基于微光与红外的夜视技术
- 格式:doc
- 大小:44.50 KB
- 文档页数:4
红外热成像仪在军事中的应用我们人眼能够感受到的可见光波长为:0.38—0.78微米。
通常我们将比0.78微米长的电磁波,称为红外线。
自然界中,一切物体都会辐射红外线,因此利用探测器测定目标本身和背景之间的红外线差,可以得到不同的红外图像,称为热图像。
自然界所有温度在绝对零度(-273℃)以上的物体都会发出红外线,红外线(或称热辐射)是自然界中存在最为广泛的辐射。
大气、烟云等吸收可见光和近红外线,但是对3~5微米和8~14微米的红外线却是透明的。
因此,这两个波段被称为红外线的“大气窗口”。
我们利用这两个窗口,可以在完全无光的夜晚,或是在烟云密布的恶劣环境,能够清晰地观察到前方的情况。
正是由于这个特点,红外热成像技术可用在安全防范的夜间监视和森林防火监控系统中。
同一目标的热图像和可见光图像是不同,它不是人眼所能看到的可见光图像,而是目标表面温度分布图像,或者说,红外热图像是人眼不能直接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布的热图像。
用红外热成像技术,探测目标物体的红外辐射,并通过光电转换、信号处理等手段,将目标物体的温度分布图像转换成视频图像的设备,我们称为红外热成像仪。
随着光电信息、微电子、网络通信、数字视频、多媒体技术及传感技术的发展,安防监控技术已由传统的模拟走向高度集成的数字化、智能化、网络化。
随着军用的需求的增加,现代高新技术几乎在军队系统中都有应用或即将应用。
现代传感技术中发展迅速的红外热成像技术在军内系统中也开始得到了应用。
红外热成像我们人眼能够感受到的可见光波长为:0.38—0.78微米。
通常我们将比0.78微米长的电磁波,称为红外线。
自然界中,一切物体都会辐射红外线,因此利用探测器测定目标本身和背景之间的红外线差,可以得到不同的红外图像,称为热图像。
同一目标的热图像和可见光图像是不同,它不是人眼所能看到的可见光图像,而是目标表面温度分布图像,或者说,红外热图像是人眼不能直接看到目标的表面温度分布,变成人眼可以看到的代表目标表面温度分布的热图像。
夜视仪相关知识夜视仪原理、夜视仪白天可以看吗?红外成像仪器分类夜视仪使用寿命关于微光夜视仪一、什么是夜视仪?一提到夜视的很多人都会问有没有夜视望远镜,夜视眼镜,红外望远镜,其实望远镜跟就没有什么夜视的,红外的,这些指的都是夜视仪,望远镜和夜视仪的原理是不一样的,它只能在白天和有光线的条件下使用,而夜视仪以像增强器为核心器件的夜间外瞄准具,其工作时不用红外探照灯照明目标,而利用微弱光照下目标所反射光线通过像增强器在荧光屏上增强为人眼可感受的可见图像来观察和瞄准目标。
红外夜视仪是利用光电转换技术的军用夜视仪器。
它分为主动式和被动式两种:前者用红外探照灯照射目标,接收反射的红外辐射形成图像;后者不发射红外线,依靠目标自身的红外辐射形成“热图像”,故又称为”热像仪”。
二、视仪白天可以看吗?经常会有顾客问这么一个问题,夜视仪白天可以看吗?如果不可以的话,那我们怎样试验效果?因为本公司晚上不营业,所以顾客很担心万一买回去产品再不管用怎么办。
这里要告诉大家一个夜视仪本身是不可以在白天工作的,除非yukon 5X42除外别的在白天可以看,但并不是市面上所说的昼夜兼用的,而5X42就算白天可以看,但效果也是很差的,适用价值不是很高(白天的话)。
不过最近新推出了一种夜视仪,统称全天候数码夜视仪,这个在晚上和白天都可以看,它里面是数码CCD管,它内置拍照和录像功能,只需要迷你SIM卡,像我们一般的手机内存卡也可以。
但向其他以像增强器为核心器件的夜视仪,如果想要白天试验效果的话,可以盖上盖子看下,因为盖子上大部分都会有个针眼或者是一个厚厚的和太阳眼镜似的片子,可以直接盖上测试下,因为有盖子的原因,视野会比晚上要小一些。
这样可以模拟晚上的效果,购买的时候你可以看下,心里有个大概即可。
三、外成像仪器分类能够将物体红外辐射(即热辐射)分布转换成人眼可见的图象,并能进行检测的仪器统称为红外热像仪。
红外成像仪器可应用于民用、工业、医疗等各个领域。
微光夜视技术的发展现状及民用领域拓展作者:李金平,王云,张洋来源:《中国军转民》 2016年第10期李金平王云张洋微光夜视技术是现代军用光电子高新技术之一,在局部战争和夜战中的地位和作用更加突出和重要。
六十多年来,伴随着科学技术的迅速发展和武器装备现代化需求的牵引,微光夜视技术取得了长足的发展。
本文在系统回顾微光夜视技术发展历程的基础上,分析了微光夜视技术未来的主要发展方向以及在民用领域的应用前景。
1. 引言随着科学技术的迅速发展,现代战争早已突破人类视觉的限制。
夜间战争已成为拥有先进夜视技术的一方迅速取得对战胜利的决定性因素。
作为夜视技术的两大关键支撑技术之一,微光夜视技术是研究夜间微弱照度条件下对目标进行探测、观察、识别、定位、记录的一类高新技术,具有体积小、重量轻、图像清晰、隐蔽性强等特点,是目前夜战武器装备中使用最广泛的技术。
自上世纪50 年代开始,微光夜视技术取得了巨大的进展,从零代发展到三代、四代产品,已形成多个品种规格的系列化、批量化配套。
在科学技术日新月异的今天,新材料、新技术、新工艺的层出不穷,为微光夜视技术的发展带来了机遇和挑战。
微光夜视技术在下一阶段将如何发展,成为微光夜视技术行业共同关注的热点话题。
本文在深入回顾、分析国内外微光夜视技术发展历程的基础上,分析了微光夜视技术未来主要的技术发展方向及潜在的应用领域拓展。
2. 微光夜视技术的发展历程微光夜视技术包括了微光夜视仪的总体技术和微光夜视器件的设计和工艺研究等方面内容,其核心是微光像增强器(微光像管)的研究。
一般来讲,微光像增强器的发展历程就代表了微光夜视技术的发展历程。
从五十年代第一个微光像增强器的研发开始,可以根据其特征技术分为零代、一代、二代(超二代)、三代(高性能三代)、四代等不同阶段。
2.1 零代微光夜视技术上世纪40、50 年代最早出现的像管以Ag-O-Cs 光阴极、电子聚焦系统和阳极荧光屏构成静电聚焦二极管为特征技术的像管被称为“零代变像管”。
红外夜视仪原理
红外夜视仪的原理是利用红外光的特性来实现在黑暗环境下观察目标物体的能力。
红外光是一种波长较长的电磁辐射,位于可见光谱的波长范围之外。
红外光具有高穿透力和强烈的热辐射,因此可用于夜间观察。
红外夜视仪由三个基本部分组成:红外光源、光电转换器和显像装置。
红外光源是红外夜视仪的关键部分,它发射红外光以照亮目标物体。
目标物体吸收红外光后会发生热辐射,这种辐射可以通过光电转换器来转化为电信号。
光电转换器的主要功能是将红外光转化为电信号。
它包括红外感应器和光电倍增管。
红外感应器能够将吸收到的红外光转化为微弱的电流信号,而光电倍增管则能将微弱的电流信号放大。
通过这样的转换和增强,使得红外光能够被更好地观察和辨认。
显像装置是红外夜视仪的最后一部分,它的主要功能是将电信号转化为可视的图像。
显像装置通常采用微光增强器和显示屏。
微光增强器能够进一步增强电信号,并将其转化为可见的光信号,而显示屏则能将光信号显示为图像,供观察者观看。
总的来说,红外夜视仪通过利用红外光的特性,并通过红外光源、光电转换器和显像装置的作用,实现了在黑暗环境下观察
目标物体的能力。
这种原理使得红外夜视仪在军事、安防和夜间观测等领域具有广泛的应用。
夜视仪作为一个专业的光电设备,在购买前,很多人都是一头雾水。
下文将介绍夜视仪的一些相关入门知识,相信对对大家选购夜视仪会有一定的帮助:1. 夜视仪的发展历史20世纪30年代荷兰的霍尔斯特等人成功的研制出世界上地一只近贴式红外变像管,它的出现标志着夜视技术的诞生,借助于夜视仪器,人类从此可以在黑暗环境中观察目标。
简单的说夜视技术就是借助于光电成像器件实现低照度条件下观察的光电技术。
夜视技术基本上可分为红外和微光两个方面,主动式红外夜视仪造价较低,成像清晰,对比度好,使用时受环境照明条件影响小,但由于需要红外光源照射,用于军事上,有容易被敌方侦测仪器发现的缺点。
微光夜视仪和主动红外夜视仪相比,具有体积小,重量轻,且由于工作方式是被动的,使得安全性大为提高,不容易暴露。
但微光夜视仪的缺点也是显而易见的,其作用距离和观察效果受环境影条件响很大,雨雾天不能够正常工作,在完全黑暗的环境中(如山洞)则完全失效。
但随着技术的不断进步和发展,如今的微光夜视技术已大为提高,现在让我们一起来追溯微光夜视仪器发展的基本脉络。
夜视仪的发展历史就是现代军事的发展历史,主导夜视仪的发展,主要是美国军方。
从1960年开始美国军方就与现在全球两大夜视仪厂商ORPHA和ITT合作,研发从一代到目前为止的四代夜视仪。
现在民用的夜视仪,很多都是从美军夜视仪转变而来,比如非常知名的ORPHA TRACER560,G350+,ONV2+ 以及ITT 的SPOT450,SLIM450都是曾经在美国军方或者北约军方大量服役的优秀机型。
2. 什么时候会用到夜视仪产品?---休闲娱乐时使用,例如野营,旅行,捕鱼,划船,或自然观测用。
其它用途包括监视,搜索和救援,和保安等用途。
3. 为什么夜视仪用久后眼睛会难受?夜视仪是图像亮度增强设备,所以一旦设计不好,就会导致眼睛非常难受。
目前很多品牌在设计时没有投入成本,一味增大图像对比度,导致很多低端的夜视仪,人用一分种就会出现流泪的情况。
红外夜视仪种类繁多,但基本上由光学系统、变像管或微光管、电源及供电系统等组成。
当然,主动红外夜视仪还要配装红外探照灯,其中变像管或微光管是夜视仪的“心脏”。
变像管可以把不可见的红外图像转变为可见的图像,微光管则可以把微弱的光增强几万倍甚至十几万倍,使人眼可以觉察到。
红外夜视仪怕强光,是因为变像管和微光管怕强光。
以变像管为例,当红外光照射到变像管的光电阴极上时,光电阴极发射电子,电子在高压场(16~21千伏)和电子透镜作用下,加速射向荧光屏,使荧光屏显示出可见的目标图像。
变像管接收的光信号多,发射电子就多,荧光屏发出的光信号就强,看到的图像也就亮。
它们基本成正比。
但若外界光线太强,光电阴极发射的电子多到一定的程度就不增加了,即出现饱和,就会看不清目标。
若过强的光突然射过来,还可能使管子的光电阴极烧坏,而不能发射电子,当然什么也看不见了。
虽然红外夜视仪采取了一定的防强光措施,但其作用是有限度的,因此使用时应该严格按规定操作。
遇到强光或白天校靶时,要把物镜罩戴上或关掉电源开关。
正确使用红外夜视仪,可以延长其使用寿命和避免不必要的损坏,从而充分发挥红外夜视仪的作用。
夜视仪使用说明:1.夜视仪是用于在夜间和微光下观察目标的精密光电子仪器。
为满足在极低照度下工作,夜视仪配有红外线发射器。
2.夜视仪在没有保护盖时禁止白天开启。
在有光照的屋子里检查夜视仪工作性能时,应该在夜视仪带镜盖时进行,且不超过3分钟.并且夜视仪不应对着强光源,强光进入夜视仪内部有可能将其损坏或消少夜视仪的使用寿命。
用带有镜盖的夜视仪观察物体时也应避免强闪光。
当强光进入夜视仪时其能见度会下降甚至消失。
此时,应立即将夜视仪从强光源处拿走。
过1-2分钟后,夜视仪功能会恢复。
特别强的光源会导致夜视仪损坏(如白天持续十秒)。
3.夜视仪允许1分钟以内的强闪光和闪烁,视场观察到的光斑不是夜视仪的缺陷,而是外部光源闪烁引起的。
夜视仪在标准方式工作时不会出现光斑,夜视仪视场存在少量的黑点和亮点不是其质量缺陷,而是符合夜视仪的质量标准。
突破!中国成功研制三代半夜视仪,涉及8⼤核⼼关键技术9⽉1⽇《国家国防科技⼯业局》⽹站,报道称,⾼性能微光像增强关键技术取得重⼤突破,夜视研究院集团完成了NVT-7微光像增强器的光电性能测试,光电阴极灵敏度获得了⼤幅度的提升,创造了国产微光像增强核⼼技术的最⾼纪录。
什么是微光像呢?微光像指的是微光夜视仪的核⼼部件,⽤于提⾼夜视系统的成像质量,简⽽⾔之,中国的微光夜视仪越来越厉害了,要知道微光夜视仪对于军事战⼒增强是有着很⼤影响的,并且在现代战争当中,微光夜视仪也有着⾮常多的应⽤,所以微光夜视仪的突破,也将影响我国军事战⼒提⾼档次。
微光夜视仪的微光指的是夜晚的微弱光,⽽通过微光夜视仪,就可以将夜晚的微弱光放⼤,这样带上微光夜视仪,也能有效的进⾏观察,不⽤像我们普通⼈⼀样,到了晚上⼀抹⿊。
⽽能实现放⼤微弱光这⼀条件,微光像增强器就是最关键的东西,⽽NVT-7的微光像增强器采⽤了新型的光电阴极组件,使得灵敏度成倍提⾼,近红外谱段响应特性显著提升,最终影响夜间探测能⼒⼤幅度提⾼。
原本因为视场内存在强光源的原因,微光像增强器会出现强烈的“光晕”现象,⽽此次微光像增强器的突破还能够显著的抑制光晕问题,这就让新型微光像增强器更能够提⾼环境适应性。
这项核⼼技术,其实在去年就已经⽴项,其中涉及到了8⼤核⼼关键技术,26道新增⼯艺,在这么短的时间内,就取得了这么重⼤的突破,可以想象项⽬组的艰⾟,但是正是因为有了他们,才让我国有了⽀撑微光像增强器技术跨越式的发展。
夜战原本就是我国的强项之⼀,所以对于这么⼀个夜战必备的装备,我们⾃然不能落后他国许多,其实我国已经⼴泛装备了夜视仪,⽐如单兵携带的夜视眼睛,头盔瞄准具都有应⽤此类技术,有效的增强战⼠们在夜间的探索、侦查、追踪的能⼒。
⽽此次突破,可以说将之前微光夜视仪所遇到的问题得到改善,还将适应⽉星光、沙漠丛林、海上天空等地区,进⼀步增强了我⽅战⼒。
好了今天就为⼤家介绍到这⾥,我们下⼀期再见!。
微光夜视仪是在夜间或极低照度下,将微弱的光线通过大相对孔径的光学镜头和高增益的微光像增强器转变成人眼可清晰观察的图像,从而实现夜间观察的一种军民两用高科技仪器。
像增强器是微光夜视仪的核心器件,超二代(2+)、三代像增强器是目前国际上夜视技术领域的最新成果。
与红外热像仪等其他夜视设备相比,微光夜视仪具有体积小、重量轻、可靠性高、成本低等优点,是目前各国军民两用夜视设备中应用最多最普遍的品种。
微光夜视产品品种繁多,目前国际上一般按用途分为观察仪、瞄准具、驾驶仪、夜视眼镜、微光电视等几大类。
在军事领域和民间的夜间侦察、识别、跟踪等方面有着广泛的应用。
微光夜视技术是二战后兴起的高新技术,其关键器件微光像增强器一直被发达国家作为核心机密封锁。
受条件限制,我国微光夜视产品自主研发起步较晚,进展缓慢,直到上世纪80年代,原五机部云南光学仪器厂(中国兵器工业集团云南北方光电仪器有限公司)引进的中国第一条微光像增强器生产线建设成功,我国微光夜视事业发展才真正拉开帷幕。
经过近20年的迅猛发展,微光像增强器从一代、二代发展到超二代,微光夜视器材也实现了系列化、通用化。
中国兵器工业集团云南北方光电仪器公司研制生产的WYJ二代微光眼镜就是其中一颗璀璨的明珠。
WYJ二代微光眼镜方案先进、设计成熟,主要用作夜间观察、夜间驾驶、夜间维修和在自带红外光源辅助下进行阅读;与红外瞄准指示器配合,用作单兵轻武器夜间射击瞄准。
产品由观察镜主体、面罩和外接电池盒组成,观察镜主体是主要工作部分,面罩用于观察镜主体与人体面部的固定,外接电池盒用作备用电源。
观察镜主体由目镜组、辅助光源、开关手轮、物镜组、物镜护盖、像增强器和电池盒组成。
该产品既吸收了国外同类产品的优点,又结合我国具体情况进行了大胆的改进,采用了很多先进的设计思路和成熟经验,具有结构紧凑、布局合理、体积小、重量轻、维修性好、环境适应性强,具备较好的抗强光能力等特点。
由于只用了一个物镜和一个像增强器,较大地降低了全寿命成本。
微光夜视的原理和应用1. 原理介绍微光夜视技术是一种可以在极暗环境下获取图像并增强亮度的技术。
它基于光电转换原理,通过将微弱的光信号转换成可见的图像,以实现夜间观察。
1.1 光电转换原理光电转换原理是微光夜视技术的基础。
光电转换器件(如光电二极管或光电倍增管)能够将入射的光子转换成电子信号,然后经过放大和处理,形成可见的图像。
这种技术的原理是利用光的能量将光子产生的电子能量转换成图像,从而实现夜间观察。
1.2 光增强原理微光夜视技术还依赖于光增强原理。
光增强器是微光夜视设备的核心部件,它能够将微弱的光信号放大数千倍,从而使原本难以察觉的光线变得清晰可见。
光增强原理通过多次放大光的能量,从而让人眼能够观察到本来较为微弱的光线。
2. 应用领域微光夜视技术在各个领域都有着广泛的应用,以下是一些典型的应用领域。
2.1 安全防护微光夜视技术在安全防护领域起到了重要的作用。
例如,安防摄像头和监控系统经常使用微光夜视技术,能够实时获取夜间的图像并进行处理,提供给安全人员使用。
此外,微光夜视设备还可以用于夜间巡逻、边境防卫等领域,为保障国家和地区的安全作出贡献。
2.2 军事应用微光夜视技术在军事应用中得到了广泛的应用。
例如,在夜间作战中,士兵可以使用微光夜视设备观察敌方动向,提高作战效率和安全性。
此外,微光夜视技术还可以应用于侦察、监视、目标锁定等军事操作,为军队提供准确的信息和战场优势。
2.3 野生动物观察微光夜视技术在野生动物观察领域也有广泛的应用。
通过微光夜视设备,观察者可以更清晰地观察夜间活动的动物,获取它们的行为习性和习惯。
这对于野生动物保护以及生态研究具有重要的意义,帮助科学家更好地了解动物的生态环境和习性。
2.4 搜索与救援微光夜视技术在搜索与救援领域有着重要的应用。
在夜间或黑暗环境下,人们可以使用微光夜视设备来搜索和救援受困或失踪的人员。
微光夜视技术能够帮助搜救人员更快、更准确地找到目标,提高搜索和救援行动的效率和成功率。
红外夜视仪原理及基本知识介绍1. 夜视仪的原理及用途通俗讲:将来自目标的人眼看不见的光(微光或红外光)信号转换成为电信号,然后再把电信号放大,并把电信号转换成人眼可见的光信号。
专业讲:夜视产品通过目镜将光线聚焦在影象增强器上来采集和增强现有光线,在增强器内部,一个光电阴极会被光“激活”,并将光子能量转变成电子,这些电子经过一个位于增强器内部的静电区域被加速后,撞击在磷表面屏幕上(就好象一个绿色的电视屏幕),形成人眼可见的图象。
经过对电子的加速,增强了亮度和图象的清晰度用途:适用于军队,海关、边防、治安守卫的夜间巡逻,侦破取证。
银行、金库文物重要物资仓库的夜间监控。
海底资源的夜间探查,海上石油平台水下部分监控,远洋捕鱼,夜视仪器都重要的工具。
卫星遥感遥测,天文星系弱星的的夜间观察。
记录植物夜间的生长规律研究,以及夜行动物的生活习性研究。
现在,夜视仪器的使用范围已经越来越广泛。
2.为什么夜视仪的成像是绿色的而不是呈红色的红外光谱?绝对0 度以上的物体都要辐射能量。
温度越低,波长越长。
一般室温时,为红外线。
当温度为800度左右,辐射为可见光,就是为什么铁烧红了你能看到亮光。
红外线我们是看不见的,晚上了,没有可见光,但是仍在辐射红外线,人和周围的树木的温度不同,辐射的红外线波长也不同。
夜视仪的原理是将我们肉眼看不红外线转化成为可见光。
因为辐射的红外线很弱,所以转化成的可见光也很弱。
图像呈绿色是因为我们的眼睛对绿光感光性最敏感,而且容易疲劳,这些都是使我们对弱光看得更清楚些。
而且红光和绿光的区别就是波长不一样而已,很容易转变的。
夜间模糊的图象→光电阴极(把光子转化为电子)→微通道板(通过高压使电子数量增加)→荧光屏(电子撞击一个具有磷光质涂层的屏幕)所以夜视仪看到的景象大多是绿色的3.夜视仪图像增强管的介绍(没找到解说,根据自己的理解写了一段。
这个理科生比较容易懂,知道就行,不需要理解,中间涉及的知识属于物理专业,不是我们特别关注的领域)这些短管时,更多的电子被释放。
微光夜视原理
微光夜视技术是一种利用微弱光线进行观察的技术,它在夜间或光线较暗的环
境下能够提供清晰的图像。
微光夜视技术的原理是利用光电转换效应将微弱的光信号转换成电信号,再经过放大和处理,最终呈现在显示器上。
本文将介绍微光夜视技术的原理及其应用。
微光夜视技术的原理主要包括光电转换、信号放大和图像显示三个部分。
首先,当微弱的光线射入光电转换器件时,光子激发了光敏元件中的电子,产生电荷。
然后,这些电荷被收集并转换成电信号,经过放大和处理后,形成清晰的图像,最终显示在屏幕上。
微光夜视技术在军事、安防、航空航天等领域有着广泛的应用。
在军事领域,
微光夜视技术可以帮助士兵在夜间进行侦察、监视和作战,提高作战效率和生存能力。
在安防领域,微光夜视技术可以用于监控系统,提高夜间监控的效果。
在航空航天领域,微光夜视技术可以帮助飞行员在夜间进行飞行和导航,提高飞行安全性。
除了以上领域,微光夜视技术还被广泛应用于消费类电子产品中,如夜视望远镜、夜视相机等。
这些产品在夜间观赏、拍摄等方面有着重要的作用,为人们的生活和娱乐提供了便利。
总的来说,微光夜视技术通过光电转换、信号放大和图像显示等步骤,能够将
微弱的光信号转换成清晰的图像,具有广泛的应用前景。
随着科技的不断进步,相信微光夜视技术会在更多领域得到应用,为人们的生活和工作带来更多便利和安全保障。
微光夜视技术是现代军用光电子高新技术之一,在局部战争和夜战中的地位和作用更加突出和重要。
六十多年来,伴随着科学技术的迅速发展和武器装备现代化需求的牵引,微光夜视技术取得了长足的发展。
本文在系统回顾微光夜视技术发展历程的基础上,分析了微光夜视技术未来的主要发展方向以及在民用领域的应用前景。
微光夜视技术的发展现状及民用领域拓展■ 李金平 王 云 张 洋1.引言随着科学技术的迅速发展,现代战争早已突破人类视觉的限制。
夜间战争已成为拥有先进夜视技术的一方迅速取得对战胜利的决定性因素。
作为夜视技术的两大关键支撑技术之一,微光夜视技术是研究夜间微弱照度条件下对目标进行探测、观察、识别、定位、记录的一类高新技术,具有体积小、重量轻、图像清晰、隐蔽性强等特点,是目前夜战武器装备中使用最广泛的技术。
自上世纪50年代开始,微光夜视技术取得了巨大的进展,从零代发展到三代、四代产品,已形成多个品种规格的系列化、批量化配套。
在科学技术日新月异的今天,新材料、新技术、新工艺的层出不穷,为微光夜视技术的发展带来了机遇和挑战。
微光夜视技术在下一阶段将如何发展,成为微光夜视技术行业共同关注的热点话题。
本文在深入回顾、分析国内外微光夜视技术发展历程的基础上,分析了微光夜视技术未来主要的技术发展方向及潜在的应用领域拓展。
2.微光夜视技术的发展历程微光夜视技术包括了微光夜视仪的总体技术和微光夜视器件的设计和工艺研究等方面内容,其核心是微光像增强器(微光像管)的研究。
一般来讲,微光像增强器的发展历程就代表了微光夜视技术的发展历程。
从五十年代第一个微光像增强器的研发开始,可以根据其特征技术分为零代、一代、二代(超二代)、三代(高性能三代)、四代等不同阶段。
2.1 零代微光夜视技术上世纪40、50年代最早出现的像管以Ag-O-Cs光阴极、电子聚焦系统和阳极荧光屏构成静电聚焦二极管为特征技术的像管被称为“零代变像管”。
其阴极灵敏度典型值为60μA/m,将来自主动红外照明器的反射信号转变为光电子,电子在16kV的静电场下聚焦,能产生较高的分辨力(57lp/mm~71p/mm),但体积、重量比较大、增益很低。
车辆辅助系统—红外夜视系统1 项目背景随着汽车车速的不断提高,汽车交通事故经常发生,特别是在夜间、下雨、下雪、有雾等能见度低的天气下行驶,更是造成交通事故频发的主要原因。
据美国国家公路交通安全管理据统计,虽然夜间行车在整个公路交通中只占四分之一,但有55%的交通事故却是在夜间发生的。
当汽车以时速100千米行驶时,如果遇到突发事件需要紧急刹车,汽车大约需要滑行110米才能完全停下来。
然而,在夜间汽车远光灯的照射范围只有50米,以这样的速度,司机无法对此做出及时地反应。
作为业界安全技术的领跑者,奔驰和宝马两大公司分别在2005年法兰克福国际汽车展和2006年北美国际车展上,宣布将夜视技术应用于2006年新款高档车上——奔驰S 级和宝马7系。
夜视系统采用红外线传感器可以使司机视野扩大3~4倍,能帮助他们迅速辨别出这一范围内的事物。
因为通过夜视系统看到的行人会比路面和树木更明亮,所以司机能够立即注意到行人。
通用汽车公司也曾对驾驶员进行了问卷调查,对于汽车上的三四十种电子装置,让他们依据自己的喜好程度的打分,调查结果表明,绝大多数驾驶员对汽车夜视系统情有独钟,希望他们的汽车上能装有这项设备。
究其原因是因为像安全气囊和ABS只有在汽车发生紧急情况下才能起作用,而夜视系统属于主动安全设备,能够提早防患于未然,大大提高汽车在特殊天气行驶的安全性,因此,越来越多的汽车厂家开始开发车载夜视系统。
图一车载夜视系统2红外热成像技术的产生及原理1660年英国科学家牛顿(Sir Isaace Newton)通过三棱镜实验发现,自然光可以被分解为不同的色光,其中三棱镜后,红光偏转最大,紫光偏转最小,日后我们知道,这是由于不同色光波长不同所致。
这成为了人类研究光谱问题的起点。
随后,在1800年英国科学家赫胥黎(Sir William Herschel)在研究光辐射能量问题的时候发现,用不同的色光照色同样的物体,被红光照射的最热,被蓝光照射的最冷;同时他还发现在红光之外,还存在一种辐射,会使物体更热,于是将其称之为红外(infrared)。
技术能让人类获得“夜视”能力?作者:文泽波来源:《大众科学》2019年第10期要想在夜晚的時候也能看得清楚物体有两种方法,一是在夜晚制造人类可见光,另一种是改变人类眼球可见光谱的范围。
目前人类多用第一种方法,因为简单容易。
那么对于后一种改变人类眼球可见光谱范围这事儿,科技上有什么研究呢?10月中,《科技日报》报道:中国科学技术大学生命科学与医学部薛天研究组与美国马萨诸塞州州立大学医学院韩纲研究组合作,结合视觉神经生物医学与创新纳米技术,首次实现了动物裸眼红外光感知和红外图像视觉。
也就是说,人类在探索夜视能力方面,取得了很大的进步。
自然界中电磁波波谱范围很广,以波长划分由短至长包括γ射线、X射线、UV光、可见光、红外线、微波、无线电波等。
能被我们眼睛感受的可见光只占电磁波谱里很小的一部分,这是由视网膜感光细胞中的感光蛋白所固有的理化特性所决定的。
为了获取超过可见光谱范围的信息,人类发明了以光电转换和光电倍增技术为基础的红外夜视仪。
但它有诸多缺陷:笨重、强光过曝、同可见光环境不兼容等。
为了解决这一问题并发展裸眼无源红外视觉拓展技术,从事视觉研究多年的薛天注意到韩纲研究组的一种转换纳米材料,这种材料就能够把近红外光转换成可见光线——绿光。
研究人员利用特殊的方法,将该纳米材料可以与感光细胞膜表面特异糖基分子紧密连接,从而牢牢地贴附在感光细胞表面。
这种视网膜感光细胞特异结合的上转换纳米颗粒,被命名为pbUCNPs。
为了证明pbUCNPs的作用,科研人员将含有纳米颗粒的液体注射到小鼠眼睛中,并进行了多种视觉神经生理实验。
最后证明了小鼠的光感受器细胞被近红外光激活,产生的信号通过视神经传递到小鼠大脑视觉皮质,小鼠具有了感知红外线的能力。
薛天表示:“这项研究突破了传统近红外仪的局限,并发展出裸眼无源红外视觉拓展技术,证明了人类拥有超级视觉能力的可能。
”目前,夜视技术主要利用红外热成像和微光增强两种技术手段,把人眼看不见或极其微弱的光信号转换成电信号,之后通过把电信号放大,最终转换成人眼可见的光信号。
微光夜视系统的光学系统
v 夜视成像物镜
v 目镜
夜视成像系统的光学系统
夜视成像系统的光学系统——物镜
v夜视系统对成像物镜的基本要求
v光电成像系统用物镜的分类
夜视系统对成像物镜的基本要求
Ø
大的通光口径和相对孔径。
Ø
小的渐晕。
Ø
宽光谱范围的色差校正。
Ø
物镜有好的调制传递特性。
Ø
最大限度地消除杂散光。
Ø
在红外光学系统中,必须同时考虑聚光系统和扫描系统。
Ø尽可能减小被动红外系统中冷反射所产生的图像缺陷。
''D D E L f f πτ⎡⎤⎛⎫⎛⎫⎢⎥=+ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦22011144
Ø折射系统:Ø反射系统:Ø
折反系统:
夜视成像系统的光学系统——物镜
a) 双高斯型物镜 b)匹兹伐型物镜
改进的双高斯型 改进的匹兹伐型
折射系统:易校正像差,可获得较大视场,结构简单,装调方便。
由于红外材料价格昂贵(Ge,Si单晶),折射比高而反射损失大,在满足需要条件下应尽可能减少透镜片数。
在像质要求不高的辐射计中多用单片折射透镜。
为了减小单透镜的球差和色差,也做成组合透镜。
基于微光与红外的夜视技术 Time:2010-01-07 14:21:00 Author: Source: 分享到:
作者:武警工程学院 李才平,邹永星
1 引言 始 于20世纪60年代的微光夜视技术靠夜里自然光照明景物,以被动方式工作,自身隐蔽性好,在军事、安全、交通等领域得到广泛的应用。近年来,微光夜视技术得到迅速发展,在第一代、第二代、第三代的基础上,第四代技术应运而生。始于20世纪50年代的红外热成像技术也走过了三代的历程,它以接收景物自身各部分辐射的红外线来进行探测,与微光成像技术相比,具有穿透烟尘能力强、可识别伪目标、可昼夜工作等特点。可以说,微光成像技术和红外热成像技术已经成为夜视技术的二大砥柱。
2 微光夜视技术及其发展 2.1 第一代微光夜视技术 20世纪60年代初,在多碱光阴极 (Sb-Na-K-Cs)、光学纤维面板的发明和同心球电子光学系统设计理论的完善的基础上,将这三大技术工程化,研制成第一代微光管。其一级单管可实现约50倍亮度增益,通过三级级联,增益可达5x104~105倍。第一代微光夜视技术属于被动观察方式,其特点是隐蔽性好、体积小、重量小、成品率高,便 于大批量生产;技术上兼顾并解决了光学系统的平像场与同心球电子光学系统要求有球面物(像)面之间的矛盾,成像质量明显提高。其缺点是怕强光,有晕光现 象。
2.2 第二代微光夜视技术 第二代微光夜视器件的主要特色是微通道板电子倍增器(MCP)的发明并将 其引入单级微光管中。装有1个MCP的一级微光管可达到104—105亮度增益,从而替代了原有的体积大、笨重的三级级联第一代微光管;同时,MCP微通 道板内壁实际上是具有固定板电阻的连续打拿级,因此,在恒定工作电压下,有强电流输入时,有恒定输出电流的自饱和效应,此效应正好克服了微光管的晕光现象;加之它的体积更小、重量更轻,所以,第二代微光夜视仪是目前国内微光夜视装备的主体。
2.3 第三代微光夜视技术 第 三代微光夜视器件的主要特色是将透射式GaAs光阴极和带Al2O3,离子壁垒膜的MCP引入近贴微光管中。与第二代微光器件相比,第三代微光器件的灵敏 度增加了4倍-8倍,达到800μA/Im~2600μA/Im,寿命延长了3倍,对夜天光光谱利用率显著提高,在漆黑(10-4lx)夜晚的目标视距延 伸了50%-100%。第三代微光器件的工艺基础是超高真空、NEA表面激活,双近贴、双铟封、表面物理、表面化学和长寿命、高增益MCP技术等,又为发 展第四代微光管和长波红外光阴极像增强器等高技术产品创造了良好的条件。
图1所示是用三代微光夜视仪在同样条件下分别获取的图像,从图中可明显看出第三代要优于第二代,而第二代又远远优于第一代。 2.4 微光夜视技术的发展趋势 微光夜视器件的研究方向是致力于提高已有的几代产品的性能,降低成本,扩大装备;进一步延伸新一代产品的红外响应和提高器件的灵敏度。
2.4.1 超二代微光夜视技术 超 二代微光管采用与第三代微光近贴管结构大体相同的技术,主要技术特点是将高灵敏度的多碱光电阴极引入到第二代微光管中,并借用第三代微光MCP、管结构、 集成电源以及结晶学、半导体本体特性等机理和工艺研究成果,其成像质量大幅度提高,由于工艺相对简单,价格相对较低,因而成为目前的主流产品。
2.4.2 第四代徽光夜视技术 近 来,微光管的设计者从MCP中去除离子壁垒膜以得到无膜的微光管,同时增加1个自动门开关电源,以控制光电阴极电压的开关速度,并且改进了低晕成像技术,有助于增强在强光下的视觉性能。1998年Litton公司首先研制成功无膜MCP的成像管,在目标探测距离和分辨力上有很大的提高,尤其是在极低照度条 件下。其关键技术涉及到新型高性能无膜MCP、光电阴极与MCP间采用的自动脉冲门控电源及无晕成像技术等。这种无膜的BCG-MCPIV代微光管技术虽 然刚刚起步,但良好的性能使其必然成为本世纪微光像增强技术领域的新热点。
3 红外成像技术及其发展 3.1 第一代红外热像技术 热成像技术的发展始于上世纪50年代,起初只能研制出 基于单元器件的热像仪,场频较低,只限于小范围应用。直到20世纪70年代中长波碲镉汞(MCT)材料与光导型多元线列器件工艺成熟之后,热像仪才开始大 量生产并装备军队。热像仪的种类繁多,可大致分为二类:一类是通用组件化的热像仪;另一类是按特殊要求设计的热像仪。
美国发展的是60元、120元与180元光导线列器件并扫的通用组件化热成像体制。它们的帧频与电视兼容,也是隔行扫描制,每场只有60行、120行和 180行,并分别由同步扫描的60元、120元和180元发光二极管对应地显示每帧的图像。在欧洲,以英国的热像仪为代表采用了串并扫体制。它以扫积型光导MCT探测器为基础构成了英国的第二类通用组件热像仪。这是一种完全电视兼容、分辨率与普通电视相同的热像仪。不论串扫、并扫或串并扫体制的热像仪都需要光机扫描。因此,此类热像仪统称为第一代热像仪。 3.2 第二代红外热像技术 最近,正在大力发展不用光 机扫描而用红外焦平面阵列(IRFPA)器件成像的热像仪。由于去掉了光机扫描,这种用大规模焦平面成像的传感器被称为凝视传感器。它的体积小、重量轻、可靠性高。在俯仰方向可有数百元以上的探测器阵列,可得到更大张角的视场,还可采用特殊的扫描机构,用比通用热像仪慢得多的扫描速度完成360。全方位扫 描以保持高灵敏度。这类器件主要包括InSb IRFPA、HgCdTeIRFPA、SBDFPA、非制冷IRFPA和多量子阱IRFPA等。此类热像仪被称为第二代热像仪。
3.3 第三代红外热像技术 第 三代红外热像技术采用的红外焦平面探测器单元数已达到320x240元或更高(即105-106),其性能提高了近3个数量级。目前,3μm-5μm焦平 面探测器的单元灵敏度又比8μm-14μm探测器高2~3倍左右。因而,基于320x240元的中波与长波热像仪的总体性能指标相差不大,所以3μm- 5μm焦平面探测器在第三代焦平面热成像技术中格外的重要。从长远看,高量子效率、高灵敏度、覆盖中波和长波的HgCdTe焦平面探测器仍是焦平面器件发 展的首选。
3.4 红外技术的发展趋势 红外技术的发展以红外探测器的发展为标志,可以从红外探测器的发展来推断其发展趋势。
(1)红外焦平面器件发展到高密度、快响应、元数达到106—10。元以上的大规模集成器件,由二维向三维多层次结构发展,在应用上就可以实现高清晰度热像仪,极大地缩小整机体积,增强功能。
(2)双色、多色红外器件的发展使整机可同时实现不同波长的多光谱成像探测,成倍扩大系统信息量,成为目标识别和光电对抗的有效手段。
(3)探测器在焦平面上实现神经网络功能,按程序进行逻辑处理,使红外整机实现智能化。 (4)提高探测器工作温度,高性能室温红外探测器和焦平面器件是发展重点之一,不需要制冷器,将会使整机更精巧、更可靠,从而实现全固体化。
(5)提高成品率,降低价格。 4 夜视技术的未来发展 4.1 红外热成像技术与徽光成像技术的比较 由于工作原理不同,红外热成像技术与微光成像技术各有利弊。
(1)红外热成像系统不象微光夜视仪那样借助夜光,而是靠目标与背景的辐射产生景物图像,因此红外热成像系统能24小时全天候工作。
(2)随着计算机技术的发展,很多红外热成像系统具有完整的软件系统以实现图像处理、图像运算等功能,图像质量大大改善。
(3)红外辐射比微光的光辐射具有更强的穿透雾、霾、雨、雪的能力,因而红外热成像系统的作用距离更远。 (4)红外热成像能透过伪装,探测出隐蔽的热目标,甚至能识别出刚离去的飞机和坦克等所留下的热迹轮廓。 (5)微光夜视仪图像清晰、体积小、重量轻、价格低、使用和维修方便、不易被电子侦察和干扰,所以应用范围广。
(6)微光夜视仪的响应速度快,利用光电阴极像管可实现高速摄影。 (7)一般微光成像面为连续靶面,期间的分辨率很高,目前最高达到90lp/ⅡHn。相当于l 600以上的电视行。
(8)微光夜视频谱响应向短波范围扩展的潜力大,包括高能离子、x射线、紫外线、蓝绿光景物的探测成像基本上都是基于外光电转换、增强、处理、显示等微光成像技术原理口。
从学科和技术发展的角度看,红外技术有一定优势。可见光的存在是有条件的,而任何物体都是红外源,都在不停地辐射红外线,所以红外技术的应用将无处不在。目前,在近距离夜视方面,由于微光夜视仪价格低廉,图像质量也较好,仍然占据主要地位。随着红外器件价格的降低,红外热像仪必将大有作为。而在远距离夜视方面,红外热像仪的作用更为突出。
4.2 微光图像和红外图像的融合 在微光与红外技术各自不断进展的时期,考虑到二者的互补性,在不增加现有技术难度的基础上,如何将微光图像与红外图像融合以获取更好的观察效果,成为当前夜视技术发展的热点研究之一。
微光图像的对比度差,灰度级有限,瞬间动态范围差,高增益时有闪烁,只敏感于目标场景的反射,与目标场景的热对比无关。而红外图像的对比度差,动态范围大,但其只敏感于目标场景的辐射,而对场景的亮度变化不敏感。二者均存在不足之处。随着微光与红外成像技术的发展,综合和发掘微光与红外图像的特征信息,使其融合成更全面的图像已发展成为一种有效的技术手段。夜视图像融合能增强场景理解、突出目标,有利于在隐藏、伪装和迷惑的军用背景下更快更精确地探测目标。将融合图像显示成适合人眼观察的自然形式,可明显改善人眼的识别性能,减小操作者的疲劳感。