2[1].1.2离散型随机变量的分布列(第二课时)
- 格式:ppt
- 大小:682.04 KB
- 文档页数:20
2.1.2 离散型随机变量的分布列(一)学习目标 1.理解取有限个值的离散型随机变量及其分布列的概念.2.了解分布列对于刻画随机现象的重要性.3.掌握离散型随机变量分布列的表示方法和性质.知识点 离散型随机变量的分布列思考 掷一枚骰子,所得点数为X ,则X 可取哪些数字?X 取不同的值时,其概率分别是多少?你能用表格表示X 与P 的对应关系吗? 答案 (1)x =1,2,3,4,5,6,概率均为16.(2)X 与P 的对应关系为梳理 (1)离散型随机变量的分布列的概念一般地,若离散型随机变量X 可能取的不同值为x 1,x 2,…,x i ,…,x n ,X 取每一个值x i (i =1,2,…,n )的概率P (X =x i )=p i ,以表格的形式表示如下:此表称为离散型随机变量X 的概率分布列,简称为X 的分布列. (2)离散型随机变量的分布列的性质 ①p i ≥0,i =1,2,3,…,n ;② i =1np i =1.1.在离散型随机变量分布列中每一个可能值对应的概率可以为任意的实数.( × ) 2.在离散型随机变量分布列中,在某一范围内取值的概率等于它取这个范围内各值的概率之积.( × )3.在离散型随机变量分布列中,所有概率之和为1.( √ )类型一 离散型随机变量分布列的性质例1 设随机变量X 的分布列为P ⎝⎛⎭⎫X =k5=ak (k =1,2,3,4,5). (1)求常数a 的值; (2)求P ⎝⎛⎭⎫X ≥35; (3)求P ⎝⎛⎭⎫110<X <710. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率解 (1)由a +2a +3a +4a +5a =1,得a =115.(2)∵P ⎝⎛⎭⎫X =k 5=115k (k =1,2,3,4,5), ∴P ⎝⎛⎭⎫X ≥35=P ⎝⎛⎭⎫X =35+P ⎝⎛⎭⎫X =45+P (X =1)=315+415+515=45. (3)当110<X <710时,只有X =15,25,35时满足,故P ⎝⎛⎭⎫110<X <710 =P ⎝⎛⎭⎫X =15+P ⎝⎛⎭⎫X =25+P ⎝⎛⎭⎫X =35 =115+215+315=25. 反思与感悟 利用分布列及其性质解题时要注意以下两个问题 (1)X 的各个取值表示的事件是互斥的.(2)不仅要注意∑i =1np i =1,而且要注意p i ≥0,i =1,2,…,n .跟踪训练1 (1)设随机变量ξ只能取5,6,7,…,16这12个值,且取每一个值概率均相等,若P (ξ<x )=112,则x 的取值范围是________.(2)设随机变量X 的分布列为P (X =i )=k2i (i =1,2,3),则P (X ≥2)=________.考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 (1)(5,6] (2)37解析 (1)由条件知P (ξ=k )=112,k =5,6,…,16, P (ξ<x )=112,故5<x ≤6.(2)由已知得随机变量X 的分布列为∴k 2+k 4+k 8=1,∴k =87. ∴P (X ≥2)=P (X =2)+P (X =3)=k 4+k 8=27+17=37.类型二 求离散型随机变量的分布列命题角度1 求离散型随机变量y =f (ξ)的分布列 例2 已知随机变量ξ的分布列为分别求出随机变量η1=12ξ,η2=ξ2的分布列.考点 离散型随机变量分布列的性质及应用 题点 两个相关的随机变量分布列的求法解 由η1=12ξ知,对于ξ取不同的值-2,-1,0,1,2,3时,η1的值分别为-1,-12,0,12,1,32, 所以η1的分布列为由η2=ξ2知,对于ξ的不同取值-2,2及-1,1,η2分别取相同的值4与1,即η2取4这个值的概率应是ξ取-2与2的概率112与16的和,η2取1这个值的概率应是ξ取-1与1的概率14与112的和,所以η2的分布列为反思与感悟 (1)若ξ是一个随机变量,a ,b 是常数,则η=aξ+b 也是一个随机变量,推广到一般情况有:若ξ是随机变量,f (x )是连续函数或单调函数,则η=f (ξ)也是随机变量,也就是说,随机变量的某些函数值也是随机变量,并且若ξ为离散型随机变量,则η=f (ξ)也为离散型随机变量.(2)已知离散型随机变量ξ的分布列,求离散型随机变量η=f (ξ)的分布列的关键是弄清楚ξ取每一个值时对应的η的值,再把η取相同的值时所对应的事件的概率相加,列出概率分布列即可.跟踪训练2 已知随机变量ξ的分布列为分别求出随机变量η1=-ξ+12,η2=ξ2-2ξ的分布列.考点 离散型随机变量分布列的性质及应用 题点 两个相关随机变量分布列的求法解 由η1=-ξ+12,对于ξ=-2,-1,0,1,2,3,得η1=52,32,12,-12,-32,-52,相应的概率值为112,14,13,112,16,112.故η1的分布列为由η2=ξ2-2ξ,对于ξ=-2,-1,0,1,2,3,得η2=8,3,0,-1,0,3. 所以P (η2=8)=112,P (η2=3)=14+112=13,P (η2=0)=13+16=12,P (η2=-1)=112.故η2的分布列为命题角度2 利用排列、组合求分布列例3 某班有学生45人,其中O 型血的有10人,A 型血的有12人,B 型血的有8人,AB 型血的有15人.现从中抽1人,其血型为随机变量X ,求X 的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列解 将O ,A ,B ,AB 四种血型分别编号为1,2,3,4, 则X 的可能取值为1,2,3,4.P (X =1)=C 110C 145=29,P (X =2)=C 112C 145=415,P (X =3)=C 18C 145=845,P (X =4)=C 115C 145=13.故X 的分布列为反思与感悟 求离散型随机变量分布列的步骤 (1)首先确定随机变量X 的取值; (2)求出每个取值对应的概率; (3)列表对应,即为分布列.跟踪训练3 一袋中装有5个球,编号分别为1,2,3,4,5.在袋中同时取3个球,以X 表示取出的3个球中的最小号码,写出随机变量X 的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 解 随机变量X 的可能取值为1,2,3.当X =1时,即取出的3个球中最小号码为1,则其他2个球只能在编号为2,3,4,5的4个球中取,故有P (X =1)=C 24C 35=610=35;当X =2时,即取出的3个球中最小号码为2,则其他2个球只能在编号为3,4,5的3个球中取,故有P (X =2)=C 23C 35=310;当X =3时,即取出的3个球中最小号码为3,则其他2个球只能是编号为4,5的2个球,故有P (X =3)=C 22C 35=110.因此,X 的分布列为类型三 离散型随机变量的分布列的综合应用例4 袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为17,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取,……,取后不放回,直到两人中有一人取到白球时终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数.(1)求袋中原有的白球的个数; (2)求随机变量ξ的分布列; (3)求甲取到白球的概率.考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用 解 (1)设袋中原有n 个白球,由题意知 17=C 2nC 27=n (n -1)27×62=n (n -1)7×6, 可得n =3或n =-2(舍去),即袋中原有3个白球. (2)由题意,ξ的可能取值为1,2,3,4,5. P (ξ=1)=37;P (ξ=2)=4×37×6=27;P (ξ=3)=4×3×37×6×5=635;P (ξ=4)=4×3×2×37×6×5×4=335;P (ξ=5)=4×3×2×1×37×6×5×4×3=135.所以ξ的分布列为(3)因为甲先取,所以甲只有可能在第一次、第三次和第五次取到白球,记“甲取到白球”为事件A ,则P (A )=P (ξ=1)+P (ξ=3)+P (ξ=5)=2235.反思与感悟 求离散型随机变量的分布列,首先要根据具体情况确定ξ的取值情况,然后利用排列、组合与概率知识求出ξ取各个值的概率,即必须解决好两个问题,一是求出ξ的所有取值,二是求出ξ取每一个值时的概率.跟踪训练4 北京奥运会吉祥物由5个“中国福娃”组成,分别叫贝贝、晶晶、欢欢、迎迎、妮妮.现有8个相同的盒子,每个盒子中放一只福娃,每种福娃的数量如下表:从中随机地选取5只.(1)求选取的5只恰好组成完整的“奥运会吉祥物”的概率;(2)若完整的选取奥运会吉祥物记100分;若选出的5只中仅差一种记80分;差两种记60分;以此类推,设X 表示所得的分数,求X 的分布列. 考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用解 (1)选取的5只恰好组成完整的“奥运会吉祥物”的概率P =C 12·C 13C 58=656=328.(2)X 的取值为100,80,60,40.P (X =100)=C 12·C 13C 58=328,P (X =80)=C 23(C 22·C 13+C 12·C 23)+C 33(C 22+C 23)C 58=3156, P (X =60)=C 13(C 22·C 23+C 12·C 33)+C 23·C 33C 58=1856=928, P (X =40)=C 22·C 33C 58=156.所以X 的分布列为1.已知随机变量X 的分布列如下:则P (X =10)等于( ) A.239 B.2310 C.139D.1310 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 C解析 P (X =10)=1-23-…-239=139.2.已知随机变量X 的分布列如下表所示,其中a ,b ,c 成等差数列,则P (|X |=1)等于( )A.13 B.14 C.12D.23考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 D解析 ∵a ,b ,c 成等差数列,∴2b =a +c . 由分布列的性质得a +b +c =3b =1,∴b =13.∴P (|X |=1)=P (X =1)+P (X =-1) =1-P (X =0)=1-13=23.3.已知随机变量X 的分布列如下表(其中a 为常数):则下列计算结果错误的是( ) A .a =0.1 B .P (X ≥2)=0.7 C .P (X ≥3)=0.4 D .P (X ≤1)=0.3考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 C解析 易得a =0.1,P (X ≥3)=0.3,故C 错误. 4.设ξ是一个离散型随机变量,其分布列为则P (ξ≤0)=________.考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案2-12解析 由分布列的性质,得1-2q ≥0,q 2≥0, 12+(1-2q )+q 2=1, 所以q =1-22,q =1+22(舍去). P (ξ≤0)=P (ξ=-1)+P (ξ=0) =12+1-2×⎝⎛⎭⎫1-22=2-12. 5.将一枚骰子掷两次,求两次掷出的最大点数ξ的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 解 由题意知ξ=i (i =1,2,3,4,5,6), 则P (ξ=1)=1C 16C 16=136;P(ξ=2)=3C16C16=336=112;P(ξ=3)=5C16C16=5 36;P(ξ=4)=7C16C16=7 36;P(ξ=5)=9C16C16=936=14;P(ξ=6)=11C16C16=1136.所以抛掷两次掷出的最大点数构成的分布列为1.离散型随机变量的分布列,不仅能清楚地反映其所取的一切可能的值,而且能清楚地看到取每一个值时的概率的大小,从而反映了随机变量在随机试验中取值的分布情况.2.一般地,离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和.一、选择题1.设随机变量X等可能取值1,2,3,…,n,如果P(X<4)=0.3,那么()A.n=3 B.n=4C.n=10 D.n=9考点离散型随机变量分布列的性质及应用题点由分布列的性质求参数答案 C解析由题意知P(X<4)=3P(X=1)=0.3,∴P(X=1)=0.1,又nP(X=1)=1,∴n=10.2.若随机变量η的分布列如下:则当P(η<x)=0.8时,实数x的取值范围是()A.x≤1 B.1≤x≤2C .1<x ≤2D .1≤x <2考点 离散型随机变量分布列的性质及应用 题点 由分布列的性质求参数 答案 C解析 由分布列知,P (η=-2)+P (η=-1)+P (η=0)+P (η=1) =0.1+0.2+0.2+0.3=0.8, ∴P (η<2)=0.8,故1<x ≤2.3.若随机变量X 的概率分布列为P (X =n )=an (n +1)(n =1,2,3,4),其中a 是常数,则P ⎝⎛⎭⎫12<X <52的值为( ) A.23 B.34 C.45 D.56考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 D解析 ∵P (X =1)+P (X =2)+P (X =3)+P (X =4) =a ⎝⎛⎭⎫1-15=1,∴a =54. ∴P ⎝⎛⎭⎫12<X <52=P (X =1)+P (X =2)=a 1×2+a 2×3=a ⎝⎛⎭⎫1-13=54×23=56. 4.随机变量ξ的分布列如下:其中a ,b ,c 成等差数列,则函数f (x )=x 2+2x +ξ有且只有一个零点的概率为( ) A.16 B.13 C.12 D.56考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 B解析 由题意知⎩⎪⎨⎪⎧2b =a +c ,a +b +c =1,解得b =13.∵f (x )=x 2+2x +ξ有且只有一个零点, ∴Δ=4-4ξ=0,解得ξ=1, ∴P (ξ=1)=13.5.设离散型随机变量X 的分布列为若随机变量Y =X -2,则P (Y =2)等于( ) A .0.3 B .0.4 C .0.6 D .0.7考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 A解析 由0.2+0.1+0.1+0.3+m =1,得m =0.3. 又P (Y =2)=P (X =4)=0.3.6.抛掷2枚骰子,所得点数之和X 是一个随机变量,则P (X ≤4)等于( ) A.16 B.13 C.12 D.23考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 A解析 根据题意,有P (X ≤4)=P (X =2)+P (X =3)+P (X =4).抛掷两枚骰子,按所得的点数共36个基本事件,而X =2对应(1,1),X =3对应(1,2),(2,1),X =4对应(1,3),(3,1),(2,2). 故P (X =2)=136,P (X =3)=236=118,P (X =4)=336=112,所以P (X ≤4)=136+118+112=16.7.已知随机变量ξ只能取三个值x 1,x 2,x 3,其概率依次成等差数列,则该等差数列的公差的取值范围是( ) A.⎣⎡⎦⎤0,13 B.⎣⎡⎦⎤-13,13 C .[-3,3]D .[0,1] 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求参数 答案 B解析 设随机变量ξ取x 1,x 2,x 3的概率分别为a -d ,a ,a +d ,则由分布列的性质,得(a -d )+a +(a +d )=1,故a =13.由⎩⎨⎧13-d ≥0,13+d ≥0,解得-13≤d ≤13.二、填空题8.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则P ⎝⎛⎭⎫13≤ξ≤53=________. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 47解析 设二级品有k 个,则一级品有2k 个,三级品有k 2个,总数为72k 个.∴ξ的分布列为∴P ⎝⎛⎭⎫13≤ξ≤53=P (ξ=1)=47. 9.由于电脑故障,使得随机变量X 的分布列中部分数据丢失,以□代替,其表如下:根据该表可知X 取奇数值时的概率是________. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案 0.6解析 由离散型随机变量的分布列的性质,可求得P (X =3)=0.25,P (X =5)=0.15,故X 取奇数值时的概率为P (X =1)+P (X =3)+P (X =5)=0.20+0.25+0.15=0.6.10.把3枚骰子全部掷出,设出现6点的骰子个数是X ,则有P (X <2)=________. 考点 离散型随机变量分布列的性质及应用 题点 根据分布列的性质求概率 答案2527解析 P (X <2)=P (X =0)+P (X =1)=5363+C 13×5263=2527.11.将3个小球任意地放入4个大玻璃杯中,一个杯子中球的最多个数记为X ,则X 的分布列是________.考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 答案解析 由题意知X =1,2,3. P (X =1)=A 3443=38;P (X =2)=C 23A 2443=916;P (X =3)=A 1443=116.∴X 的分布列为三、解答题12.设S 是不等式x 2-x -6≤0的解集,整数m ,n ∈S .(1)设“使得m +n =0成立的有序数组(m ,n )”为事件A ,试列举事件A 包含的基本事件; (2)设ξ=m 2,求ξ的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列 解 (1)由x 2-x -6≤0, 得-2≤x ≤3, 即S ={x |-2≤x ≤3}.由于m ,n ∈Z ,m ,n ∈S 且m +n =0, 所以事件A 包含的基本事件为(-2,2),(2,-2),(-1,1),(1,-1),(0,0). (2)由于m 的所有不同取值为-2,-1,0,1,2,3, 所以ξ=m 2的所有不同取值为0,1,4,9,且有 P (ξ=0)=16,P (ξ=1)=26=13,P (ξ=4)=26=13,P (ξ=9)=16.故ξ的分布列为13.将一枚骰子掷两次,第一次掷出的点数减去第二次掷出的点数的差为X ,求X 的分布列. 考点 离散型随机变量的分布列 题点 求离散型随机变量的分布列解 第一次掷出的点数与第二次掷出的点数的差X 的可能取值为-5,-4,-3,-2,-1,0,1,2,3,4,5, 则P (X =-5)=136,P (X =-4)=236=118,…, P (X =5)=136.故X 的分布列为四、探究与拓展14.袋中有4个红球,3个黑球,从袋中任取4个球,取到1个红球得1分,取到1个黑球得3分,记得分为随机变量ξ,则P (ξ≤6)=________. 考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用 答案1335 解析 取出的4个球中红球的个数可能为4,3,2,1,相应的黑球个数为0,1,2,3,其得分ξ=4,6,8,10,则P (ξ≤6)=P (ξ=4)+P (ξ=6)=C 44×C 03C 47+C 34×C 13C 47=1335. 15.在一次购物抽奖活动中,假设某10张奖券中有一等奖奖券1张,可获价值50元的奖品;有二等奖奖券3张,每张可获价值10元的奖品;其余6张没有奖.某顾客从此10张奖券中任抽2张,求: (1)该顾客中奖的概率;(2)该顾客获得的奖品总价值X 的分布列,并求出P (5≤X ≤25)的值.考点 离散型随机变量分布列的性质及应用 题点 排列、组合知识在分布列中的应用 解 (1)该顾客中奖的概率P =1-C 26C 210=1-13=23.(2)X 的可能取值为0,10,20,50,60. P (X =0)=C 26C 210=13,P (X =10)=C 13C 16C 210=25,P (X =20)=C 23C 210=115,P (X =50)=C 11C 16C 210=215,P (X =60)=C 11C 13C 210=115.故随机变量X 的分布列为所以P (5≤X ≤25)=P (X =10)+P (X =20)=25+115=715.。
?两点分布和超几何分布?教学设计鄞州区姜山中学蒋自佳一、教学内容解析本课题来自人教A版选修2-3第二章?随机变量及其分布?2.1?离散型随机变量及其分布列?第二课时,主要内容是学习两点分布和超几何分布模型。
两点分布是随机变量只有0和1两种结果的分布列,是最简单的分布列,也是之后学习二项分布的根底,起着承上启下的作用。
超几何分布是由有限个物体中抽出n个物体,成功抽出指定种类的物件的次数〔不归还〕。
两点分布和超几何分布列是离散型随机变量分布列两种重要模型,这局部内容以实际情境为主,需要学生具备一定建模才能,建立适宜的分布列,表达数学来源于生活并效劳于生活,促使学生在学习理论中形成和开展数学应用意识。
二、教学目的设置根据教材分析和课标要求,确定如下教学目的:1、知识与技能:掌握两点分布和超几何分布根本概念,能解决与两点分布和超几何分布相关概率问题。
2、过程与方法:学生已具有一定的分析解决抽象问题才能,通过设立详细问题情境,老师启发引导,归纳总结两点分布和超几何分布问题概念和解决规律,培养学生总结探究才能。
3、情感、态度与价值观:通过师生共同参与详细问题的分析,总结探究解决问题的方法,在循序渐进过程中对问题分析和逐步深化,激发学生学习兴趣。
根据上述目的,教学需要上力求表达六大核心素养:数学抽象,逻辑推理,数学建模,数学运算,直观想象和数据分析。
三、学生学情分析1、认知根底:学生在必修3中已经学习了有关概率统计的根底知识,利用选修2-3第一章计数原理与排列组合知识可以解决古典概型的概率,在选修2-3第二章第一课时学习了随机变量、离散型随机变量的概念,分布列概念和性质,可以解决简单的分布列问题,但学生对随机变量,离散型随机变量概念理解不够深化,求分布列过程还不纯熟。
2、才能储藏:学生可以利用已有的概率统计知识解决一些简单问题,思维活泼,初步具备自主分析和探究才能,但考虑不够严谨,容易遗漏,处理抽象问题才能还有待进步。
2.1.2课题:§2.1.1离散型随机变量导学案基础知识1、什么是随机事件?什么是基本事件?2、什么是随机试验?如果试验具有下述特点:试验可以在相同条件下重复进行;每次试验的所有可能结果都是明确可知的,并且不止一个;每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果,它被称为一个随机试验,简称试验。
例如1、某人射击一次,可能命中0环,1环,…,10环等结果,即可能出现的结果可以用数表示;2、某次产品检验,在含有5件次品的100件产品中任意抽取4件,那么其中含有的次品可能是0件, 1件,2件,3件,4件,即可能出现的结果可以用数字表示。
在上面例子中,随机试验有下列特点:①试验的所有可能结果可以用一个数来表示;②每次试验总是恰好出现这些结果中的一个,但在一次试验之前却不能肯定这次试验会出现哪一个结果.学习任务问题1:掷一枚骰子,出现的点数可以用数字1 , 2 ,3,4,5,6来表示.那么掷一枚硬币的结果是否也可以用数字来表示呢?问题2:试归纳随机变量的概念?随机变量常用什么表示?问题3:随机变量和函数有类似的地方吗?随机变量的值域是什么?问题4:一个袋中装有10个红球,5个白球,从中任取4个球,其中所含红球的个数X是一个随机变量,写出随机变量的值域问题5:利用随机变量可以表达一些事件.例如{X=0}表示“抽出0件次品” , {X =4}表示“抽出4件次品”等.你能说出{X< 3 }在这里表示什么事件吗?“抽出 3 件以上次品”又如何用 X 表示呢?问题6:试归纳离散型随机变量的概念?问题7:电灯的寿命X是离散型随机变量吗?为什么?拓展:连续型随机变量: 对于随机变量可能取的值,可以取某一区间内的一切值,这样的变量就叫做连续型随机变量例1.写出下列随机变量可能取的值,并说明随机变量所取的值表示的随机试验的结果(1) 一袋中装有5只同样大小的白球,编号为1,2,3,4,5现从该袋内随机取出3只球,被取出的球的最大号码数ξ;(2) 某单位的某部电话在单位时间内收到的呼叫次数η.例 2. 抛掷两枚骰子各一次,记第一枚骰子掷出的点数与第二枚骰子掷出的点数的差为ξ,试问:“ξ>4”表示的试验结果是什么?达标练习1. 下列随机试验的结果能否用离散型随机变量表示?若能,请写出各随机变量可能的取值并说明这些值所表示的随机试验的结果。
ξ11.1离散型随机变量的分布列(二)授课人:范习昱 时间:5月27日(下午第二节) 地点:多媒体Ⅲ教学目标:1、理解并掌握二项分布与几何分布;2、进一步理解和掌握离散型随机变量的分布列。
教学重点:二项分布与几何分布 教学难点:离散型随机变量的分布列 教学方法:讲练结合,多媒体辅助教学 教学过程: 一、复习回顾1、随机变量与离散型随机变量的概念;2、离散型随机变量的分布列及其两个性质;3、设随机变量ξ的分布列)5,4,3,2,1()5(===k ak kp ξ,(1)求常数a 的值;(2)求)107101(<<ξp二、新课讲授1、二项分布在n 次独立重复试验中某个事件发生的次数ξ是个随机变量,并且也是个离散型随机变量。
如果在一次试验中某个事件发生的概率是p ,那么在n 次独立重复试验中这个事件恰好发生k 次的概率:)1()(p q q p C k p kn k k n -===-ξ ,,,2,1,0n k =于是得到了这个随机变量ξ的概率分布如下:kn kk nqp C -恰好是二项展开式011100)(qp C qp C qp C q p C p q n n nkn k k nn nnnn+++++=+-- 中的第1+k 项),,2,1,0(n k =,故称这样的随机变量ξ服从二项分布,记),(~p n B ξ并记(;,)k k n kn C p q b k n p -=思考:(1)二项分布的概率和是否为1,为什么? (2)请同学们举出二项分布的例子。
二项分布是一种常见的重要概率分布,实际上有很多随机变量都服从二项分布,如:(1)掷一个骰子,得到任一确定点数的概率是61,重复抛掷骰子n 次,得到此确定点数的次数ξ服从二项分布)61,(~n B ξ。
(2)重复抛掷一枚硬币n 次,得到正面向上的次数ξ服从二项分布)21,(~n B ξ。
例1:某人每次射击击中目标的概率是0.2,射击中每次射击的结果是相互独立的,求他在10次射击中击中目标的次数不超过5次的概率(精确到0.01)。
2.1.2离散型随机变量的分布列1.理解取有限值的离散型随机变量及其分布列的概念与性质.2.会求出某些简单的离散型随机变量的分布列.(重点)3.理解两点分布和超几何分布及其推导过程,并能简单的运用.(难点)[基础·初探]教材整理1离散型随机变量的分布列阅读教材P46~P47例1上面倒数第二行,完成下列问题.1.定义一般地,若离散型随机变量X可能取的不同值为x1,x2,…,x i,…,x n,X 取每一个值x i(i=1,2,…,n)的概率P(X=x i)=p i,以表格的形式表示如下:X x1x2…x i…x nP p1p2…p i…p n的概率分布列,简称为的分布列.为了简单起见,也用等式P(X=x i)=p i,i=1,2,…,n表示X的分布列.2.性质(1)p i≥0,i=1,2,…,n;(2)i=1np i=1.1.判断(正确的打“√”,错误的打“×”)(1)在离散型随机变量分布列中,每一个可能值对应的概率可以为任意的实数.()(2)离散型随机变量的分布列的每个随机变量取值对应概率都相等.()(3)在离散型随机变量分布列中,所有概率之和为1.()【解析】(1)×因为在离散型随机变量分布列中每一个可能值对应随机事件的概率均在[0,1]范围内.(2)×因为分布列中的每个随机变量能代表的随机事件,并非都是等可能发生的事件.(3)√由分布列的性质可知,该说法正确.【答案】(1)×(2)×(3)√2.随机变量ξ的分布列为:则ξ【解析】P(ξ为奇数)=P(ξ=1)+P(ξ=3)+P(ξ=5)=215+845+29=2445=815.【答案】8 15教材整理2两个特殊分布阅读教材P47例1上面倒数第一行~P49,完成下列问题.1.两点分布若随机变量X并称p=P(X =1)为成功概率.2.超几何分布一般地,在含有M件次品的N件产品中,任取n件,其中恰有X件次品,则P(X=k)=C k M C n-kN-MC n N,k=0,1,2,…,m,其中m=min{}M,n,且n≤N,M≤N,n,M,N∈N*.PC 0M C n -0N -MC n NC 1M C n -1N -MC n N…C m M C n -mN -MC n N布.1.判断(正确的打“√”,错误的打“×”) (1)随机变量X 只取两个值的分布是两点分布.( )(2)新生儿的性别、投篮是否命中、买到的商品是否为正品,可用两点分布研究.( )(3)从3本物理书和5本数学书中选出3本,记选出的数学书为X 本,则X 服从超几何分布.( )【解析】 (1)× 只有随机变量取0或1的分布才是两点分布. (2)√ 根据两点分布的概念知,该说法正确.(3)√ X 的可能取值为1,2,3,可求得P (X =k )=C k 5C 3-k3C 38(k =0,1,2,3),是超几何分布.【答案】 (1)× (2)√ (3)√2.一批产品分为一、二、三级,其中一级品是二级品的两倍,三级品为二级品的一半,从这批产品中随机抽取一个检验,其级别为随机变量ξ,则P ⎝ ⎛⎭⎪⎫13≤ξ≤53=________.【解析】 设二级品有k 个,∴一级品有2k 个,三级品有k 2个,总数为7k 2个. ∴分布列为ξ 1 2 3 P472717P ⎝ ⎛⎭⎪⎫13≤ξ≤53=P (ξ=1)=47. 【答案】 473.某10人组成兴趣小组,其中有5名团员,从这10人中任选4人参加某种活动,用X表示4人中的团员人数,则P(X=3)=________.【导学号:29472048】【解析】P(X=3)=C35C15C410=521.【答案】521[小组合作型]分布列及其性质的应用设随机变量X的分布列为P(X=i)=ia(i=1,2,3,4),求:(1)P(X=1或X=2);(2)P⎝⎛⎭⎪⎫12<X<72.【精彩点拨】先由分布列的性质求a,再根据X=1或X=2,12<X<72的含义,利用分布列求概率.【自主解答】(1)∵∑i=14p i=1a+2a+3a+4a=1,∴a=10,则P(X=1或X=2)=P(X=1)+P(X=2)=110+210=310.(2)由a=10,得P⎝⎛⎭⎪⎫12<X<72=P(X=1)+P(X=2)+P(X=3)=110+210+310=35.利用分布列及其性质解题时要注意以下两个问题:(1)X的各个取值表示的事件是互斥的.(2)不仅要注意i=1np i=1,而且要注意p i≥0,i=1,2,…,n.[再练一题]1.若离散型随机变量X的分布列为:X 0 1P 4a-13a2+a求常数a【解】由分布列的性质可知:3a2+a+4a-1=1,即3a2+5a-2=0,解得a=13或a=-2,又因为4a-1>0,即a>14,故a≠-2.所以a=13,此时4a-1=13,3a2+a=23.所以随机变量X的分布列为:X 0 1P1323求离散型随机变量的分布列口袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,用X表示取出的最大号码,求X的分布列.【精彩点拨】X的可能取值为3,4,5,6,是离散型随机变量.可以利用组合数公式与古典概型概率公式求各种取值的概率.【自主解答】随机变量X的可能取值为3,4,5,6.从袋中随机取3个球,包含的基本事件总数为C36,事件“X=3”包含的基本事件总数为C33,事件“X=4”包含的基本事件总数为C11C23,事件“X=5”包含的基本事件总数为C11C24,事件“X=6”包含的基本事件总数为C11C25.从而有P(X=3)=C33C36=120,P(X=4)=C11C23C36=320,P(X=5)=C11C24C36=310,P(X=6)=C11C25C36=12,所以随机变量X的分布列为X 345 6P 120320310121.求离散型随机变量的分布列的步骤(1)找出随机变量ξ的所有可能的取值x i(i=1,2,…,n),以及ξ取每个值的意义;(2)求出取每一个值的概率P(ξ=x i)=p i;(3)列出表格.2.求离散型随机变量分布列时应注意的问题(1)确定离散型随机变量ξ的分布列的关键是要搞清ξ取每一个值对应的随机事件,进一步利用排列、组合知识求出ξ取每一个值的概率.(2)在求离散型随机变量ξ的分布列时,要充分利用分布列的性质,这样不但可以减少运算量,还可以验证分布列是否正确.[再练一题]2.将一颗骰子掷两次,求两次掷出的最大点数ξ的分布列.【解】将一颗骰子连掷两次共出现6×6=36种等可能的基本事件,其最大点数ξ可能取的值为1,2,3,4,5,6.P(ξ=1)=1 36,ξ=2包含三个基本事件(1,2),(2,1),(2,2)(其中(x,y)表示第一枚骰子点数为x,第二枚骰子点数为y),所以P(ξ=2)=336=112.同理可求得P(ξ=3)=536,P(ξ=4)=736,P(ξ=5)=14,P(ξ=6)=1136,所以ξ的分布列为ξ12345 6P 136112536736141136两点分布与超几何分布探究1利用随机变量研究一类问题,如抽取的奖券是否中奖,买回的一件产品是否为正品,新生婴儿的性别,投篮是否命中等,这些有什么共同点?【提示】这些问题的共同点是随机试验只有两个可能的结果.定义一个随机变量,使其中一个结果对应于1,另一个结果对应于0,即得到服从两点分布的随机变量.探究2只取两个不同值的随机变量是否一定服从两点分布?【提示】不一定.如随机变量X的分布列由下表给出X 2 5P 0.30.7X探究3在8个大小相同的球中,有2个黑球,6个白球,现从中取3个,求取出的球中白球个数X是否服从超几何分布?超几何分布适合解决什么样的概率问题?【提示】随机变量X服从超几何分布,超几何分布适合解决从一个总体(共有N个个体)内含有两种不同事物A(M个)、B(N—M个),任取n个,其中恰有X 个A的概率分布问题.在一次购物抽奖活动中,假设10张奖券中有一等奖奖券1张,可获价值50元的奖品,有二等奖奖券3张,每张可获价值10元的奖品,其余6张没有奖品.(1)顾客甲从10张奖券中任意抽取1张,求中奖次数X 的分布列; (2)顾客乙从10张奖券中任意抽取2张, ①求顾客乙中奖的概率;②设顾客乙获得的奖品总价值为Y 元,求Y 的分布列.【精彩点拨】 (1)从10张奖券中抽取1张,其结果有中奖和不中奖两种,故X ~(0,1).(2)从10张奖券中任意抽取2张,其中含有中奖的奖券的张数X (X =1,2)服从超几何分布.【自主解答】 (1)抽奖一次,只有中奖和不中奖两种情况,故X 的取值只有0和1两种情况.P (X =1)=C 14C 110=410=25,则P (X =0)=1-P (X =1)=1-25=35.因此X 的分布列为X 0 1 P3525(2)2张奖券中有1张中奖或2张都中奖.故所求概率P =C 14C 16+C 24C 06C 210=3045=23.②Y 的所有可能取值为0,10,20,50,60,且P (Y =0)=C 04C 26C 210=1545=13,P (Y =10)=C 13C 16C 210=1845=25,P (Y =20)=C 23C 06C 210=345=115,P (Y =50)=C 11C 16C 210=645=215,P (Y =60)=C 11C 13C 210=345=115.因此随机变量Y 的分布列为Y 010205060P 13251152151151.两点分布的几个特点(1)两点分布中只有两个对应结果,且两个结果是对立的.(2)由对立事件的概率求法可知,已知P(X=0)(或P(X=1)),便可求出P(X=1)(或P(X=0)).2.解决超几何分布问题的两个关键点(1)超几何分布是概率分布的一种形式,一定要注意公式中字母的范围及其意义,解决问题时可以直接利用公式求解,但不能机械地记忆.(2)超几何分布中,只要知道M,N,n,就可以利用公式求出X取不同k的概率P(X=k),从而求出X的分布列.[再练一题]3.老师要从10篇课文中随机抽3篇让学生背诵,规定至少要背出其中2篇才能及格.某同学只能背诵其中的6篇,试求:(1)抽到他能背诵的课文的数量的概率分布;(2)他能及格的概率.【导学号:29472049】【解】(1)设抽到他能背诵的课文的数量为X,则P(X=r)=C r6C3-r4C310(r=0,1,2,3).所以P(X=0)=C06C34C310=130,P(X=1)=C16C24C310=310,P(X=2)=C26C14C310=12,P(X=3)=C36C04C310=16.所以X的概率分布为X 012 3P 1303101216(2)他能及格的概率P (X ≥2)=P (X =2)+P (X =3) =12+16=23.1.设随机变量ξ的分布列为P (ξ=i )=a ⎝ ⎛⎭⎪⎫13i,i =1,2,3,则a 的值为( ) A .1 B.913 C.2713 D.1113【解析】 由分布列的性质可知:a ⎝ ⎛⎭⎪⎫13+19+127=1,解得a =2713. 【答案】 C2.设某项试验的成功率是失败率的2倍,用随机变量ξ描述一次试验的成功次数,则P (ξ=0)等于( )【导学号:29472050】A .0 B.13 C.12 D.23【解析】 设P (ξ=1)=p ,则P (ξ=0)=1-p . 依题意知,p =2(1-p ),解得p =23. 故P (ξ=0)=1-p =13. 【答案】 B3.设随机变量ξ的可能取值为5,6,7,…,16这12个值,且取每个值的概率均相同,则P (ξ>8)=________.【解析】 依题意有P (ξ>8)=112×8=23. 【答案】 234.从装有3个红球,2个白球的袋中随机取2个球,设其中有ξ个红球,则随机变量ξ的分布列为________.高中数学-打印版精心校对完整版【解析】 P (ξ=0)=C 03C 22C 25=110,P (ξ=1)=C 13C 12C 25=610=35,P (ξ=2)=C 23C 02C 25=310.【答案】5.从4名男生和2ξ表示所选3人中女生的人数.(1)求ξ的分布列;(2)求“所选3人中女生人数ξ≤1”的概率. 【解】 (1)ξ可能取的值为0,1,2,服从超几何分布,P (ξ=k )=C k 2·C 3-k4C 36,k =0,1,2.所以,ξ的分布列为(2)由(1)知,“所选3 P (ξ≤1)=P (ξ=0)+P (ξ=1)=45.。
§2.1.1离散型随机变量一、教学目标1.复习古典概型、几何概型有关知识。
2.理解离散型随机变量的概念,学会区分离散型与非离散型随机变量。
3. 理解随机变量所表示试验结果的含义,并恰当地定义随机变量.重点:离散型随机变量的概念,以及在实际问题中如何恰当地定义随机变量.难点:对引入随机变量目的的认识,了解什么样的随机变量便于研究.二、复习引入:1.试验中不能的随机事件,其他事件可以用它们来,这样的事件称为。
所有基本事件构成的集合称为,常用大写希腊字母表示。
2.一次试验中的两个事件叫做互斥事件(或称互不相容事件)。
互斥事件的概率加法公式。
3. 一次试验中的两个事件叫做互为对立事件,事件A的对立事件记作,对立事件的概率公式4.古典概型的两个特征:(1) .(2) .5.概率的古典定义:P(A)= 。
6.几何概型中的概率定义:P(A)= 。
三、预习自测:1.在随机试验中,试验可能出现的结果,并且X是随着试验的结果的不同而的,这样的变量X叫做一个。
常用表示。
2.如果随机变量X的所有可能的取值,则称X为。
四、典例解析:例1写出下列各随机变量可能取得值:(1)抛掷一枚骰子得到的点数。
(2)袋中装有6个红球,4个白球,从中任取5个球,其中所含白球的个数。
(3)抛掷两枚骰子得到的点数之和。
(4)某项试验的成功率为0.001,在n次试验中成功的次数。
(5)某射手有五发子弹,射击一次命中率为0.9,若命中了就停止射击,若不命中就一直射到子弹耗尽.求这名射手的射击次数X的可能取值例2随机变量X为抛掷两枚硬币时正面向上的硬币数,求X的所有可能取值及相应概率。
变式训练一只口袋装有6个小球,其中有3个白球,3个红球,从中任取2个小球,取得白球的个数为X,求X的所有可能取值及相应概率。
例3△ABC中,D,E分别为AB,AC的中点,向△ABC部随意投入一个小球,求小球落在△ADE 中的概率。
五、当堂检测1.将一颗均匀骰子掷两次,不能作为随机变量的是:()(A)两次出现的点数之和;(B)两次掷出的最大点数;(C)第一次减去第二次的点数差;(D)抛掷的次数。
课题:离散型随机变量及分布列一、教学内容分析本节课是普通高中新课程标准实验教科书《数学》(选修2-3)中第二章《随机变量及其分布》第一节“离散型随机变量及其分布列”的第二课时.引入随机变量的目的是研究随机现象发生的统计规律,及所有随机事件发生的概率.离散型随机变量的分布列完全描述了由这个随机变量所刻画的随机现象.对随机变量的概率分布的研究,实现了随机现象数学化的转化.学生在第一课时已经学习了“离散型随机变量”,对离散型随机变量的概念有了一定的认识.了解到建立从随机试验结果到随机变量的映射的目的是将实际问题数量化,便于用数学工具更好地研究问题,进一步体会数学建模的思想. 教师的重要作用就在于培养学生“数学地”观察事物,对现象或问题“数学地”思考,进而合理地量化和转化,把问题“数学化”,用数学的思想方法加以解决.本节课要研究随机变量所表示的随机事件的概率分布情况,即建立“离散型随机变量的分布列”这一数学模型. 离散型随机变量和其对应的概率之间是一种函数关系,因此可以类比函数来研究. 教师引导学生用数学的思维分析问题,用数学的思想方法解决问题. 通过类比函数的表示方法,首先对三个具体实例进行表示,获得对“离散型随机变量的分布列”模型的初步认识,再从这些具体实例中抽象概括出离散型随机变量的分布列的一般定义并进一步探索性质. 在概念得出的过程中,可以培养学生的抽象概括能力. 在此基础上学习两点分布等特殊的分布列,理解分布列对于刻画随机现象的重要性,能够应用分布列解决实际问题.在实际问题的解决中,可以培养学生的数学建模能力.因此,本节课的教学重点:理解离散型随机变量的分布列的概念,理解分布列对于刻画随机现象的重要性,理解两点分布的模型及其应用.二、教学目标设置1.通过具体实例,理解离散型随机变量分布列的概念,理解分布列对于刻画随机现象的重要性;类比函数的几种表示法学习离散型随机变量的表示方法;探索离散型随机变量的性质.2.通过学生的自主探究,进一步体会数学抽象、数学建模的思想,培养学生抽象概括能力.3.通过类比、推广、特殊化等一系列思维活动,体会统计思想,学会用统计思想分析和处理随机现象的基本方法. 在解决实际问题的过程中,同学们加深对有关数学概念本质的理解,认识数学知识与实际的联系,并学会用数学解决一些实际问题.4.通过创设情境调动学生参与课堂的热情,激发学生学习数学的情感.经历数学建模的过程并从中获得成功的体验,锻炼克服困难的意志,建立学习数学的自信心.三、学生学情分析(一)学生程度我所授课的对象是天津市实验中学的学生.学生的水平相对较高,基础知识掌握得较好,学生的理解能力比较强.虽然已经经历了概率的学习,但是对随机变量的学习还处于初期阶段,一些数学方法和数学思想的掌握还有待进一步加强.(二)知识层面1.学生已经学习过概率的知识并掌握了计数原理;2.掌握了离散型随机变量的定义.(三)能力层面1.具有一定的数学抽象的能力;2.具有一定的数学建模的基础.根据以上三个方面的分析,在学生已有的认知基础的条件下,学生可以自主利用古典概型计算概率的公式完成求基本事件的概率.在具体操作过程中,需要老师的引导和帮助.教学难点:理解离散型随机变量分布列的概念,理解分布列对于刻画随机现象的重要性.四、教学策略分析1.《高中数学课程标准》倡导自主探索、动手实践、合作交流等学习方式.根据本节课的教学内容和学生自主学习能力相对比较强的特点,以问题串驱动整个课堂的进行,采用启发、引导、探究相结合的教学方法.2.本节教学内容的脉络是:复习旧知,引入新课——研究实例,抽象概括——探索性质,辨析概念——数学建模,两点分布——实际应用,解决问题——课堂小结,反思提升.首先对上节课已经学习的随机变量的概念加以回顾,并进一步提出后续问题,即“我们更关心随机事件发生的可能性有多大,即随机变量取不同值的概率分布情况是怎样的”,以开门见山的方式提出问题,引发学生的思考.然后对于如何解决这个问题,以三道实际问题“掷骰子”、“掷硬币”、“摸次品”为背景,启发学生寻求解决问题的方法.类比函数的表示方法,研究离散型随机变量分布列的表示方法,进而抽象概括随机变量分布列的概念;探索离散型随机变量的性质,并辨析概念;通过举例,掌握两点分布的分布列模型及其应用;在解决实际问题的过程中,使学生加深对有关数学概念本质的理解,认识数学知识与实际的联系.利用离散型随机变量思想描述和分析某些随机现象,通过类比、推广、特殊化等一系列思维活动,体会统计思想,学会用统计思想分析和处理随机现象的基本方法.3.在探索两点分布和解决实际问题的过程中,通过小组合作交流,同桌协作探究的方式,借助图形计算器等信息技术手段,为学生的数学探究与数学思维提供支持完成调动学生学习的积极性和主动性,培养学生的探究精神及协作意识,使学生真正体会数学抽象、数学建模思想,并能体验成功的喜悦.五教学过程分析教学环节创设情境——概念形成——概念深化——知识应用——总结反思—达标检测附:板书设计。