二次函数复习学案
- 格式:doc
- 大小:956.64 KB
- 文档页数:6
课题;二次函数(1)教学目标:1.理解并掌握二次函数的性质,能熟练运用图象性质解决简单的数学问题.2.学会灵活应用待定系数法求二次函数关系式,能正确确定抛物线的对称轴和顶点.3.能利用二次函数解决实际问题,如:最大利润问题、最大高度问题、最大面积问题等.会通过建立坐标系来解决实际问题.4.理解一元二次方程与二次函数的关系,并能利用二次函数的图象,解决二次函数的综合应用.教学重、难点:重点:二次函数图象及其性质,应用二次函数分析和解决简单的实际问题.】难点:二次函数性质的灵活运用,能把相关应用问题转化为数学问题.教法与学法指导:本节课主要采用“解读考试要求----知识梳理----师生构建知识网络-----题组训练,夯实基础-----考点剖析----针对训练----回顾反思-----当堂检测----布置作业的课堂教学模式.在教学过程中,以学生总结为主,教师给予适当的指导.本节课我通过回顾知识点来巩固二次根式的主要内容,然后利用知识树,帮助学生梳理本章的内容,通过自主学习,小组合作及师生互动完成典型例题,揭示解题技巧,再通过变式训练得到发展和提高. 在整个复习过程中, 始终抓住中考这条主线, 从中考命题趋势分析入手,引导学生针对中考的热点问题复习回顾,让学生积极主动参与教学,真正体会到学习数学的成就感.课前准备:教师:导学案、课件.学生:课前完成学案:知识要点回顾,以及知识树的构建.教学过程:一、解读中考,弄清目标活动内容1:中考要求1.通过对实际问题情境的分析确定二次函数的表达式,并体会二次函数的意义.2.会运用描点法画出二次函数的图像,能从图像上认识二次函数的性质.3.会根据公式确定图像的顶点、开口方向和对称轴(公式不要求记忆和推导),并解决简单的实际问题.4.会利用二次函数的图像求一元二次方程的近似解.5.知道给定不共线三点的坐标可以确定一个二次函数.}处理方式:先让学生独立思考,再小组交流,师生互动,补充完善,达成共识.设计意图:让学生明确中考对本节知识点的要求,使学生在复习过程中把握复习的方向,明确复习的重点,掌握解题的方法与技巧.二、知识梳理,厚积薄发(多媒体展示,课前学案完成)活动内容1:导入新课导语:华罗庚教授说:读书要从薄到厚,又从厚到薄。
二次函数复习学案考题特点:《二次函数》在广州中考题所占分值较多。
题型有填空题、选择题、解答题。
主要考查内容有:函数的取值范围,待定系数法,求函数图象与坐标轴的交点,简单函数图象的画法,求二次函数的顶点坐标及最大值与最小值,几何图形与二次函数的关系。
难题主要放在几何图形与函数的综合探索。
自主复习1.二次函数,二次项系数是,一次项系数是,常数项是。
2.函数y=x2的图象叫线,它开口向,对称轴是,顶点坐标为 .3. 把二次函数配方成的形式为,它的图象是,开口向,顶点坐标是,对称轴是。
4.将抛物线y=x2向左平移2个单位,再向下平移3个单位,则新抛物线的解析式为().A. B. C. D.5.二次函数,当时,。
此抛物线与x轴有个交点。
例题精讲例1.已知二次函数的图象如图所示,求其解析式。
例2.已知二次函数。
(1)填写下表,画出函数的图象;(2)根据图象说明:1.求方程的解;2.当x取何值时,y>0 ?3.当x取何值时,y<0 ?4.当x取何值时,y随x的增大而减少?例3.如图是抛物线形拱桥,当水面在AB时,拱顶离水面2米,水面宽4米,水面下降1米,水面宽度增加多少?巩固提高1. 抛物线的顶点坐标是()A. (0,1)B.(0,-1)C.(1,0)D.(-1,0)2.二次函数与x轴的交点个数是()A.0 B.1 C.2 D.33.在同一坐标系中一次函数和二次函数的图象可能为()4.下列图形中,阴影部分面积为1的是()5.如图所示的抛物线是二次函数的图象,那么的值是.6.已知二次函数的部分图象如图所示,则关于的一元二次方程的解为.7.已知二次函数的图象如图所示,则点在第象限.8. 二次函数图象过A、C、B三点,点A的坐标为(-1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC(1)求C的坐标;(2)求二次函数的解析式,并求出函数最大值。
9.某旅行社团去外地旅游,30人起组团,每人收费800元,旅行社对超过30人的团给予优惠,即旅行团每增加1人,每人的收费就降低10元。
二次函数复习(一)知识点归纳:1.二次函数的定义:一般地,形如c b a c bx ax y ,,(2++=为常数,)0≠a 的函数,叫做二次函数.(其中x 是自变量,c b a ,,分别是函数表达式的二次项系数,一次项系数和常数项)2.二次函数解析式的三种形式:一般式:)0(2≠++=a c bx ax y顶点式:)0()(2≠+-=a k h x a y交点式:)0)()((21≠--=a x x x x a y3.)0(2≠++=a c bx ax y 图象的特征:(1)a 决定了抛物线的形状与大小:其中a 的正负决定其开口方向;||a 越大图象相对开口越小.(2 c b a ,,共同决定了抛物线在坐标系中的位置,其中顶点坐标为:)44,2(2ab ac a b --,对称轴为:直线ab x 2-=,图象在y 轴的截距为c .4.待定系数法求二次函数解析式:(已知函数类型时,求函数解析式的方法)(二) 例题分析例1.考查二次函数的定义:(1)若函数m m x m y --=2)1(2为二次函数,则m 的值为 .(2)函数)1(x x y -=的二项式系数为 ;一次项系数为 ;常数项为 .(3)已知以x 为自变量的二次函数y =(m -2)x 2+m 2-m -2的图像经过原点,则m 的值是 .例2.综合考查正比例、反比例、一次函数、二次函数的图像特征:(1) 在同一坐标系中一次函数y ax b =+和二次函数2例3 考查函数、方程、不等式之间的关系:(1)抛物线y=x 2+6x+8与y 轴交点坐标( )(A )(0,8) (B )(0,-8) (C )(0,6) (D )(-2,0)((2)二次函数2(0)y ax bx c a =++≠(a )写出方程20ax bx c ++=的两个根.(b )写出不等式20ax bx c ++>的解集. (c )写出y 随x 的增大而减小的自变量x的取值范围.(d )若方程2ax bx c k ++=有两个不相等的实数根,求k 的取值范围.(3).如图,是二次函数y 1=ax 2+bx +c 和一次函数y 2=mx +n 的图象,观察图象写出y 2≥y 1时,x 的取值范围______________.例4. 考查用配方法求抛物线的顶点坐标、对称轴、二次函数的最值: (1)二次函数y=x2+x-5取最小值是,自变量x的值是(2)抛物线()y x =-+23212的顶点坐标是( )A. (2,1)B. (-21,)C. 231,⎛⎝ ⎫⎭⎪D. -⎛⎝ ⎫⎭⎪231, (3) 心理学家发现,学生对概念的接受能力y 与接受概念所用时间x (单位:min )之间满足()y x x x =-++≤≤0126430302...y 值越大,表示接受能力越强.①x 在什么范围内时,学生的接受能力逐渐增强?x 在什么范围内时,学生的接受能力逐渐降低?②第10 min 时,学生的接受能力是多少?③第几分钟时,学生的接受能力最强?例5.考查用待定系数法求二次函数的解析式:(1)已知一条抛物线经过(0,3),(4,6)两点,对称轴为x =53,求这条抛物线的解析式。
二次函数复习学案◆复习要求1.二次函数的开口方向、顶点坐标、对称轴、最值、抛物线平移以及增减性.2.求抛物线解析式的三种常用方法,并会灵活运用3.利用抛物线性质解决与之有关的生活实际问题.4.能解决抛物线与直线、相似三角形、圆等综合性问题.◆典型例题【例1】(1)抛物线y=-3+(x+1)2的顶点坐标是______,对称轴是_____,当x______时,y•随x的增大而增大;当x______时,y随x的增大而减小.(2)已知函数y=(m+1)x2m m 是二次函数,且图象的开口向下,则m=______,当x_____时,y随x的增大而增大;当x_____时,y随x的增大而减小.(3)要用长20m的铁栏杆,一面靠墙(墙的长度是15m),围成一个矩形的花圃,如果设垂直于墙的一边长为x(m),矩形的面积为y(m2),则y与x的关系式为_______,x•的取值X围是_______,当x_______时,y有最大值.(4)已知抛物线y=x2-2x+k-1,当k_____时,抛物线与x轴只有一个交点;当k_____时,抛物线与x轴有两个交点;当k______时,抛物线与x轴无交点.(5)二次函数y=ax2+bx+c的图象如图所示,那么abc,b2-4ac,2a+b,a+b+c,a-b+c,4a-2b+c这些代数式中,值为正的有().A.5个B.4个C.3个D.2个(6)已知一次函数y=ax+c与二次函数y=ax2+bx+c(a≠0),它们在同一坐标系中的大致图象是().【例2】(1)如图,抛物线的图象经过A、B、C三点,求此抛物线的解析式、顶点坐标、对称轴,并讨论它们的增减性.(2)已知抛物线经过A(-1,0),B(3,0)和C(0,-3),求此抛物线解析式.(3)已知抛物线经过点(0,1),且顶点是(-1,2),求此抛物线的解析式.【例3】如图,公园要建造圆形的喷水池,在水池中央垂直于水面处安装一个柱子OA,O恰好是水面中心,OA=,由柱子顶端A处的喷头向外喷水,水流在各个方向沿形状相同的抛物线路线落下,为使水流形状较为漂亮,要求设计成水流在离OA距离为1m处达到距水面最大高度.(1)如果不计其他因素,那么水池的半径至少要多少米,才能使喷出的水流不至于落到池外?(2)若水池喷出的水流线形状与(1)相同,水池的半径为,要使水流不落到池外,此时水流的最大高度应达到多少米?(精确到)◆课堂作业1、如图,点A(-1,0),B(4,0)在x轴上,以AB为直径的半圆P交y轴于点C.(1)求经过A、B、C3点的抛物线的解析式;(2)设AC的垂直平分线交OC于D,连结AD并延长半圆P于点E,AC与EC相等吗?证明你的结论;(3)设点M为x轴负半轴上一点,OM=12AE,是否存在过点M的直线,使该直线与(1)中的抛物线的两个交点到y轴的距离相等?若存在,求这条直线的解析式;若不存在,请说明理由.2、如图,已知:m、n是方程x2-6x+5=0的两个实数根,且m<n,抛物线y=-x2+bx+c 的图象经过点A(m,0),B(0,n).(1)求这个抛物线的解析式;(2)设(1)中的抛物线与x轴的另一交点为C,抛物线的顶点为D,试求出点C,D的坐标和△BCD的面积;(3)P是线段OC上的一点,过点P作PH⊥x轴,与抛物线交于H点,若直线BC•把△PCH分成面积之比为2:3的两部分,请求出P点的坐标.◆课后巩固(一)1.抛物线y=13(x-2)2-3与x轴的交点坐标是_______.2.已知一个二次函数的图象开口向下,且与y轴的负半轴相交,请写出一个满足条件的二次函数的解析式____________.3.某二次函数满足下列表格中的x,y的值:x …-2 -1 0 1 2 3 …y …9 4 1 0 1 4 …则该二次函数的解析式为_________,对称轴是_________,顶点坐标是_______.4.如图是二次函数y=ax2+bx+c的图象,下列结论中:①abc>0;②b=2a;③a+b+c<0;④a-b+c>0;⑤4a+2b+c<0.正确的个数是().A.4个B.3个C.2个D.1个5.如图,将抛物线y=ax2+bx+c沿x轴翻转到虚线位置,那么所得到的抛物线的解析式为().A.y=-ax2+bx+c B.y=-ax2-bx+cC.y=-ax2-bx-c D.y=-ax2+bx-c6.已知抛物线y=3x2-2x+a与x轴有交点,则a的取值X围是().A.a<13B.a≤13C.a≤-13D.a≥137.已知抛物线y=12x2+x-52.(1)用配方法求它的顶点坐标和对称轴;(2)若该抛物线与x轴的两个交点为A、B,求线段AB的长.8.如图,施工队要修建一个横断面为抛物线的公路隧道,其高度为6m,宽度OM为12m,现以O点为原点,OM所在的直线为x轴建立直角坐标系.(1)直接写出点M及抛物线顶点P的坐标;(2)求出这条抛物线的解析式;(3)施工队计划在隧道门口搭建一个矩形“脚手架”CDAB,使A、D点在抛物线上,B、C点在地面OM上.为了筹备材料,需求脚手架三根木杆AB、AD、DC的长度之和的最大值是多少?请你帮施工队计算一下.◆课后巩固(二)1.已知二次函数y=12x2+bx+c的图象经过点A(c,-2),对称轴是直线x=3,则其解析式为________.2.抛物线y=ax2+2ax+a2+2的一部分图象如图1所示,那么该抛物线在y•轴的右侧与x轴的交点的坐标是________.3.已知:二次函数的图象过点(0,3),图象向右平移3个单位后的对称轴是y轴,向下平移2个单位后与x轴只有一个交点,则此二次函数的解析式为________.4.如图,已知二次函数y=ax2+bx+c(a≠0)的图象的顶点P的横坐标是4,图象与x轴交于点A(m,0)和点B,且m>4,那么AB的长为().A.8-2m B.2m-8 C.m+4 D.m5.已知二次函数y=-2x2+2kx-3的顶点在x轴的负半轴上,则k的值等于().A.6 B.-6 C.6D.-66.如图是抛物线形拱桥,已知水位在AB位置时,水面宽46m,水位上升3m就达到警戒水位线CD,这时水面宽4m3,若洪水到来时,水位以每小时的速度匀速上升,则水过警戒线后淹到拱桥顶部的时间是().A.10h B.9h C.12h D.8h7.某公司推出了一种高效环保型洗涤用品,年初上市后,公司经历从亏损到盈利的过程,如图的二次函数图象(部分)刻画了该公司年初以来累积利润y(万元)与销售时间x (月)之间的关系(即前x个月的利润和y与x的关系).(1)根据图上信息,求累积利润y(万元)与时间x(月)的函数关系式;(2)求截止到几月末公司累积利润可达到30万元?(3)求第8个月公司所获利润是多少万元?8.如图,抛物线y=-32-2333x轴于A、B两点,交y轴于点C,顶点为D.(1)求点A、B、C的坐标;(2)把△ABC绕AB的中点M旋转180°,得到四边形AEBC.①求E的坐标;②试判断四边形AEBC的形状,并说明理由;(3)试探求:在直线BC上是否存在一点P,使得△PAD的周长最小,若存在,请求出点P的坐标,若不存在,请说明理由.◆典型例题参考答案【例1】解:(1)(-13);直线x=-1;x>-1;x<-1;(2)m=-2;x<0;x>0.(3)y=-2x2+20x,52≤x≤10,x=5;(4)将方程组2210()y x x ky x⎧=-+-⎨=⎩轴消y后得x2-2x+k-1=0,∴△=8-4k.当△=0时,k=2;当△>0时,k<2;当△<0时,k>2.(5)数形结合,x=-1时,y>0;x=1时,y<0;x=-2时,y>0,a>0,-2b a>0,c<0,△=b 2-4ac>0,∴选A .(6)两个函数的常数项相同,应交在y 轴同一点,∴排除A ,C ,D 中a ,c 异号,△>0,抛物线与x 轴应有两个交点,∴排除D ,∴选B .【例2】解:(1)设y=ax 2+bx+c ,再将A (-1,0),B (0,-3),C (4,5)代入可求得a=1,b=-2,c=-3.∴y=x 2-2x -3,即y=(x -1)2-4.∴顶点(1,-4),对称轴是直线x=1,当x<1时,y 随x 的增大而减小;当x>1时,y 随x 的增大而增大.(2)∵A (-1,0),B (3,0)在x 轴上,∴设y=a (x+1)(x -3),再将C (0,-3)代入得a=1,y=(x+1)(x -3),即y=x 2-2x -3.(3)∵抛物线的顶点是(-1,2),∴设解析式为y=a (x+1)2+2,再将(0,1)代入得a=-1,∴y=-(x+1)+2,即y=-x 2-2x+1.【例3】解:(1)以柱子OA 所在直线为y 轴,过点O 的水平面线为x 轴,建立如图所示的直角坐标系,由题意可知右侧抛物线过点A (0,),顶点(1,).∴设解析式为y=a (x -1)2,∴,a=-1,∴抛物线解析式为y=-(x -1)2,即y=-x 2.要求水池的半径,就是求当y=0时,点C的横坐标.∴-(x-1)2+2.25=0.∴,(不合题意,舍去).即半径至少要.(2)∵形状与(1)相同,∴a=-1设最高点坐标为(m,k),解析式为y=-(x-m)2+k,由题意可得点(0,)和点(,0)在抛物线上.∴m=117,,即最高应达到.◆课堂作业参考答案1、解:(1)连结BC,由△AOC∽△BOC,得OC2=OA·OB=4,∴OC=2,∴点C坐标(0,2).∵A(-1,0),B(4,0)在x轴上,∴设解析式y=a(x+1)(x-4),将C(0,2)代入,得a=-12,∴y=-12x2+32x+2.(2)AC=CE.理由:易证∠ACD=∠CBA,∠ACD=∠CAE,∴∠CAE=∠ABC AC=EC.(3)不存在符合条件的直线.理由:连结BE.设AD=x,则OD=OC-CD=2-x,由x2=12+(2-x)2,得x=54,即AD=54.由△AOD∽△AEB,得OA ADAE AB=14,∴AE=4,OM=12AE=2,∴M(-2,0).设过M点的直线解析式为y=kx+b.∴0=-2k+b ,∴b=2k ,∴y=kx+2k .① 由2213222y kx k y x x =+⎧⎪⎨=-++⎪⎩消y , 得12x 2+(k -32)x+2k -2=0.② 由题意得方程②的两个根互为相反数,∴k=32,但这时方程②无实根, ∴不存在符合要求的直线. 2、解:(1)解方程x 2-6x+5=0,得x 1=5,x 2=1.由m<n ,有m=1,n=5.所以点A 、B 的坐标分别为A (1,0),B (0,5).将A (1,0),B (0,5)的坐标分别代入y=-x 2+bx+c ,得105.b c c -++=⎧⎧⎨⎨=⎩⎩b =-4解这个方程组,得c =5.. 所以抛物线的解析式为y=-x 2-4x+5.(2)由y=-x 2-4x+5,令y=0,得-x 2-4x+5=0,解这个方程,得x 1=-5,x 2=1.所以C 点的坐标为(-5,0),由顶点坐标公式计算,得点D (-2,9),过D 作x 轴的垂线交x 轴于M .则S △DMC =12×9×(5-2)=272,S 梯形MDBO =12×2×(9+5)=14. S △BOC =12×5×5=252. 所以S △BCD =S 梯形MDBO +S △DMC -S △BOC =14+272-252=15. (3)设P 点的坐标为(a ,0),因为线段BC 过B 、C 两点,所以BC 所在的直线方程y=x+5.那么,PH 与直线BC 的交点坐标为E (a ,a+5),PH 与抛物线y=-x 2-4x+5•的交点坐标为H(a,-a2-4a+5).由题意,得①EH=32EP,即(-a2-4a+5)-(a+5)=32(a+5).解这个方程,得a=-32或a=-5(舍去).②EH=23EP,得(-a2-4a+5)-(a+5)=23(a+5).解这个方程,得a=-23或a=-5(舍去).P点的坐标为(-32,0)或(-23,0).◆课后巩固(一)参考答案1.(5,0),(-1,0)2.如:y=-x2+3x-4 3.y=x2-2x+1 对称轴是直线x=1,顶点(1,0)4.A 5.C 6.B7.(1)y=12(x+1)2-3 顶点(-1,-3)对称轴是直线x=-1(2)设A(x1,0),B(x2,0),∴x1+x2=-2,x1x2=-5,∴│x1-x2│2=(x1+x2)2-4x1x2=24,│x1-x28.(1)M(12,0),P(6,6)(2)y=-16x2+2x(3)A(m,-16m2+2m),OB=m,AB=DC=-16m2+2m,AD=BC=12-2m,∴L=AB+AD+DC=-13(m-3)2+15,当m=3时,即OB=3m时,L的最大值为15m.◆课后巩固(二)参考答案1.y=12x2-3x+2 2.(1,0)3.y=19x2+23x+3 4.B 5.D 6.C7.(1)y=12x2-2x (2)10月末(3)万元8.(1)A(-3,0),B(1,0),C(0)(2)①E(-2)②AEBC是矩形∵AEBC 是平行四边形,且∠ACB=90° (3)存在,D (-1)A 点关于BC 的对称点A′,直线A′D :y=6x+2,直线BC :y=交点P (-37,7).。
九年级数学集体备课教案中心备课者:黄新总第4课时二次函数专题复习学案(4)一、典型例题讲评例1、点O 是坐标原点,点A (n ,0)是x 轴上一动点(n <0)。
以AO 为一边作矩形AOBC ,使OB =2OA ,点C 在第二象限。
将矩形AOBC 绕点A 逆时针旋转90°得矩形AGDE 。
过点A 得直线y =kx +m (k ≠0)交y 轴于点F ,FB =F A 。
抛物线y =ax 2+bx +c 过点E 、F 、G 的垂线,垂足为点M 。
(1)求k 的值;(2)点A 位置改变使,△AMH 的面积和矩形AOBC二、课堂练习2、如图1,点A 是直线y =kx (k >0,且k 为常数)上一动点,以A 为顶点的抛物线y =(x -h)2+m 交直线y =x 于另一点E ,交 y 轴于点F ,抛物线的对称轴交x 轴于点B ,交直线EF 于点C .(点A,E,F 两两不重合)(1)请写出h 与m 之间的关系;(用含的k 式子表示)(2)当点A 运动到使EF 与x 轴平行时(如图2),求线段AC 与OF 的比值; (3)当点A 运动到使点F 的位置最低时(如图3),求线段AC 与三、课后作业3、已知:抛物线y=ax 2+bx+c 与x 轴交于A 、B 两点,与y 轴交于点C . 其中点A 在x 轴的负半轴上,点C 在y 轴的负半轴上,线段OA 、OC 的长(OA<OC )是方程x 2-5x+4=0的两个根,且抛物线的对称轴是直线x=1. (1)求A 、B 、C 三点的坐标; (2)求此抛物线的解析式;(3)若点D 是线段AB 上的一个动点(与点A 、B 不重合),过点D 作DE ∥BC 交AC 于点E ,连结CD ,设BD 的长为m ,△CDE 的面积为S ,求S 与m 的函数关系式,并写出自变量m 的取值范围.S 是否存在最大值?若存在,求出最大值并求此时D 点坐标;若不存在,请说明理由.4、如图1,已知:抛物线212y x bx c =++与x 轴交于A B 、两点,与y 轴交于点C ,经过B C 、两点的直线是122y x =-,连结AC .(1)B C 、两点坐标分别为B (_____,_____)、C (_____,_____),抛物线的函数关系式为______________;(2)判断ABC △的形状,并说明理由;(3)若ABC △内部能否截出面积最大的矩形DEFC (顶点D E F 、、、G 在ABC △各边上)?若能,求出在AB 边上的矩形顶点的坐标;若不能,请说明理由.[抛物线2y ax bx c =++的顶点坐标是24,24b ac b aa ⎛⎫-- ⎪]图1图2(备用)。
第18课时 二次函数一、 复习目标1、 识记二次函数的一般形式和顶点式,并能用待定系数法求它的解析式。
2、 掌握二次函数的图像和性质。
二、 重点、难点重点:⑴用待定系数法求二次函数的解析式;⑵用配方法求二次函数的最值。
难点:深入理解二次函数图像的特征。
三、 复习过程 ㈠知识梳理1、 二次函数的解析式⑴一般形式: 。
⑵顶点式: 。
2、 二次函数的图像与性质二次函数k h x a y +-=2)(的图像是 ,它的对称轴是直线 ,顶点坐标是 当0>a 时,抛物线开口 ,函数在=x 时,达到最 值 ;当0<a 时,抛物线开口 ,函数在=x 时,达到最 值 。
3、 二次函数与一元二次方程的联系 抛物线c bx ax y ++=2与x 轴是否有交点取决于一元二次方程02=++c bx ax是否有实数根。
⑴当ac b 42- 时,一元二次方程02=++c bx ax有两个不相等的实数根(21x x ≠),抛物线就与x 轴有两个不同的交点,其坐标是( )和( )。
反之亦然。
⑵当ac b 42- 时,一元二次方程02=++c bx ax有两个相等的实数根( 21x x = ),抛物线就与x 轴只有一个交点,其坐标是( ),这一点就是抛物线的顶点。
反之亦然。
⑶当ac b 42- 时,一元二次方程02=++c bx ax 没有实数根,抛物线就与x 轴没有交点。
反之亦然.㈡问题导学2、已知抛物线的顶点是(1,-4),且经过点(0,-3),则这条抛物线的解析式是 。
(第2题)3、抛物线322--=x x y 与x 轴的交点坐标是 ,与y 轴的交点坐标是 4、二次函数322-+-=x x y 的最大值是 。
5、将抛物线22(1)3y x =+-向右平移1个单位,再向上平移3个单位后得到的抛物线的解析式为 . ㈢合作探究例1 求满足下列条件的二次函数的解析式 ⑴图像经过A (-1,3)、B (1,3)、C (2,6)三点; ⑵图像经过A (-1,0)、B (3,0),函数有最大值8; ⑶图像顶点坐标是(-1,9),与x 轴两交点的距离是6.㈣达标检测1.抛物线()412--=x y 的顶点坐标是( )A .(1,4)B .(1.-4)C .(-1,4)D .(-1,-4)2、抛物线c bx x y ++-=2的部分图象如图所示,当0>y 时,x 的取值范围是( ) A .14<<-x B .4-<x 或1>x C .13<<-x D .3-<x 或1>x3、抛物线的对称轴是直线2=x ,与x 轴的两个交点的 距离是8,则这两个交点的坐标是 。
函数一轮复习学案八(二次函数)一、知识梳理1.二次函数的解析式2.二次函数的图象与性质3.二次函数图像的对称轴通常有以下三种求法:(1)利用配方法求二次函数y =ax 2+bx +c (a ≠0)的对称轴为x =-b2a. (2)若二次函数f (x )对任意x 1,x 2∈R 都有f (x 1)=f (x 2),则对称轴为x =x 1+x 22.(3)若二次函数y=f(x)对定义域内所有x都有f(a+x)=f(a-x),则对称轴为x=a(a为常数).4.二次函数最值的类型及解法(1)二次函数在闭区间上的最值主要有三种类型:轴定区间定、轴动区间定、轴定区间动,不论哪种类型,解决的关键是对称轴与区间的关系,当含有参数时,要依据对称轴与区间的关系实行分类讨论;(2)常结合二次函数在该区间上的单调性或图象求解,最值一般在区间的端点或顶点处取得.二、典型例题考点一求二次函数解析式例1设二次函数f(x)满足f(x-2)=f(-x-2)且图象在y轴上的截距为1,在x轴上截得的线段长为求f(x)的解析式.例2已知函数f(x)=x2+mx+n的图象过点(1,3),且f(-1+x)=f(-1-x)对任意实数都成立,函数y=g(x)与y=f(x)的图象关于原点对称.求f(x)与g(x)的解析式.考点二二次函数在某个闭区间上的最值例3 已知f(x)=-4x2+4ax-4a-a2在区间[0,1]内有最大值-5,求a的值及函数表达式f(x).例4函数f(x)=-x2+4x-1在区间[t,t+1] (t∈R)上的最大值为g(t).(1)求g(t)的解析式;(2)求g(t)的最大值.考点三二次函数图象与性质的应用例5已知函数f(x)=x2+2ax+3,x∈[-4,6].(1)当a=-2时,求f(x)的最值;(2)求实数a的取值范围,使y=f(x)在区间[-4,6]上是单调函数;(3)当a=-1时,求f(|x|)的单调区间.例6 已知函数f(x)=x|x-2|.(1)写出f(x)的单调区间;(2)解不等式f(x)<3;(3)设0<a≤2,求f(x)在[0,a]上的最大值.考点四:二次函数与一元二次方程、一元二次不等式的综合问题例7设函数f(x)=ax2-2x+2,对于满足1<x<4的一切x值都有f(x)>0,求实数a的取值范围.例8若二次函数f(x)=ax2+bx+c (a≠0)满足f(x+1)-f(x)=2x,且f(0)=1.(1)求f(x)的解析式;(2)若在区间[-1,1]上,不等式f(x)>2x+m恒成立,求实数m的取值范围.二次函数反馈练习一命题人:徐相炳 做题人:程云一、填空题.1、若函数y =x 2+(a +2)x +3,x ∈[a ,b ]的图象关于直线x =1对称,则b =______.2、设函数f (x )=ax 2+2x -3在区间(-∞,4)上是单调递增函数,则实数a 的取值范围是________.3、已知二次函数f(x)=ax 2+bx+1的值域为[0,+∞)且f(-1)=0,则a =________,b =________.4、若函数f(x)=(x+a)(bx+2a)(a 、b ∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)=__________.5、若二次函数)(x f y =满足)3()3(x f x f -=+,则方程0)(=x f 的两根和为_________.6、若函数y=x 2-3x-4的定义域为[0,m],值域为[-254,-4],则m 的取值范围为_________.7、已知关于x 的不等式220x ax a -+>在R 上恒成立,则实数a 的取值范围是_________.8、已知函数()f x 是二次函数,不等式()0f x >的解集是(0,4),且()f x 在区间[1,5]-上的最大值是12,则()f x 的解析式为 .9、函数)2()1()(22-+-+=a x a x x f 的一个零点比1大,一个零点比1小,求实数a 的取值范围为 .10、已知f (x )=m (x-2m )(x +m +3),g (x )=2x-2。
二次函数复习学案(1)班级姓名等级【考点透视】1、理解二次函数的概念;2、会化二次函数的一般式为顶点式,确定图象的顶点坐标、对称轴和开口方向,会用描点法画二次函数的图象;3、会平移二次函数y=ax2(a≠0)的图象得到二次函数y=a(x-h)2+k的图象,了解特殊与一般相互联系和转化的思想;4、会用待定系数法求二次函数的解析式(一般式、顶点式、交点式);5、利用二次函数的图象,了解二次函数的增减性,会求二次函数的图象与x轴的交点坐标和函数的最大值、最小值,了解二次函数与一元二次方程和一元二次不等式之间的联系。
【知识梳理】1.二次函数的图象:在画二次函数y=ax2+bx+c(a≠0)的图象时通常先通过配方配成y=a(x+ )2+ 的形式,先确定顶点( , ),然后对称找点列表并画图,或直接代用顶点公式来求得顶点坐标.2.理解二次函数的性质:我们通常从以下5个方面来理解二次函数的性质,并利用性质解决问题:1、开口方向:由a决定;2、顶点坐标( , );3、对称轴: ;4、极值: ;5函数增减性: 3.利用待定系数法确定二次函数解析式:(1)一般地,所给条件是抛物线上任意三点(或任意三对x,y•的值)•可设一般式为:y=ax2+bx+c,组成三元一次方程组来求解,这是通用的,也是最复杂的方法;(2)若已知顶点坐标或对称轴或最大值时,可设顶点式为:y=a(x-h)2+k,顶点是(h,k),这是简便方法;(3)若已知抛物线与x•轴两交点坐标或已知抛物线与x轴一交点坐标和对称轴或已知一元二次方程ax2+bx+c=0的两个根,都可设交点式为:y=a(x-x1)(x-x2)来求解,简便方法.4.二次函数与一元二次方程的关系:抛物线y=ax2+bx+c,当y=0时转化为一元二次方程ax2+bx+c=0,即(1)当抛物线与x轴有两个交点时==>方程ax2+bx+c=0有两个不相等实根==>⊿ 0,反之,也成立;(2)当抛物线y=ax2+bx+c与x轴有一个交点==>方程ax2+bx+c=0有两个相等实根==>⊿ 0,反之,也成立;(3)当抛物线y=ax2+bx+c与x轴有交点==>•方程ax2+bx+c=0有实根==>⊿ 0,反之,也成立;(4)当抛物线y=ax2+bx+c与x轴无交点==>•方程ax2+bx+c=0无实根==>⊿ 0,反之,也成立;5.二次函数与一元二次不等式的关系:利用二次函数的图象可以解一元二次不等式:1、求一元二次方程ax2+bx+c=0的根;2、利用抛物线与x轴的交点和a 的取值画出二次函数y=ax 2+bx+c 的大致图象;2、结合函数图形解一元二次不等式。
文科数学一轮复习学案16 二次函数一、考试要点:1.掌握二次函数的概念、图象及性质;2.能利用二次函数研究一元二次方程的实根分布条件;能求二次函数的区间最值.二、知识梳理:1.二次函数解析式的三种形式(1)一般式:f (x )=ax 2+bx +c (a ≠0); (2)顶点式:f (x )=a (x -m )2+n (a ≠0);(3)零点式:f (x )=a (x -x 1)(x -x 2)(a ≠0).2.二次函数的图象和性质三、课前热身1. (2010四川)函数2()1f x x mx =++的图象关于直线1x =对称的充要条件是 ( )A .2m =-B .2m =C .1m =-D .1m =2. (2012·北京西城二模)已知函数f (x )=x 2+bx +1是R 上的偶函数,则实数b =________,不等式f (x -1)<x 的解集为________.3. 函数2(2)3,[,]y x a x x a b =+++∈的图象关于直线1x =对称,则________a b ==四、考点分析考点一 求二次函数的解析式例题1:若二次函数0,)(2≠++=a c bx ax x f 满足1)0(,2)()1(==-+f x x f x f 。
(1) 求函数f(x)的解析式。
(2)在区间]1,1[-上有m x x f +>2)(恒成立,求实数m 的取值范围。
考点二 二次函数的图象与性质例2:(2013·盐城模拟)已知函数f (x )=x 2+2ax +3,x ∈[-4,6].(1)当a =-2时,求f (x )的最值;(2)求实数a 的取值范围,使y =f (x )在区间[-4,6]上是单调函数;(3)当a =-1时,求f (|x |)的单调区间.变式训练2:函数2()42f x x ax =++在区间(,6)-∞上是减函数,则实数a 的取值范围是( )A.3≥aB.3≤aC.3-≥aD.3-≤a五、课堂练习1. 若函数2()(2)(1)3f x a x a x =-+-+满足()()f x f x =-,则函数的单调减区间是A.(,0]-∞B.[0,)+∞C.(,1]-∞D.[1,)+∞2. 函数2()23,[2,2)f x x x x =++∈-,下列说法正确的是 ( )A.函数有最大值11,有最小值2B.函数有最大值11,有最小值3C.函数无最大值,有最小值3D.函数无最大值,有最小值23.已知二次函数y =x 2-2ax +1在区间(2,3)内是单调函数,则实数a 的取值范围是( )A .a ≤2或a ≥3B .2≤a ≤3C .a ≤-3或a ≥-2D .-3≤a ≤-2 4. 若关于x 的不等式m x x ≥-42对任意]1,0[∈x 恒成立,则实数m 的取值范围是( )A.03≥-≤m m 或B.03≤≤-mC.3-≥mD.3-≤m六、能力提升5.如果函数c bx x x f ++=2)(对任意实数t 都又有)2()2(t f t f -=+,那么( )A.)4()1()2(f f f <<B.)4()2()1(f f f <<C.)1()4()2(f f f <<D.)1()2()4(f f f <<重点班:(2013·广东联考)已知二次函数f (x )=x 2+(2a -1)x +1-2a .(1)判断命题:“对于任意的a ∈R (R 为实数集),方程f (x )=1必有实数根”的真假,并写出判断过程;(2)若y =f (x )在区间(-1,0)及(0,12)内各有一个零点.求实数a 的取值范围.。
人教版九年级数学上册第22章二次函数《复习课》导学案第二十二章复课1.知道二次函数的概念、图象和性质,能根据解析式判断抛物线的开口方向、对称轴、顶点坐标和函数的增减性.2.知道抛物线与对应的一元二次方程的关系,会用待定系数法求二次函数的解析式.3.能够运用二次函数解决一些实际问题,从中体会数学建模思想.4.重点:二次函数解析式的求法,二次函数的图象、性质和应用.◆体系构建◆核心梳理1.一般地,形如y=ax2+bx+c(a,b,c是常数,a≠0)的函数,叫做二次函数.其中x是自变量,a,b,c分别是函数解析式的二次项系数、一次项系数和常数项.2.二次函数y=ax2+bx+c(a≠0)与一元二次方程的关系:(1)当b2-4ac>时,抛物线与x轴有2个交点,对应的一元二次方程有两个不相等的实数解;(2)当b2-4ac=时,抛物线与x轴有1个交点,对应的一元二次方程有两个相等的实数解;(3)当b2-4ac<时,抛物线与x轴无交点,对应的一元二次方程无实数解.3.填表:特征函数启齿偏向对称轴极点坐标(0,0)(0,k)(h,0)(h,k)最值最小值最大值最小值k最大值k最小值最大值最小值k最大值k最小值y=ax2y=ax2+ky=a(x-h)2y=a(x-h)2+k a>时启齿向上a<时开口向下a>时开口向上a<时启齿向下a>时启齿向上a<时启齿向下a>时开口向上a<时开口向下a>时启齿向上y轴y轴x=hx=hy=ax2+bx+ca<时开口向下x=-(-,)最大值专题一:二次函数的概念、图象和性质1.二次函数y=ax2+bx+c的图象如图所示,那么abc,b2-4ac,2a+b,a+b+c这四个代数式中,值为正数的有(B)A.4个B.3个C.2个D.1个2.二次函数y=ax2+bx+c与一次函数y=ax+c在同一坐标系中的图象可能是(C)3.如图,已知二次函数y 1=ax2+bx+c与一次函数y2=kx+m的图象相交于A(-2,4),B(8,2),则能使y1>y2成立的x的取值范围是x<-2或x>8.【方法归纳交流】根据抛物线的开口方向判断a的正负;根据抛物线与y轴的交点判断c的值;若抛物线的对称轴在y 轴左侧,则a与b同号,若抛物线的对称轴在y轴右侧,则a与b异号;根据抛物线与x轴交点的个数判断b2-4ac的符号.专题二:求抛物线的顶点和对称轴4.求抛物线y=x2-4x+5的开口方向、对称轴及顶点坐标.(用两种方法)解:(1)y=(x2-8x+10)=[(x2-8x+16)-16+10]=(x-4)2-3,所以抛物线的开口向上,对称轴是x=4,顶点坐标是(4,-3).(2)对称轴:x=-=4,y最小==-3,顶点坐标为(4,-3).【方法归纳交流】求抛物线的顶点和对称轴一般有两种方法:配方法和公式法.专题三:抛物线的平移5.申明抛物线y=-3x2-6x+8通过如何的平移,可获得抛物线y=-3x2.解:配方:y=-3x2-6x+8=-3(x2+2x-)=-3[(x2+2x+1)-1-]=-3(x+1)2+11,∴抛物线的顶点坐标是(-1,11),∴把抛物线y=-3x2-6x+8先向右平移1个单位长度,再向下平移11个单位长度得到y=-3x2.6.如图,抛物线y=ax2-5ax+4a与x轴相交于点A、B,且过点C(5,4).(1)求a的值和该抛物线顶点P的坐标;(2)请你设计一种平移的方法,使平移后抛物线的顶点落在第二象限,并写出平移后抛物线的解析式.解:(1)把C(5,4)代入y=ax2-5ax+4a,得25a-25a+4a=4。
厦门分校二次函数知识点一、二次函数概念:1.二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。
这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.2. 二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2. ⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项. 二、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质: a 的绝对值越大,抛物线的开口越小。
2. 2y ax c =+的性质:上加下减。
3. ()2y a x h =-的性质:左加右减。
4、()2y a x h k =-+的性质:三、二次函数图象的平移 1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:向右(h >0)【或左(h <0)】平移 |k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向右(h >0)【或左(h <0)】平移|k|个单位向右(h >0)【或左(h <0)】平移|k|个单位向上(k >0)【或下(k <0)】平移|k |个单位向上(k >0)【或向下(k <0)】平移|k |个单位y=a (x-h )2+ky=a (x-h )2y=ax 2+ky=ax 22. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成 m c bx axy +++=2(或m c bx axy -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2 (或c m x b m x a y +-+-=)()(2)四、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++⎪⎝⎭,其中2424b ac b h k a a -=-=,. a 的符号开口方向 顶点坐标 对称轴 性质a >向上()00, y轴x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值0.a < 向下()00,y轴x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值0.a 的符号开口方向 顶点坐标 对称轴 性质a >向上()0c , y轴x >时,y 随x 的增大而增大;0x <时,y 随x 的增大而减小;0x =时,y 有最小值c . 0a < 向下()0c ,y轴x >时,y 随x 的增大而减小;0x <时,y 随x 的增大而增大;0x =时,y 有最大值c .a 的符号开口方向 顶点坐标 对称轴 性质a >向上()0h , X=hx h>时,y 随x 的增大而增大;x h <时,y 随x 的增大而减小;x h=时,y 有最小值0.a < 向下 ()0h ,X=hx h>时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值0.a的符号开口方向 顶点坐标 对称轴 性质a > 向上()h k , X=hx h>时,y 随x 的增大而增大;x h <时,y 随x的增大而减小;x h =时,y 有最小值k .a < 向下 ()h k ,X=hx h>时,y 随x 的增大而减小;x h <时,y 随x 的增大而增大;x h =时,y 有最大值k .厦门分校五、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点).画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.六、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a>-时,y 随x 的增大而增大;当2b x a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a>-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.七、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.八、二次函数的图象与各项系数之间的关系 1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大. 总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02b a-<,即抛物线的对称轴在y 轴左侧;当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02b a ->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a -=,即抛物线的对称轴就是y 轴; 当0b <时,02b a-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置.总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式. 九、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k=-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k=-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称厦门分校2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222by ax bx c a=--+-;()2y a x h k=-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称()2y a x h k=-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.十、二次函数与一元二次方程:1. 二次函数与一元二次方程的关系(二次函数与x 轴交点情况):一元二次方程20ax bx c ++=是二次函数2y ax bx c =++当函数值0y =时的特殊情况. 图象与x 轴的交点个数:① 当240b ac ∆=->时,图象与x 轴交于两点()()1200A x B x ,,,12()x x ≠,其中的12x x ,是一元二次方程()200ax bx c a ++=≠的两根.这两点间的距离2214b ac AB x x a-=-=.② 当0∆=时,图象与x 轴只有一个交点; ③ 当0∆<时,图象与x 轴没有交点.1' 当0a >时,图象落在x 轴的上方,无论x 为任何实数,都有0y >; 2'当0a <时,图象落在x 轴的下方,无论x 为任何实数,都有0y <. 2. 抛物线2y ax bx c =++的图象与y 轴一定相交,交点坐标为(0,)c ; 3. 二次函数常用解题方法总结:⑴ 求二次函数的图象与x 轴的交点坐标,需转化为一元二次方程;⑵ 求二次函数的最大(小)值需要利用配方法将二次函数由一般式转化为顶点式;⑶ 根据图象的位置判断二次函数2y ax bx c =++中a ,b ,c 的符号,或由二次函数中a ,b ,c 的符号判断图象的位置,要数形结合;⑷ 二次函数的图象关于对称轴对称,可利用这一性质,求和已知一点对称的点坐标,或已知与x 轴的一个交点坐标,可由对称性求出另一个交点坐标.⑸ 与二次函数有关的还有二次三项式,二次三项式2(0)ax bx c a ++≠本身就是所含字母x 的二次函数;下面以0a >时为例,揭示二次函数、二次三项式和一元二次方程之间的内在联系:图像参考:y=x 22y=2x 2y=x 2∆>抛物线与x 轴有两个交点二次三项式的值可正、可零、可负一元二次方程有两个不相等实根∆=抛物线与x 轴只有一个交点 二次三项式的值为非负 一元二次方程有两个相等的实数根 0∆<抛物线与x 轴无交点二次三项式的值恒为正 一元二次方程无实数根.y=2(x-4)2-3y=2(x-4)2y=2x 2y=2x 2-4y=2x 2+2y=2x 2y=-2x 2y= -x 2y= -x 22y=-2(x+3)2y=-2(x-3)2y=-2x 2y=3(x+4)2y=3(x-2)2y=3x 2厦门分校十一、函数的应用 二次函数应用⎧⎪⎨⎪⎩刹车距离何时获得最大利润最大面积是多少二次函数考查重点与常见题型1. 考查二次函数的定义、性质,有关试题常出现在选择题中,如:已知以x 为自变量的二次函数2)2(22--+-=m m x m y 的图像经过原点, 则m 的值是2. 综合考查正比例、反比例、一次函数、二次函数的图像,习题的特点是在同一直角坐标系内考查两个函数的图像,试题类型为选择题,如:如图,如果函数b kx y +=的图像在第一、二、三象限内,那么函数12-+=bx kx y 的图像大致是( )y y y y1 10 x o-1 x 0 x 0 -1 x A B C D3. 考查用待定系数法求二次函数的解析式,有关习题出现的频率很高,习题类型有中档解答题和选拔性的综合题,如:已知一条抛物线经过(0,3),(4,6)两点,对称轴为35=x ,求这条抛物线的解析式。