页岩气水平井分段大型压裂实践
- 格式:ppt
- 大小:1.16 MB
- 文档页数:31
页岩气水平井大型体积压裂套损预测和控制方法李凡华1 董凯2 付盼3 乔磊1 杜卫强1 孙清华11. 中国石油集团工程技术研究院有限公司2. 中国石油长城钻探工程公司3. 中国石油大学(北京)摘 要 大规模体积压裂导致的页岩气水平井套管损坏(简称套损)或套管变形(简称套变)在现场施工过程中一直都存在,极大地影响了现场施工效率和开发项目的经济效益。
为了解决上述问题,通过分析四川盆地威远页岩气区块100余口水平井的压裂资料,探讨了该区页岩气水平井套损或套变的原因和规律,并据分析结果提出了预测和控制的方法。
研究结果表明:①发生套变的主要地质因素为储层地质特点、地应力和压裂规模;②对于岩石物性非均质性特别强、甜点区厚度小、压裂时储层难以吸收大规模体积压裂的“能量”的上奥陶统五峰组水平井段、A靶点附近井段、钻遇井漏的天然裂缝带井段等容易套损井段可依据录井和测井解释来预测套变;③产量受水平段轨迹所控制的页岩气水平井应提高水平井段钻进时的导向水平,让水平井段的轨迹都落在地质气藏工程精确刻画的甜点区;④对于水平井段非均质性强的储层,宜采用“分段完井、分段固井”、优化井网井距、适当降低压裂规模等工程技术措施。
关键词 四川盆地 威远区块 页岩气 水平井压裂 地应力 套管变形 套管损坏 预测控制DOI: 10.3787/j.issn.1000-0976.2019.04.009Prediction and control of casing damage in large volume fracturing ofhorizontal gas wellsLi Fanhua1, Dong Kai2, Fu Pan3,Qiao Lei1, Du Weiqiang1 & Sun Qinghua1(1. CNPC Engineering Technology Research Institute, Beijing 102206, China;2. CNPC Greatwall Drilling Company, Beijing 100101, China;3. China University of Petroleum, Beijing 102249, China)NATUR. GAS IND. VOLUME 39, ISSUE 4, pp.69-75, 4/25/2019. (ISSN 1000-0976; In Chinese)Abstract: The casing damage/deformation in shale gas horizontal wells caused by massive volume fracturing has always been a problem in the process of field construction, and it has a great impact on the field construction efficiency and the economic benefit of development project. To solve this problem, this paper analyzed the fracturing data of more than 100 horizontal wells in the Weiyuan Shale Gas Block of the Sichuan Basin. Then, the causes and laws of casing damage/deformation of shale gas horizontal wells in this block were discussed. And based on the analysis results, a prediction and control method was proposed. And the following research results were obtained. First, the main geological engineering factors for the occurrence of casing deformation are reservoir geological characteristics, ground stress and fracturing scale. Second, mud logging and well logging interpretation can be taken as the basis for casing deformation prediction in the hole sections where casing damage tends to happen easily, e.g. the horizontal section in the Upper Ordovician Wufeng Fm where the petrophysical properties are particularly heterogeneous, the sweet spot areas are thin and the reservoirs can hardly absorb the "energy" from massive volume fracturing, the hole section near the target A, and the hole section with lost circulation in natural fracture interval. Third, as for the shale gas horizontal wells whose production is controlled by the trajectory of horizontal section, it is necessary to in-crease the steering level during the drilling of horizontal section so as to keep its trajectory in the sweet spot areas which are precisely characterized in geological gas reservoir engineering. Fourth, for the horizontal sections in the reservoirs of strong heterogeneity, it is suggested to adopt engineering technical measures of "segment completion, section cementing", optimization of well spacing, and appro-priate reduction of fracturing scale.Keywords: Sichuan Basin; Weiyuan Block; Shale gas; Horizontal well fracturing; Ground stress; Casing deformation; Casing damage; Prediction and control基金项目:国家科技重大专项“大型油气田及煤层气开发”子课题“提高大型体积压裂条件下固井质量与井筒完整性新技术”(编号:2016ZX05022-005)、“长宁—威远页岩气开发示范工程”(编号:2016ZX05062)。
页岩气藏水平井分段多簇压裂与流动数值模拟王伟;姚军;曾青冬;孙海;樊冬艳【摘要】To discover the effect of fracturing parameters on gas production in horizontal wells of shale gas reser-voirs, numerical simulation of staged cluster fracturing and gas flow have been carried out. The model of fracture propagation has taken the effect of stress shadowing into account. The model solved stress and displacement discon-tinuity with displacement discontinuity method, coupled fluid flow in the wellbore and fractures have been solved by Newton iteration method. Taking viscous flow, Knudsen diffusion and adsorption-desorption, shale gas flow after fracturing has been solved by using discrete fracture model. Simulation results show: As to simultaneous propaga-tion of multiple cluster fractures, when fractures spacing become smaller, the deviation angles of side fractures from maximum horizontal principle stress direction become larger, and the width of middle fracture becomes smaller. When fracturing stage number of horizontal well increases, cumulative gas production increases with a decreasing rate. As to a fracturing stage, cumulative gas production of three clusters is larger than that of two clusters. The lar-ger fractures spacing is, the larger cumulative gas production is.%为探究页岩气藏水平井压裂参数对产气量的影响,开展了分段多簇压裂与流动的数值模拟研究。
深层页岩气水平井体积压裂技术一、本文概述随着全球能源需求的不断增长,页岩气作为一种重要的清洁能源,正逐渐在能源领域中占据重要地位。
其中,深层页岩气资源的开发更是当前石油天然气工业面临的重要挑战和机遇。
深层页岩气储层具有低孔、低渗、非均质性强的特点,传统的开发技术难以满足其高效开发的需求。
因此,本文重点探讨了深层页岩气水平井体积压裂技术,旨在通过该技术提高页岩气储层的改造体积和导流能力,从而实现深层页岩气的高效开发。
本文首先介绍了深层页岩气储层的特点和开发难点,阐述了体积压裂技术在深层页岩气开发中的重要性。
随后,详细阐述了深层页岩气水平井体积压裂技术的原理、工艺流程、关键技术和装备,以及在实际应用中的效果分析。
总结了深层页岩气水平井体积压裂技术的发展趋势和未来研究方向,为相关领域的科研人员和技术人员提供参考和借鉴。
通过本文的研究,旨在为深层页岩气的高效开发提供有力的技术支持,推动页岩气产业的可持续发展,为实现全球清洁能源转型做出积极贡献。
二、深层页岩气地质特征深层页岩气储层通常位于地下数千米的深处,其地质特征相较于浅层页岩气储层具有显著的不同。
深层页岩气储层的地层压力普遍较高,这增加了钻井和压裂作业的难度。
深层页岩气储层的岩石矿物成分、有机质含量、热成熟度等参数也会随着深度的增加而发生变化,从而影响页岩气的生成和聚集。
深层页岩气储层中的裂缝系统通常更加复杂,裂缝密度和走向多变,这给体积压裂技术的实施带来了挑战。
为了有效开发深层页岩气资源,需要对储层的地质特征进行深入研究和精细描述,包括储层的厚度、埋深、岩石类型、有机质丰度、成熟度、含气性、物性特征、应力场特征以及裂缝系统等。
还需要对深层页岩气储层的温压系统进行准确预测,以确保钻井和压裂作业的安全和有效。
在此基础上,结合地质特征和工程技术要求,制定适合深层页岩气储层的体积压裂技术方案,包括压裂液的选择、压裂参数的优化、裂缝监测和评估等,以实现深层页岩气的高效开发。
水平井压裂裂缝起裂及裂缝延伸规律探讨摘要:在油气开采中,水平井压裂裂缝是隧道最常见的一种情况,往往是多种因素共同作用的结果,由于裂缝的深度、宽度变化以及裂缝的形成因素均有不同,且根据现场施工条件,对裂缝的处理方法也是不一样的。
严重的情况不仅危害整体性,还会引起稳定性和其它情况的发生,形成恶性循环,都会影响耐久性。
本文主要探讨了水平井压裂裂缝起裂及裂缝延伸规律。
关键词:水平井压裂;裂缝起裂;裂缝延伸规律;探讨引言:由于在日常的生产中,水平井压裂往往具有特殊性,考虑到难度系数较大,我们不能依靠一个人员或者小组,常常必须需要不同团队参与施工。
不论是在哪个段落的水平井压裂,整个队伍都应该是严谨而认真的,做到每一个流程都规范,如果不这样做,施工随时面临着巨大的风险问题。
所以相应地,施工技术也应该着力提升。
团队在施工前就应该努力思考,做好风险备案,在面对各种风险时才能有备无患,实现稳定性的逐步提升。
在正常的作业环境中,施工团队也不能放松警惕,在日常要预先思考应急方案,针对假想的风险作出正确的判断。
整个施工作业完成以后,施工团队要对整体水平井压裂裂缝起裂及裂缝延伸规律进行细致的检查和排查。
1.水平井的优势及压裂在油气开采中,由于水平井所接触油气储层长度比较大,能够很好地增加储层的泄油面积,提高油气产量。
另外在油气开采中,如果储层有天然裂缝,通过水平井可以把天然裂缝贯穿起来,从而更好地对油气资源进行开采。
在油气开采中,如果井筒和最大应力方向相同,就会形成和最小应力方向垂直的纵向裂缝。
对于施工项目的管理的重视,更是防患于未然的关键因素。
很多团队的专业设备少,但是承接的项目却很大,而且数量还在不断地增加,忽视总结经验,也不注意提升自身的技术水平国内许多建设企业,受自身规模影响,更少的企业愿意斥资引进专业设备。
2.水平井压裂裂缝延展规律2.1水平井压裂的两个关键方面:水泥胶结强度在裂缝形成中的作用,以及射孔丛间距对裂缝宽度的影响。
分段压裂技术在水平井完井中的应用效果分析引言:随着现代石油勘探技术的不断发展,水平井完井技术作为一种提高油气开采效率的重要手段,得到了广泛应用。
而分段压裂技术作为水平井完井中的关键环节,对于增加储层的有效油气产能以及改善井壁稳定性起着至关重要的作用。
本文将从应用效果的角度,综合分析分段压裂技术在水平井完井中的作用,探讨其对增产提效的贡献。
一、分段压裂技术的基本原理分段压裂技术是指在水平井完井过程中,根据地层特点和井况参数,将井眼分段进行封隔,并通过压裂装置将压裂液注入井眼,使地层破裂并形成裂缝,以增加储层的有效渗透性。
其基本原理包括:分段封隔、压裂液压力传递、破裂液进入储层、裂缝扩展和固化。
二、分段压裂技术的主要应用效果1. 提高产能:分段压裂技术能够有效增加储层的渗透能力,进而提高油气的产能。
由于水平井完井中利用这一技术进行压裂的裂缝面积更大,壁面覆盖更广,增加了油气流通区域,进一步扩大了有效渗透面积,使得油气能更充分地通过裂缝进入井筒。
2. 高效改造油气藏:一些老旧的油气藏可能由于地质构造复杂、渗透性差等原因导致开采效果不佳,分段压裂技术则可通过破坏或改善储层内部裂缝系统,改变产层渗透性,破坏油气藏中原有较差的渗透阻力,从而提高其开采效果。
3. 降低井壁失稳风险:在水平井完井过程中,井壁稳定性一直是一个值得关注的问题。
分段压裂技术通过将井眼分段封隔,使压裂液的注入能更精确地控制在目标地层内,有效避免或降低井壁失稳的风险,提高水平井完井的成功率和安全性。
4. 优化砂岩酸化作用:砂岩酸化作用是提高石油或天然气开采效果的重要手段。
分段压裂技术可将酸液分别注入各个段位,使其在目标地层内形成酸液作用导向孔隙和裂缝,从而增强砂岩酸化效果,提高开采效率。
三、案例分析以某油气田为例,在其水平井完井中应用了分段压裂技术,取得了显著的应用效果。
通过分段压裂技术,该油气田井筒的有效渗透面积得以大幅度增加,均匀覆盖整个储层。
页岩气水平井分段压裂中井眼清洗技术研究随着能源需求的不断增长,页岩气作为一种新兴的能源形式受到了广泛关注。
然而,由于页岩气储层特殊的地质构造和特性,使得开采难度较大。
为了提高页岩气产能,目前广泛采用的技术是水平井分段压裂。
而井眼清洗作为分段压裂的重要环节之一,对于井壁的清理和孔隙压裂后的砂粒清除非常关键,对于提高产能和延长井间扩散时间具有重要意义。
本文将对页岩气水平井分段压裂中井眼清洗技术进行深入研究。
井眼清洗技术是指在分段压裂前后,通过注入高压酸液或清洁液体,将井眼内的杂质和残留物清除干净,以保证良好的压裂效果。
井眼内可能存在的问题包括钻井液残留、钻井污渍、泥浆滞留、地层溶解和井壁砂粒等。
这些问题会影响到压裂液体的流动性以及后续砂粒的清除情况,从而降低页岩气产能。
钻井液残留对井眼清洗的影响非常大。
一方面,残留的钻井液会与压裂液发生反应,产生沉淀物,影响砂粒的清除效果;另一方面,钻井液中的聚合物和胶体颗粒会黏附在井壁上,降低页岩气的渗透性。
因此,在进行压裂作业前,必须通过地层测试和井眼扫描等手段,对井眼内的钻井液残留情况进行准确评估,选择适当的清洗液体和清洗方法。
在井眼清洗过程中,选择合适的清洗液体也是非常重要的。
传统的清洗方法包括酸化清洗和机械清洗,分别通过注入酸液和清洗液体进行清洗。
然而,这些方法存在一些弊端,如对地层产生损害、清洗效果不理想等。
因此,针对页岩气水平井的特点,研究人员开发了一种新的井眼清洗技术--微波清洗技术。
微波清洗技术是一种利用微波能量进行清洗的方法。
在水平井分段压裂前,通过注入微波能量到井眼内,使井壁上的污渍和残留物受微波作用,从而达到清洗的效果。
相比于传统的酸化清洗和机械清洗,微波清洗技术具有以下优势:首先,微波清洗技术可以针对不同种类的杂质和残留物进行清洗。
由于微波能量具有很强的穿透力和选择性,可以对不同性质的污渍进行有效清除,包括钻井液残留、泥浆滞留等。
其次,微波清洗技术无需使用酸液等强腐蚀性液体,减少对地层的损害。
水平井水力喷射分段酸压技术水平井水力喷射分段酸压技术的工作原理是利用高压水和化学剂的混合物,通过水力喷射工具注入到油层中,实现对油层的改造和渗透性的提高。
该技术的实现方式包括以下几个方面:首先是分段处理,即对油层进行分段注水,每段注入不同的化学剂;其次是水力喷射,即利用高压水力将化学剂注入到油层中;最后是酸化处理,即对油层进行酸化,以改善油层的渗透性和流动性。
分段酸压技术的优点主要体现在以下几个方面:首先是提高采收率,即通过分段注水和酸化处理,可以提高油层的渗透性和流动性,从而提高原油的采收率;其次是降低成本,即通过分段处理和水力喷射技术,可以实现对油层的精确改造,避免了对油层的过度破坏和浪费,从而降低了开发成本;最后是适用范围广,即该技术适用于不同类型和不同渗透性的油层,具有较广的应用范围。
分段酸压技术在油气勘探与开发领域的应用案例很多,其中比较典型的是在页岩气开发中的应用。
页岩气是一种非常规的天然气资源,其开发难度较大,需要采取特殊的技术手段。
分段酸压技术可以通过对页岩气储层的分段注水和酸化处理,提高储层的渗透性和流动性,从而实现对页岩气的有效开发。
分段酸压技术在油田勘探和开发中也得到了广泛的应用,例如在低渗透油田、复杂断块油田和稠油油田的开发中,该技术可以提高原油的采收率,降低开发成本。
对于分段酸压技术的未来展望,我们认为该技术将会有更广泛的应用前景。
随着油气勘探与开发难度的不断增加,分段酸压技术将会在更广泛的领域得到应用。
随着技术的不断进步和应用经验的积累,分段酸压技术的效果将会得到进一步的提升。
未来的研究将会更加注重环境保护和可持续发展,因此分段酸压技术也将会更多的考虑到环保和可持续发展的因素。
分段酸压技术也将会与其他技术相结合,形成更加完整的油气勘探与开发技术体系。
水平井水力喷射分段酸压技术是一种具有重要应用前景的油气勘探与开发技术,可以提高采收率、降低成本,具有广泛的应用范围。
未来,随着技术的不断进步和应用经验的积累,该技术将会得到更广泛的应用和推广。
页岩气密切割分段+高强度加砂压裂新工艺郑有成1 范 宇2 雍 锐2 周小金21.中国石油西南油气田公司2.中国石油西南油气田公司页岩气研究院摘要 目前依靠大型水力压裂工艺技术已经实现了四川盆地长宁地区埋深3 500 m以浅页岩气的规模开发,但随着主体工艺参数的定型,增产效果提高的幅度趋缓,而同期北美地区则依靠缩短簇间距、提高支撑剂加量实现了页岩气单井产量的大幅度增长。
为了给长宁地区页岩气压裂工艺参数优化提供可靠的实践依据,在应用诱导应力及水平井多段多簇产能计算模型分析密切割分段+高强度加砂压裂新工艺提高产能机理的基础上,探讨了压裂增产技术的主要工程因素,根据该区的地质参数制定了压裂新工艺的先导性试验方案并开展了现场试验,然后结合生产实际效果和试验结果对压裂工艺参数进行了优化。
研究结果表明:①缩短主裂缝间隔、增加诱导应力干扰程度、提高人工裂缝对页岩储层的改造程度是密切割分段工艺的技术关键,提高支撑剂加量、降低支撑剂嵌入及破碎对裂缝导流能力衰减的影响程度、确保支撑裂缝具备足够的长期导流能力是高强度加砂大幅度增产的内因;②长宁地区优化后的新工艺实施参数——分段簇间距介于15~20 m,加砂强度介于2.0~2.5 t/m,用液强度介于30~35 m3/m。
结论认为,新工艺提高了长宁地区页岩气井单井产量及开发效益,为提高该区页岩气井的综合开发效益提供了技术支撑。
关键词 页岩气 密切割分段 高强度加砂 诱导应力 套管变形 压窜 四川盆地 长宁地区DOI: 10.3787/j.issn.1000-0976.2019.10.009A new fracturing technology of intensive stage + high-intensity proppant injectionfor shale gas reservoirsZheng Y oucheng1, Fan Yu2, Yong Rui2 & Zhou Xiaojin2(1.PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan 610051, China;2. Shale Gas Research Insti-tute, PetroChina Southwest Oil & Gasfield Company, Chengdu, Sichuan 610051, China)NATUR. GAS IND. VOLUME 39, ISSUE 10, pp.76-81, 10/25/2019. (ISSN 1000-0976; In Chinese) Abstract:So far, large-scale development of shale gas wells above 3 500 m in the Changning Block of the Sichuan Basin has been realized by means of the large-scale hydraulic fracturing technology. As the main process parameters are finally set, however, the im-provement rate of its stimulation effect tends to slow down, while in North America, single-well production is increased significantly by shortening cluster spacing and increasing proppant volumes. In order to provide a reliable practice basis for optimizing the parameters of shale gas fracturing process, this paper analyzed the productivity increasing mechanism of the new fracturing technology of intensive stage + high-intensity proppant injection by virtue of the model for calculating induced stress and multi-stage and multi-cluster productiv-ity of horizontal wells. And accordingly, the main engineering factors of fracturing stimulation technology were ascertained. Then, after the pilot test scheme on this new fracturing technology was formulated according to the geological parameters of this block, the pilot test was carried out. Finally, the fracturing process parameters were optimized based on actual production effects and experimental results. And the following research results were obtained. First, shortening the spacing between main fractures, increasing the interference de-gree of induced stress and improving the stimulation degree of hydraulic fractures to shale reservoirs are the technical keys to the intense stage, and increasing the proppant volume, reducing the influence degree of proppant embedding and breaking on the attenuation of frac-ture conductivity and ensuring the long-term conductivity of propped fractures are the internal causes of significant production increase through high-intensity proppant injection. Second, the optimized implementation parameters of this new process in the Changning Block are as follows. The cluster spacing is in the range of 15-20 m, the proppant injection intensity is 2.0-2.5 t/m, and the liquid consuming intensity is 30-35 m3/m. It is concluded that this new process increases the single-well production of shale gas wells and the development benefit of the Changning Block and provides technical support for improving the comprehensive development benefit of shale gas wells in this block.Keywords: Shale gas; Intensive stage; High-intensity proppant injection; Induced stress; Casing deformation; Fracturing channel; Sich-uan Basin; Changning Block基金项目:国家科技重大专项“长宁—威远页岩气开发示范工程”(编号:2016ZX05062)、中国石油重大科技专项“西南油气田天然气上产 300 亿立方米关键技术研究与应用”(编号: 2016E-0612)。
2020年25期技术创新科技创新与应用Technology Innovation and Application页岩气水平井完井压裂技术分析与研究王茂森(庆阳职业技术学院,甘肃庆阳745000)页岩气是一种蕴藏在页岩层当中的天然气资源,我国的页岩气可开采储量相对较大。
在对页岩气进行开采时,需要钻水平井,为进一步扩大井筒与储层之间的接触面积,可以在水平井完井的过程中,对压裂技术进行合理运用。
下面就页岩气水平井完井压裂技术展开分析探讨。
1页岩气水平井完井及压裂方式的选择1.1与水平井完井相适应的压裂方式水平井作为一种特殊井,它的井斜角接近90毅,采用压裂技术对此类井段进行完井的过程中,必须保证压裂方式与完井方式之间具有良好的适应性,否则可能会对完井效果造成影响。
鉴于此,在应用压裂技术对水平井进行完井时,需要对压裂方式进行合理选择,这是确保完井质量的前提。
现阶段,页岩气水平井段较为常用的完井方式有两种,分别为套管完井和裸眼完井。
(1)与套管完井方式相适应的压裂方式为泵送桥塞,这种压裂方式的特点如下:对裂缝的初始点具有良好的控制效果,可以保证井眼的稳定性,对于生产测井非常有利,成熟度比较高、风险相对较低,不足之处在于等待时间长。
(2)与裸眼方式相适应的压裂方式为封隔器加滑套,该方式的特点体现在如下几个方面:能够节约作业时间,且作业过程中不需要进行固井,井壁上存在的自然裂缝均不会遭到破坏。
实际应用中发现,该方式的缺点较多,比如井壁的稳定性比较差,容易出现坍塌,完井的复杂程度较高,无法对裂缝的位置进行精确控制,一旦出现砂堵,很难处理。
由上述分析不难看出,泵送桥塞分段压裂方式的优点更多、缺点更少,因此,可将该压裂方式作为页岩气水平井完井方式的首选。
1.2泵送桥塞分段压裂在页岩气水平井完井作业中,最为适宜的压裂方式为泵送桥塞,该压裂方式的具体工艺流程如下:第一段采用油管传输射孔,将射孔枪连接到油管柱的下部,送入井下预定深度后,通过调整油管的深度,使射孔枪对准射孔层位后打出射孔弹,从环形空间完成第一段压裂;随后使用凝胶对井筒进行冲洗,借助液体泵将桥塞工具送入井内;引爆座封桥塞,借此来使桥塞与射孔枪相分离,同时进行试压;拖动电缆,将射孔枪带至射孔段后进行射孔,完成射孔后,将电缆从井内拖出,并对第二层进行压裂。
nergy Industry Development我国页岩气压裂技术发展现状及相关政策建议郭妍杉(科罗拉多矿业大学石油工程系,美国科罗拉多州80401)摘要:由于页岩极低的孔隙率与渗透率,页岩气压裂技术是现代页岩气开采及增产过程中的关键技术之一。
本文通过梳理总结重复压裂、同步压裂、水平分段压裂及泡沬压裂技术的特征及应用,针对我国页岩气压裂技术的发展现状和存在问题提出:深化页岩气压裂技术理论基础研究、建立完善页岩气压裂相关法律法规,出台针对页岩气开采行业的财政及金融支持等政策建议。
关键词:页岩气;油气开采;水力压裂技术;泡沫压裂技术;低碳发展中图分类号:F426文献标识码:A文章编号:1003-2355-(2022)02-0052-09Doi:10.3969/j.issn.1003-2355.2022.02.008Abstract:Due to the extremely low permeability and porosity of shale,the exploitation of shale gas is generally performed under high fluid resistance.In order to overcome this problem and increase the overall producing efficiency, fracturing is now one of the most crucial steps during modern shale gas extraction process.This paper elaborates the urgency of promoting the development of natural gas industry,reviews the current research states of shale gas fracturing technology,analyzes the technical characteristics of fracturing,simultaneous fracturing,horizontal well multi-staged fracturing and foam fracturing technology along with domestic and foreign shale gas well fracturing cases,and provides future development suggestions based on current existing problems in China as:Deepening the theoretical research of shale gas fracturing technology,especially in the foam fracturing area;Establishing relevant laws and regulations while lowering the barriers to entry;Introducing government-based financial resources and supporting policies for the shale gas industry.Key words:Shale Gas;Oil and Gas Exploitation;Hydraulic Fracturing Technologies;Foam Fracturing Technology;Low-carbon Development作者简介:郭妍杉,女,硕士研究生,主要研究方向为油气开采与碳捕集、碳利用以及碳封存(CCUS)O52-----------------------------------------------------------------------------------------------------------------------------------------------《中国能源》(月刊) ~~2022年第02期—、引言随着世界各国对能源环保重视程度的逐步提升,天然气作为一种清洁能源,已经逐渐成为国际能源消费的主要组成部分,其消费量也在近些年呈持续上升状态。