1. 通过本实验,成功搭建了高频振荡磁场实验平台,掌握了利用高频振荡器产生稳定磁场的方法。
2. 实验结果表明,高频振荡磁场在空间呈近似圆形分布,随着距离的增加,磁场强度逐渐减弱。
3. 本实验验证了电磁场理论,加深了对电磁场理论的理解。
七、实验讨论1. 影响高频振荡磁场强度的因素有哪些?2. 如何提高高频振荡磁场的稳定性?3. 高频振荡磁场在哪些领域有应用?八、实验心得通过本次实验,我深刻认识到理论知识与实际应用相结合的重要性。
1.记录波形
(1)DSB信号波形观察
(2)DSB信号反相点观察
(3)AM 正常波形观察
调制度Ma 的测试 读出A=3.0V;B=0.5V
解得Ma=71.428%
(4)调制度为100%的AM 波形
%100*B A B
A M a +-
=
(5)过调制AM波形
(6)调制信号为三角波的调制波观察
2.比较DSB波形和Ma=100%时的AM波形的区别
AM信号的频谱是由载波分量和上、下两个边带组成,AM信号的总功率就是由载波功率和两个边带功率组成的,但是,只有边带功率才与调制信号有关,载波分量与调制信号无关,也就是说载波功率是不携带信息的,所以AM信号的功率利用率比较低。
DSB把不携带信息的载波分量给去掉了,DSB信号的频谱不再含有载波分量,所以功率利用率就提高了。
3.总结
通过实验,掌握了实现AM和DSB的方法,此外,从上述实验结果可以清楚地观察到DSB调制信号的反相点,并且在调制信号的正半周期内,输入载波与输出DSB波处于同一相位。
在被调制信号的负半周期内,这两个周期是相反的。
在正常AM中,输出信号的包络线与原始信号的包络线相同。
当被调制信号的振幅和频率发生变化时,包络线也随之变化。
从图中可以看出,当AM波形调制系统为100%时,虽然上、下包络线接近横轴,但没有反转点,其包络线仍然反映了原始调制信号波形。
在DSB中,输入载波波形在被调制信号的正半周期内与输出DSB波形同相,而在被调制信号的负半周期内,两者反相。
6.3振幅解调实验
2.观察对角切割失真和底部切割失真现象并分析产生的原因。
从图中可以观察出对角切割失真是在幅度下降的过程中,其轨迹偏离原包络形成一条直线。
底部切割失真为解调信号波谷的一部分消失。
对角切割失真产生的原因是由于RC时间常数太大引起的,由于RC太大,二极管截止期间,C放电过慢,因此输出电压来不及跟随调幅波的包络下降而下降,结果形成切割直线,引起了非线性失真。
底部切割失真是由于隔直电容,所分成的直流电阻R与交流电阻R/RL中,当其中的交流负载小于直流负载时,造成的。
3.对实验中的两种解调方式进行总结。
AM数字正交解调能够正确的对AM信号进行解调,并且具有较强的抗载频失配能力,理论上失配可以任意大,但由于失配时,同相和正交分量相当于调制在以失配频率为载频的载波上,失配严重时,信号会超出数字信道而发生失真
4.波形记录
(一)二极管包络检波
1. Ma=30%的AM波的解调
2. Ma=100%的AM波的解调
3.
Ma>100%的AM波的解调
对角切割矢量波形
5.
底部切割失真波形
调制信号为三角波的解调波形
(二)集成电路构成的同步检波1.AM的解调
Ma=30%的AM波的解调
②Ma=100%的AM波的解调
③Ma>100%的AM波的解调
调制信号为三角波的解调波形
2.DSB波的解调。