多元统计分析-因子分析案例
- 格式:ppt
- 大小:1.19 MB
- 文档页数:32
一、对我国30个省市自治区农村居民生活水平作聚类分析1、指标选择及数据:为了全面分析我国农村居民的生活状况,主要考虑从收入、消费、就业等几个方面对农村居民的生活状况进行考察。
因此选取以下指标:农村产品价格指数、农村住宅投资、农村居民消费水平、农村居民消费支出、农村居民家庭人均纯收入、耕地面积及农村就业人数。
现从2010年的调查资料中抽取30个样本,指标数据如下:数据来源:《中国统计年鉴2010》.2、将数据进行标准化变换:3、用K-均值聚类法对样本进行分类如下:分四类的情况下,最终分类结果如下:第一类:北京、上海、浙江。
第二类:天津、、辽宁、、福建、甘肃、江苏、广东。
第三类:浙江、河北、内蒙古、吉林、黑龙江、安徽、山东、河南、湖北、四川、云南。
第四类:山西、青海、宁夏、新疆、重庆、贵州、陕西、湖南、广西、江西、。
从分类结果上看,根据2010年的调查数据,第一类地区的农民生活水平较高,第二类属于中等水平,第三类、第四类属于较低水平。
二、判别分析针对以上分类结果进行判别分析。
其中将新疆作作为待判样本。
判别结果如下:**. 错误分类的案例从上可知,只有一个地区判别组和原组不同,回代率为96%。
下面对新疆进行判别:已知判别函数系数和组质心处函数如下:判别函数分别为:Y1=0.18x1 +0.493x2 + 0.087x3 + 1.004x4 + 0.381x5 -0.041x6 -0.631x7Y2=0.398x1+0.687x2 + 0.362x3 + 0.094x4 -0.282x5 + 1.019x6 -0.742x7Y3=0.394x1-0.197x2 + 0.243x3-0.817x4 + 0.565x5-0.235x6 + 0.802x7 将西藏的指标数据代入函数得:Y1=-1.08671Y2=-0.62213Y3=-0.84188计算Y值与不同类别均值之间的距离分别为:D1=138.5182756D2=12.11433124D3=7.027544292D4=2.869979346经过判别,D4最小,所以新疆应归于第四类,这与实际情况也比较相符。
精选全文完整版可编辑修改实验报告主成分分析(综合性实验)(Principal component analysis)实验原理:主成分分析利用指标之间的相关性,将多个指标转化为少数几个综合指标,从而达到降维和数据结构简化的目的。
这些综合指标反映了原始指标的绝大部分信息,通常表示为原始指标的某种线性组合,且综合指标间不相关。
利用矩阵代数的知识可求解主成分。
实验题目一:将彩色胶卷在显影液下处理后在不同情形下曝光,然后通过红、绿、蓝三种滤色片并在高、中、低三种密度下进行测量,每个胶卷有高红、高绿、高蓝、中红、…、低蓝等九个指标(分别记为X1-X9九个变量)。
试验了108个胶卷,由数据已算得如下协差阵:(S2a1)177 179 95 96 53 32 -7 -4 -3419 245 131 181 127 -2 1 4302 60 109 142 4 4 11158 102 42 4 3 2137 96 4 5 6128 2 2 834 31 3339 3948实验要求:(1)试从协差阵出发进行主成分分析;(2)计算方差累积贡献率;(3)作Scree图,并结合(2)的结果确定主成分的个数;(4)试对结果进行解释。
实验题目二:下表中给出了不同国家及地区的男子径赛记录:(t8a6)Country 100m(s) 200m(s)400m(s)800m(min)1500m(min)5000m(min)10,000m(min)Marathon(mins)Argentina 10.39 20.81 46.84 1.81 3.7 14.04 29.36 137.72 Australia 10.31 20.06 44.84 1.74 3.57 13.28 27.66 128.3 Austria 10.44 20.81 46.82 1.79 3.6 13.26 27.72 135.9 Belgium 10.34 20.68 45.04 1.73 3.6 13.22 27.45 129.95 Bermuda 10.28 20.58 45.91 1.8 3.75 14.68 30.55 146.62 Brazil 10.22 20.43 45.21 1.73 3.66 13.62 28.62 133.13 Burma 10.64 21.52 48.3 1.8 3.85 14.45 30.28 139.95 Canada 10.17 20.22 45.68 1.76 3.63 13.55 28.09 130.15 Chile 10.34 20.8 46.2 1.79 3.71 13.61 29.3 134.03 China 10.51 21.04 47.3 1.81 3.73 13.9 29.13 133.53 Columbia 10.43 21.05 46.1 1.82 3.74 13.49 27.88 131.35 Cook Islands 12.18 23.2 52.94 2.02 4.24 16.7 35.38 164.7 Costa Rica 10.94 21.9 48.66 1.87 3.84 14.03 28.81 136.58 Czechoslovakia 10.35 20.65 45.64 1.76 3.58 13.42 28.19 134.32 Denmark 10.56 20.52 45.89 1.78 3.61 13.5 28.11 130.78 Dominican Republic 10.14 20.65 46.8 1.82 3.82 14.91 31.45 154.12 Finland 10.43 20.69 45.49 1.74 3.61 13.27 27.52 130.87 France 10.11 20.38 45.28 1.73 3.57 13.34 27.97 132.3 German (D.R.) 10.12 20.33 44.87 1.73 3.56 13.17 27.42 129.92 German (F.R.) 10.16 20.37 44.5 1.73 3.53 13.21 27.61 132.23 Great Brit.& N. Ireland 10.11 20.21 44.93 1.7 3.51 13.01 27.51 129.13 Greece 10.22 20.71 46.56 1.78 3.64 14.59 28.45 134.6 Guatemala 10.98 21.82 48.4 1.89 3.8 14.16 30.11 139.33 Hungary 10.26 20.62 46.02 1.77 3.62 13.49 28.44 132.58 India 10.6 21.42 45.73 1.76 3.73 13.77 28.81 131.98Indonesia 10.59 21.49 47.8 1.84 3.92 14.73 30.79 148.83 Ireland 10.61 20.96 46.3 1.79 3.56 13.32 27.81 132.35 Israel 10.71 21 47.8 1.77 3.72 13.66 28.93 137.55 Italy 10.01 19.72 45.26 1.73 3.6 13.23 27.52 131.08 Japan 10.34 20.81 45.86 1.79 3.64 13.41 27.72 128.63 Kenya 10.46 20.66 44.92 1.73 3.55 13.1 27.38 129.75 Korea 10.34 20.89 46.9 1.79 3.77 13.96 29.23 136.25 D.P.R Korea 10.91 21.94 47.3 1.85 3.77 14.13 29.67 130.87 Luxembourg 10.35 20.77 47.4 1.82 3.67 13.64 29.08 141.27 Malaysia 10.4 20.92 46.3 1.82 3.8 14.64 31.01 154.1 Mauritius 11.19 22.45 47.7 1.88 3.83 15.06 31.77 152.23 Mexico 10.42 21.3 46.1 1.8 3.65 13.46 27.95 129.2 Netherlands 10.52 20.95 45.1 1.74 3.62 13.36 27.61 129.02 New Zealand 10.51 20.88 46.1 1.74 3.54 13.21 27.7 128.98 Norway 10.55 21.16 46.71 1.76 3.62 13.34 27.69 131.48 Papua New Guinea 10.96 21.78 47.9 1.9 4.01 14.72 31.36 148.22 Philippines 10.78 21.64 46.24 1.81 3.83 14.74 30.64 145.27 Poland 10.16 20.24 45.36 1.76 3.6 13.29 27.89 131.58 Portugal 10.53 21.17 46.7 1.79 3.62 13.13 27.38 128.65 Rumania 10.41 20.98 45.87 1.76 3.64 13.25 27.67 132.5 Singapore 10.38 21.28 47.4 1.88 3.89 15.11 31.32 157.77 Spain 10.42 20.77 45.98 1.76 3.55 13.31 27.73 131.57 Sweden 10.25 20.61 45.63 1.77 3.61 13.29 27.94 130.63 Switzerland 10.37 20.46 45.78 1.78 3.55 13.22 27.91 131.2 Taipei 10.59 21.29 46.8 1.79 3.77 14.07 30.07 139.27 Thailand 10.39 21.09 47.91 1.83 3.84 15.23 32.56 149.9 Turkey 10.71 21.43 47.6 1.79 3.67 13.56 28.58 131.5 USA 9.93 19.75 43.86 1.73 3.53 13.2 27.43 128.22 USSR 10.07 20 44.6 1.75 3.59 13.2 27.53 130.55Western Samoa 10.82 21.86 49 2.02 4.24 16.28 34.71 161.83 (数据来源:1984年洛杉机奥运会IAAF/AFT径赛与田赛统计手册)实验要求:(1)试求主成分,并对结果进行解释;(2)试用方差累积贡献率和Scree图确定主成分的个数;(3)计算各国第一主成分的得分并排名。
因子分析法的经典案例因子分析法是一种常用的多元统计分析方法,它可以帮助研究者发现变量之间的内在关联性,从而揭示数据背后的潜在结构。
在实际应用中,因子分析法被广泛运用于心理学、市场调研、金融分析等领域,为研究者提供了强大的工具和方法。
经典案例一,市场调研。
假设我们要对某种产品的市场需求进行调研,我们可以通过因子分析法来挖掘消费者对产品的偏好和需求。
我们收集了关于产品特性、价格、品牌、包装、口味等多个变量的调查数据,然后运用因子分析法来分析这些变量之间的内在关联性。
通过因子分析,我们可以发现消费者对产品的偏好主要集中在价格和品牌上,而对产品特性和口味的需求相对较低。
这样的分析结果可以为企业制定产品定位、市场推广和定价策略提供重要参考,有助于提升产品竞争力和市场份额。
经典案例二,心理学研究。
在心理学研究中,因子分析法常常被用来分析人格特质、心理健康、情绪状态等多维度数据。
例如,研究者可以通过调查问卷收集被试者的自我评价数据,包括情绪稳定性、社交能力、抑郁倾向等多个方面的变量。
然后,运用因子分析法来探索这些变量之间的内在结构,发现它们之间的共性因子和特质维度。
通过因子分析,我们可以发现这些变量之间的内在联系,揭示出人格特质和情绪状态的潜在结构,为心理学研究提供了重要的数据分析方法和结果解释。
经典案例三,金融分析。
在金融领域,因子分析法被广泛运用于资产组合管理、风险评估、投资决策等方面。
例如,投资者可以通过因子分析法来分析不同资产的收益率变化,挖掘出背后的共性因子和结构性关联性。
通过因子分析,投资者可以发现不同资产之间的相关性和共同波动因子,从而优化资产配置、降低投资风险、提高收益率。
总结。
因子分析法作为一种多元统计分析方法,具有广泛的应用价值和重要的理论意义。
通过以上经典案例的介绍,我们可以看到因子分析法在市场调研、心理学研究、金融分析等领域的实际应用,为研究者提供了强大的工具和方法。
因子分析法的经典案例不仅展示了其在实际问题中的应用效果,也为我们提供了深入理解和掌握这一方法的重要参考。
一、对我国30个省市自治区农村居民生活水平作聚类分析1、指标选择及数据:为了全面分析我国农村居民的生活状况,主要考虑从收入、消费、就业等几个方面对农村居民的生活状况进行考察。
因此选取以下指标:农村产品价格指数、农村住宅投资、农村居民消费水平、农村居民消费支出、农村居民家庭人均纯收入、耕地面积及农村就业人数。
现从2010年的调查资料中抽取30个样本,指标数据如下:数据来源:《中国统计年鉴2010》.2、将数据进行标准化变换:3、用K-均值聚类法对样本进行分类如下:分四类的情况下,最终分类结果如下:第一类:北京、上海、浙江。
第二类:天津、、辽宁、、福建、甘肃、江苏、广东。
第三类:浙江、河北、内蒙古、吉林、黑龙江、安徽、山东、河南、湖北、四川、云南。
第四类:山西、青海、宁夏、新疆、重庆、贵州、陕西、湖南、广西、江西、。
从分类结果上看,根据2010年的调查数据,第一类地区的农民生活水平较高,第二类属于中等水平,第三类、第四类属于较低水平。
二、判别分析针对以上分类结果进行判别分析。
其中将新疆作作为待判样本。
判别结果如下:**. 错误分类的案例从上可知,只有一个地区判别组和原组不同,回代率为96%。
下面对新疆进行判别:已知判别函数系数和组质心处函数如下:判别函数分别为:Y1=0.18x1 +0.493x2 + 0.087x3 + 1.004x4 + 0.381x5 -0.041x6 -0.631x7Y2=0.398x1+0.687x2 + 0.362x3 + 0.094x4 -0.282x5 + 1.019x6 -0.742x7Y3=0.394x1-0.197x2 + 0.243x3-0.817x4 + 0.565x5-0.235x6 + 0.802x7 将西藏的指标数据代入函数得:Y1=-1.08671Y2=-0.62213Y3=-0.84188计算Y值与不同类别均值之间的距离分别为:D1=138.5182756D2=12.11433124D3=7.027544292D4=2.869979346经过判别,D4最小,所以新疆应归于第四类,这与实际情况也比较相符。
因子分析案例在统计学中,因子分析是一种用于探索变量之间关系的多元统计技术。
它旨在识别观察变量之间的共性因素,并将它们组合成更少的几个因子,以便更好地理解数据的结构和特征。
本文将通过一个实际案例来介绍因子分析的应用和分析过程。
案例背景:某公司想要了解员工对工作环境的满意度,为了更好地改善工作条件和提高员工绩效,他们进行了一项调查,涉及到员工的工作压力、工作内容、工作氛围、上级领导等多个方面的问题。
调查共涉及了20个问题,公司希望通过因子分析来探索这些问题之间是否存在一些共性因素。
数据收集:公司通过问卷调查的方式收集了员工对这20个问题的评价,每个问题的评分范围为1-5分,1代表非常不满意,5代表非常满意。
共有300名员工参与了这次调查。
因子分析过程:首先,我们需要进行Kaiser-Meyer-Olkin(KMO)测度和巴特利特球形度检验,以确认数据的适合度。
然后,我们进行主成分分析,提取特征值大于1的因子,并进行因子旋转,以便更好地解释因子。
结果解释:通过因子分析,我们最终提取了4个因子,分别是工作压力、工作内容、工作氛围和上级领导。
这些因子解释了原始变量的70%的方差,说明这4个因子能够很好地概括员工对工作环境的评价。
结论与建议:根据因子分析的结果,公司可以针对不同的因子制定相应的改善措施。
比如针对工作压力较大的员工,可以加强心理健康辅导和压力管理培训;对于工作内容不满意的员工,可以优化工作流程和提供更多的技能培训;而对于工作氛围和上级领导方面的问题,公司可以加强团队建设和领导力培训,以提高员工的满意度和工作绩效。
总结:因子分析为公司提供了一个更全面、更系统的视角来理解员工对工作环境的评价,有助于公司更有针对性地改善工作条件和提高员工满意度。
因子分析不仅可以用于员工满意度调查,还可以应用于市场研究、心理学调查等领域,帮助研究者更好地理解数据的结构和特征。
通过这个案例,我们可以看到因子分析在实际问题中的应用,以及其对于数据分析和决策制定的重要性。
一、对我国30个省市自治区农村居民生活水平作聚类分析1、指标选择及数据:为了全面分析我国农村居民的生活状况,主要考虑从收入、消费、就业等几个方面对农村居民的生活状况进行考察。
因此选取以下指标:农村产品价格指数、农村住宅投资、农村居民消费水平、农村居民消费支出、农村居民家庭人均纯收入、耕地面积及农村就业人数。
现从2010年的调查资料中抽取30个样本,指标数据如2、将数据进行标准化变换:第一类:北京、上海、浙江。
第二类:天津、、辽宁、、福建、甘肃、江苏、广东。
第三类:浙江、河北、内蒙古、吉林、黑龙江、安徽、山东、河南、湖北、四川、云南。
第四类:山西、青海、宁夏、新疆、重庆、贵州、陕西、湖南、广西、江西、。
从分类结果上看,根据2010年的调查数据,第一类地区的农民生活水平较高,第二类属于中等水平,第三类、第四类属于较低水平。
二、判别分析从上可知,只有一个地区判别组和原组不同,回代率为96%。
下面对新疆进行判别:判别函数分别为:Y1=0.18x1 +0.493x2 + 0.087x3 + 1.004x4 + 0.381x5 -0.041x6 -0.631x7Y2=0.398x1+0.687x2 + 0.362x3 + 0.094x4 -0.282x5 + 1.019x6 -0.742x7Y3=0.394x1-0.197x2 + 0.243x3-0.817x4 + 0.565x5-0.235x6 + 0.802x7将西藏的指标数据代入函数得:Y1=-1.08671Y2=-0.62213Y3=-0.84188计算Y值与不同类别均值之间的距离分别为:D1=138.5182756D2=D3=D4=经过判别,D4最小,所以新疆应归于第四类,这与实际情况也比较相符。
三,因子分析:分析数据在上表的基础上去掉两个耕地面积和农村固定资产投资两个指标。
经spss软件分析结果如下:(1)各指标的相关系数阵:从中可以看出,大部分指标的相关系数都比较高,各变量之间的线性关系较明确,能够从中提取公共因子,适合因子分子。
一、对我国30个省市自治区农村居民生活水平作聚类分析1、指标选择及数据:为了全面分析我国农村居民的生活状况,主要考虑从收入、消费、就业等几个方面对农村居民的生活状况进行考察。
因此选取以下指标:农村产品价格指数、农村住宅投资、农村居民消费水平、农村居民消费支出、农村居民家庭人均纯收入、耕地面积及农村就业人数。
现从2010年的调查资料中抽取30个样本,指标数据如下:数据来源:《中国统计年鉴2010》.2、将数据进行标准化变换:3、用K-均值聚类法对样本进行分类如下:分四类的情况下,最终分类结果如下:第一类:北京、上海、浙江。
第二类:天津、、辽宁、、福建、甘肃、江苏、广东。
第三类:浙江、河北、内蒙古、吉林、黑龙江、安徽、山东、河南、湖北、四川、云南。
第四类:山西、青海、宁夏、新疆、重庆、贵州、陕西、湖南、广西、江西、。
从分类结果上看,根据2010年的调查数据,第一类地区的农民生活水平较高,第二类属于中等水平,第三类、第四类属于较低水平。
二、判别分析针对以上分类结果进行判别分析。
其中将新疆作作为待判样本。
判别结果如下:**. 错误分类的案例从上可知,只有一个地区判别组和原组不同,回代率为96%。
下面对新疆进行判别:已知判别函数系数和组质心处函数如下:判别函数分别为:Y1=0.18x1 +0.493x2 + 0.087x3 + 1.004x4 + 0.381x5 -0.041x6 -0.631x7Y2=0.398x1+0.687x2 + 0.362x3 + 0.094x4 -0.282x5 + 1.019x6 -0.742x7Y3=0.394x1-0.197x2 + 0.243x3-0.817x4 + 0.565x5-0.235x6 + 0.802x7 将西藏的指标数据代入函数得:Y1=-1.08671Y2=-0.62213Y3=-0.84188计算Y值与不同类别均值之间的距离分别为:D1=138.5182756D2=12.11433124D3=7.027544292D4=2.869979346经过判别,D4最小,所以新疆应归于第四类,这与实际情况也比较相符。
一、对我国30个省市自治区农村居民生活水平作聚类分析1、指标选择及数据:为了全面分析我国农村居民的生活状况,主要考虑从收入、消费、就业等几个方面对农村居民的生活状况进行考察。
因此选取以下指标:农村产品价格指数、农村住宅投资、农村居民消费水平、农村居民消费支出、农村居民家庭人均纯收入、耕地面积及农村就业人数。
现从2010年的调查资料中抽取30个样本,指标数据如下:数据来源:《中国统计年鉴2010》.2、将数据进行标准化变换:3、用K-均值聚类法对样本进行分类如下:分四类的情况下,最终分类结果如下:第一类:北京、上海、浙江。
第二类:天津、、辽宁、、福建、甘肃、江苏、广东。
第三类:浙江、河北、内蒙古、吉林、黑龙江、安徽、山东、河南、湖北、四川、云南。
第四类:山西、青海、宁夏、新疆、重庆、贵州、陕西、湖南、广西、江西、。
从分类结果上看,根据2010年的调查数据,第一类地区的农民生活水平较高,第二类属于中等水平,第三类、第四类属于较低水平。
二、判别分析针对以上分类结果进行判别分析。
其中将新疆作作为待判样本。
判别结果如下:**. 错误分类的案例从上可知,只有一个地区判别组和原组不同,回代率为96%。
下面对新疆进行判别:已知判别函数系数和组质心处函数如下:判别函数分别为:Y1=0.18x1 +0.493x2 + 0.087x3 + 1.004x4 + 0.381x5 -0.041x6 -0.631x7Y2=0.398x1+0.687x2 + 0.362x3 + 0.094x4 -0.282x5 + 1.019x6 -0.742x7Y3=0.394x1-0.197x2 + 0.243x3-0.817x4 + 0.565x5-0.235x6 + 0.802x7 将西藏的指标数据代入函数得:Y1=-1.08671Y2=-0.62213Y3=-0.84188计算Y值与不同类别均值之间的距离分别为:D1=138.5182756D2=12.11433124D3=7.027544292D4=2.869979346经过判别,D4最小,所以新疆应归于第四类,这与实际情况也比较相符。