支持向量回归机讲义.
- 格式:ppt
- 大小:1.18 MB
- 文档页数:23
支持向量机(SVM)、支持向量机回归(SVR):原理简述及其MATLAB实例一、基础知识1、关于拉格朗日乘子法和KKT条件1)关于拉格朗日乘子法2)关于KKT条件2、范数1)向量的范数2)矩阵的范数3)L0、L1与L2范数、核范数二、SVM概述1、简介2、SVM算法原理1)线性支持向量机2)非线性支持向量机二、SVR:SVM的改进、解决回归拟合问题三、多分类的SVM1. one-against-all2. one-against-one四、QP(二次规划)求解五、SVM的MATLAB实现:Libsvm1、Libsvm工具箱使用说明2、重要函数:3、示例支持向量机(SVM):原理及其MATLAB实例一、基础知识1、关于拉格朗日乘子法和KKT条件1)关于拉格朗日乘子法首先来了解拉格朗日乘子法,为什么需要拉格朗日乘子法呢?记住,有需要拉格朗日乘子法的地方,必然是一个组合优化问题。
那么带约束的优化问题很好说,就比如说下面这个:这是一个带等式约束的优化问题,有目标值,有约束条件。
那么你可以想想,假设没有约束条件这个问题是怎么求解的呢?是不是直接 f 对各个 x 求导等于 0,解 x 就可以了,可以看到没有约束的话,求导为0,那么各个x均为0吧,这样f=0了,最小。
但是x都为0不满足约束条件呀,那么问题就来了。
有了约束不能直接求导,那么如果把约束去掉不就可以了吗?怎么去掉呢?这才需要拉格朗日方法。
既然是等式约束,那么我们把这个约束乘一个系数加到目标函数中去,这样就相当于既考虑了原目标函数,也考虑了约束条件。
现在这个优化目标函数就没有约束条件了吧,既然如此,求法就简单了,分别对x求导等于0,如下:把它在带到约束条件中去,可以看到,2个变量两个等式,可以求解,最终可以得到,这样再带回去求x就可以了。
那么一个带等式约束的优化问题就通过拉格朗日乘子法完美的解决了。
更高一层的,带有不等式的约束问题怎么办?那么就需要用更一般化的拉格朗日乘子法,即KKT条件,来解决这种问题了。
支持向量机(SVM)回归方法定义==================1. 引言----支持向量机(Support Vector Machine, SVM)是一种强大的机器学习算法,可以用于分类和回归问题。
其中,支持向量回归(Support Vector Regression, SVR)是一种用于回归问题的变种。
本文档将详细介绍支持向量回归的定义、模型训练、模型优化、预测与评估及其应用案例。
2. 支持向量机基础----------支持向量机是一种基于统计学习理论的二分类器,其基本模型是定义在特征空间上的间隔最大的线性分类器。
间隔最大使得它有别于感知机,等价于求解一个带约束的凸二次规划问题。
也可以扩展到多分类问题,通过“铰链损失”函数引入一个松弛变量,将二分类问题转化为求解多个二分类器的带约束凸二次规划问题。
3. 支持向量回归----------支持向量回归(SVR)是一种用于回归问题的支持向量机。
与支持向量机不同,支持向量回归的目标是找到一个函数,使得对于给定的输入x,可以预测对应的输出y。
在支持向量回归中,我们通过使用核函数(kernel function)来定义输入空间中的点积,从而在更高维的空间中构建一个超平面,以实现回归目标。
4. 模型训练-------在支持向量回归中,模型训练的过程包括以下步骤:* 数据预处理:对输入数据进行标准化处理,以消除数据间的尺度差异。
* 构建核函数:选择一个核函数,用于定义输入空间中的点积。
常见的核函数包括线性核、多项式核和RBF核等。
* 构建超平面:根据核函数构建超平面,以实现回归目标。
超平面的构建是通过求解一个带约束的凸二次规划问题来实现的。
* 计算间隔:计算超平面与最近的数据点之间的间隔,这个间隔被称为软间隔(soft margin)。
5. 模型优化-------为了提高支持向量回归的性能,可以进行一些模型优化。
以下是一些常用的模型优化方法:* 调整核函数参数:通过调整核函数的参数,可以改变超平面的形状和大小,从而优化模型的性能。
支持向量机回归算法一、概述支持向量机(Support Vector Machine,SVM)是一种基于拉格朗日乘子法(Lagrange multiplier)的最优化算法,它的主要用途是便携式机器学习。
SVM是一种二类分类的形式,通过构建支持向量来实现分类,它最终的目的是找到一条最佳的分类边界,从而使分类准确率最高。
SVM具有优越的特点,它能够自动做出对高维数据的建模,将复杂的高维数据映射到低维特征空间中,并在该空间中形成最佳分类边界,从而较好地拟合数据。
SVM利用结构风险最小化(Structure Risk Minimization,SRM)算法,它对异常数据有较好的抗干扰能力,从而可以获得比传统算法更好的准确率和稳定性。
二、支持向量机回归算法支持向量机回归算法(Support Vector Machine Regression,SVR)是一种基于支持向量机(SVM)的回归算法,它利用SVM模型和核函数来拟合定量数据。
它和传统的线性回归不同,它基于SRM算法,而不是最小均方差的算法。
支持向量机回归算法的工作原理如下:1、首先,根据给定的定量数据,建立关于支持向量机的模型,使其最大化拟合该定量数据;2、然后,根据给定的核函数对支持向量机模型进行参数优化,以获得最佳拟合曲线;3、最后,对拟合曲线的残差进行分析,从而估计出模型中的参数值。
支持向量机回归算法与常规线性回归不同,它能够从高维度数据中抽取有用的信息,从而有效地拟合数据,使其趋于稳定,而且不会受到异常值影响较大。
三、优点1、支持向量机回归具有优越的特点:(1)利用结构风险最小化(SRM)算法,对异常数据有较强的抗干扰能力;(2)自动做出对高维数据的建模,将复杂的高维数据映射到低维特征空间中,并形成最佳分类边界,从而较好地拟合数据;(3)能够反映较多定量数据的相关性;(4)运算简便,速度快,具有较强的收敛性;(5)能够有效地提高预测的准确率。
机器学习技术中的回归问题与支持向量机算法在机器学习领域,回归问题是一类重要而常见的问题。
回归问题的目标是建立一个函数模型,用于预测一个或多个连续的因变量。
在回归问题中,支持向量机(Support Vector Machine,SVM)算法是一种常用且有效的方法。
本文将介绍回归问题的基本概念和支持向量机算法的原理与应用。
首先,回归问题的特点是需要预测的因变量是连续的。
这与分类问题不同,分类问题需要将样本分为离散的类别。
回归问题可以分为线性回归和非线性回归两种类型。
线性回归是指因变量与自变量之间存在线性关系的情况,而非线性回归则涉及到更复杂的因变量与自变量之间的关系。
回归问题的目标是找到一条或多条曲线或者超平面,能够最好地拟合样本数据,从而实现对未知数据的预测。
支持向量机是一种非常强大的机器学习算法,被广泛用于分类和回归问题。
支持向量机的基本思想是通过在特征空间中找到一个最优的超平面,将不同类别的样本分开,实现分类或者回归的目标。
支持向量机的优势在于其对于高维空间和非线性问题的处理能力。
在支持向量机回归中,我们首先将样本数据转换到高维空间。
然后,我们希望通过选取最优的超平面,使得样本点到这个超平面的距离最小,并且预测的结果与真实值的误差最小。
超平面的选择依赖于支持向量,即与超平面最近的一些样本点。
这些支持向量决定了超平面的位置和方向,进而影响预测结果。
支持向量机通过最大化间隔来选择最佳的超平面,从而降低模型的复杂度和预测误差。
支持向量机回归的关键在于选择合适的核函数。
核函数的作用是将原始的样本数据映射到高维空间,从而使得样本在高维空间中容易分开。
常用的核函数包括线性核、多项式核、径向基函数(Radial Basis Function,RBF)等。
选择合适的核函数需要根据数据的特点和问题的需求进行调整。
支持向量机回归的一个重要应用是房价预测。
通过收集各种与房价相关的特征,如卧室数量、浴室数量、房屋面积等,可以建立一个回归模型,通过支持向量机算法预测房屋的价格。
支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,主要用于分类问题,但它也可以用于回归分析。
在本文中,将介绍如何使用支持向量机进行回归分析。
**数据准备**在使用支持向量机进行回归分析之前,首先需要准备数据。
假设我们有一组数据集,包括自变量X和因变量y。
这些数据可以来自各种不同的领域,比如金融、医学、工程等。
在准备数据时,需要确保数据的质量,包括缺失值处理、异常值处理等。
**支持向量机回归模型**支持向量机回归模型与分类模型类似,但是它的目标是拟合一个函数,该函数能够最大化数据点与拟合函数之间的间隔。
在回归分析中,我们的目标是找到一个函数,能够最好地拟合数据点,从而预测因变量y的取值。
支持向量机回归模型的核心在于确定支持向量,这些支持向量是在拟合函数中起决定性作用的数据点。
**选择核函数**在支持向量机回归中,核函数的选择非常重要。
核函数可以将输入空间映射到高维空间,从而使得数据在高维空间中线性可分。
常用的核函数包括线性核、多项式核和高斯核。
在选择核函数时,需要考虑数据的特点和问题的复杂度。
如果数据是线性可分的,则可以选择线性核函数;如果数据的分布比较复杂,则可以选择多项式核或高斯核函数。
**模型训练**一旦选择了核函数,就可以开始训练支持向量机回归模型。
在训练模型时,需要调节模型的超参数,比如正则化参数C和核函数的参数。
这些超参数的选择会影响模型的性能和泛化能力。
通常可以使用交叉验证的方法来选择最优的超参数组合。
**模型评估**在训练完模型之后,需要对模型进行评估。
常用的评估指标包括均方误差(Mean Squared Error,MSE)、均方根误差(Root Mean Squared Error,RMSE)和决定系数(Coefficient of Determination,R-squared)。
这些指标可以帮助我们了解模型的预测能力和拟合程度。
**模型优化**如果模型的表现不理想,可以尝试进行模型优化。
支持向量机支持向量机回归原理简述及其MATLAB实例支持向量机 (Support Vector Machine, SVM) 是一种在监督学习中应用广泛的机器学习算法。
它既可以用于分类问题(SVM),又可以用于回归问题(SVR)。
本文将分别简要介绍 SVM 和 SVR 的原理,并提供MATLAB 实例来展示其应用。
SVM的核心思想是找到一个最优的超平面,使得正样本和负样本之间的间隔最大化,同时保证误分类的样本最少。
这个最优化问题可以转化为一个凸二次规划问题进行求解。
具体的求解方法是通过拉格朗日乘子法,将约束优化问题转化为一个拉格朗日函数的无约束极小化问题,并使用庞加莱对偶性将原问题转化为对偶问题,最终求解出法向量和偏差项。
SVR的目标是找到一个回归函数f(x),使得预测值f(x)和实际值y之间的损失函数最小化。
常用的损失函数包括平方损失函数、绝对损失函数等。
与SVM类似,SVR也可以使用核函数将问题转化为非线性回归问题。
MATLAB实例:下面以一个简单的数据集为例,展示如何使用MATLAB实现SVM和SVR。
1.SVM实例:假设我们有一个二分类问题,数据集包含两个特征和两类样本。
首先加载数据集,划分数据集为训练集和测试集。
```matlabload fisheririsX = meas(51:end, 1:2);Y=(1:100)';Y(1:50)=-1;Y(51:100)=1;randn('seed', 1);I = randperm(100);X=X(I,:);Y=Y(I);X_train = X(1:80, :);Y_train = Y(1:80, :);X_test = X(81:end, :);Y_test = Y(81:end, :);```然后,使用 fitcsvm 函数来训练 SVM 模型,并用 predict 函数来进行预测。
```matlabSVMModel = fitcsvm(X_train, Y_train);Y_predict = predict(SVMModel, X_test);```最后,可以计算分类准确度来评估模型的性能。
支持向量回归原理
支持向量回归(Support Vector Regression,简称SVR)是一种基于支持向量机(Support Vector Machine,简称SVM)的回归算法。
SVR的目标是找到一个超平面,使得该超平面和训练数据之间的间隔最大。
SVR的核心思想是通过对训练样本进行非线性映射,将原始的输入空间映射到一个高维的特征空间。
在特征空间中,SVR 通过寻找一个最优的超平面来拟合训练数据。
最优的超平面应该满足两个条件:一是和训练数据之间的间隔最大,二是和训练数据的损失最小。
SVR通过引入一个松弛变量来允许训练样本与超平面之间存在一定的误差。
同时,SVR采用了惩罚项的概念,即通过设置一个较大的误差容忍度来限制超平面的泛化能力,防止过拟合。
SVR的求解过程可以转化为一个凸优化问题。
可以通过构建拉格朗日函数,将原始问题转化为等价的对偶问题,再通过优化算法求解对偶问题。
求解对偶问题得到的最优解即为SVR 的权重向量和偏置项。
SVR可以通过选择不同的核函数来实现非线性映射。
常用的核函数有线性核、多项式核、高斯核等。
通过调节核函数的参数,可以灵活地调整SVR的拟合能力。
SVR具有较好的泛化能力和鲁棒性,对于小样本、高维数据
以及存在噪声的数据具有较好的适应能力。
它在机器学习和统计学中得到了广泛的应用,特别是在回归问题中取得了良好的效果。
支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,主要用于分类问题。
然而,SVM也可以应用于回归分析。
在本文中,将介绍如何使用支持向量机进行回归分析,并讨论该方法的优缺点以及应用场景。
1. 支持向量机回归简介支持向量机回归是一种通过在样本空间中找到最大间隔超平面来进行回归分析的方法。
与分类问题不同,回归问题的目标是预测一个连续变量的数值而不是一个类别。
在支持向量机回归中,我们试图找到一个超平面,使得所有样本点到该超平面的距离之和最小。
这个距离可以通过损失函数来表示,常见的损失函数包括线性损失函数和平方损失函数。
2. 支持向量机回归的优点支持向量机回归具有以下优点:- 对于高维数据和非线性关系的拟合能力强。
支持向量机回归可以通过核函数将原始数据映射到高维空间,从而能够处理非线性关系。
- 对于异常值的鲁棒性好。
支持向量机回归的损失函数对异常值不敏感,能够有效地避免异常值对回归结果的影响。
- 泛化能力强。
支持向量机回归通过最大化间隔的方式来进行回归分析,能够有效地避免过拟合问题,具有较好的泛化能力。
3. 支持向量机回归的缺点然而,支持向量机回归也存在一些缺点:- 对于大规模数据的处理能力有限。
由于支持向量机回归需要对整个数据集进行训练,因此在处理大规模数据时往往会面临计算时间和内存消耗较大的问题。
- 对于参数的选择较为敏感。
支持向量机回归中需要选择合适的核函数以及调节一些参数,这对于不熟悉算法的人来说可能会比较困难。
4. 支持向量机回归的应用场景支持向量机回归适用于以下场景:- 高维数据集。
当数据集的维度较高时,支持向量机回归能够更好地拟合数据,从而提高回归的准确性。
- 非线性关系。
当数据集呈现出明显的非线性关系时,支持向量机回归能够通过核函数将数据映射到高维空间进行拟合。
- 异常值较多的数据集。
支持向量机回归对异常值不敏感,能够更好地处理含有大量异常值的数据集。
支持向量回归的主要内容
支持向量回归(Support Vector Regression, SVR)是一种监督学习算法,用于解决回归问题。
以下是支持向量回归的主要内容:
1.基本概念:支持向量回归使用支持向量机(SVM)的原理,通
过找到一个超平面来拟合训练数据,以最小化预测误差。
这个超平面被称为决策函数或回归函数。
2.间隔最大化:支持向量回归的目标是找到一个能够最大化间隔
的超平面。
间隔最大化意味着决策函数应该尽可能地远离训练数据中的样本点。
3.ε-不敏感:在支持向量回归中,引入了一个参数ε,称为
ε-不敏感。
当预测误差小于ε时,不会对模型的预测产生影响。
这个参数可以帮助控制模型对噪声的鲁棒性。
4.核函数:在支持向量回归中,使用核函数将输入空间映射到一
个更高维的特征空间,以便找到一个更好的决策函数。
常用的核函数有线性核、多项式核、径向基函数等。
5.软间隔:与硬间隔不同,软间隔允许一些样本点位于间隔的另
一侧,但会为它们分配一个较大的惩罚参数。
这使得模型更加灵活,能够更好地拟合训练数据。
6.参数选择:在支持向量回归中,需要选择合适的参数,如惩罚
参数C和ε-不敏感参数。
这些参数的选择对模型的性能和泛
化能力有很大影响。
通常使用交叉验证等方法来选择合适的参数。
总之,支持向量回归是一种基于支持向量机的回归算法,通过找到一个能够最大化间隔的超平面来拟合训练数据,以最小化预测误差。
它具有较好的鲁棒性和泛化能力,广泛应用于回归问题中。
如何使用支持向量机进行回归分析支持向量机(Support Vector Machine,简称SVM)是一种强大的机器学习算法,广泛应用于分类和回归分析问题。
本文将重点讨论如何使用支持向量机进行回归分析,并介绍其原理、优势以及应用案例。
一、支持向量机回归分析的原理支持向量机回归分析是一种非常有效的非线性回归方法。
其原理基于支持向量机分类算法,通过寻找一个最优的超平面,将样本点分为两个不同的类别。
在回归分析中,我们希望找到一个最优的超平面,使得样本点尽可能地靠近这个超平面。
支持向量机回归分析的核心思想是最大化边界,即找到一个最优的超平面,使得样本点到这个超平面的距离最大。
这个距离被称为“间隔”,而支持向量机回归分析的目标就是找到一个最大间隔的超平面。
为了实现这个目标,我们需要引入一个称为“松弛变量”的概念,用于允许一些样本点落在超平面的误差范围内。
二、支持向量机回归分析的优势1. 非线性回归能力强:支持向量机回归分析能够处理非线性回归问题,通过引入核函数将样本映射到高维空间,从而实现非线性回归分析。
2. 鲁棒性强:支持向量机回归分析对于噪声和异常值具有较好的鲁棒性。
由于它主要关注边界上的样本点,对于一些离群点的影响相对较小。
3. 可解释性强:支持向量机回归分析可以提供具有解释性的结果。
通过观察支持向量和超平面,我们可以了解哪些样本点对于回归结果起到关键作用。
三、支持向量机回归分析的应用案例1. 股票市场预测:支持向量机回归分析可以用于预测股票市场的趋势。
通过历史数据的学习和分析,可以建立一个回归模型,从而预测未来股票价格的变化。
2. 房价预测:支持向量机回归分析可以用于预测房价。
通过分析房屋的各种特征,如面积、位置、周边设施等,可以建立一个回归模型,从而预测房价的变化趋势。
3. 销量预测:支持向量机回归分析可以用于预测产品的销量。
通过分析产品的各种特征,如价格、市场需求、竞争对手等,可以建立一个回归模型,从而预测产品的销量。
支持向量机(Support Vector Machine,SVM)是一种常用的机器学习算法,在分类问题上表现出色。
然而,SVM也可以用于回归分析,即根据已知数据来预测一个连续值。
本文将介绍如何使用支持向量机进行回归分析,并探讨其优缺点及应用场景。
一、支持向量机回归分析的原理支持向量机回归分析的核心思想是寻找一个超平面,使得训练数据点到这个超平面的距离尽可能小,并且在距离之外有尽可能多的点。
这个超平面实际上就是预测模型,而距离则是模型的误差。
在SVM中,距离的计算采用的是间隔(margin)的概念,而不是传统回归分析中的误差平方和。
具体而言,支持向量机回归分析的目标是最小化间隔的同时最大化预测误差的容忍度。
这个过程可以通过求解一个凸优化问题来实现,通常采用的是拉格朗日对偶性及其相关的算法。
这种方法的优点是可以避免局部最优解的问题,而且对于高维数据也有较好的表现。
二、支持向量机回归分析的优点与传统的线性回归模型相比,支持向量机回归分析有几个明显的优点。
首先,SVM可以处理非线性关系,因为支持向量机在寻找超平面时可以通过核函数将数据映射到高维空间,从而更容易找到一个合适的超平面。
其次,SVM对异常值和噪声的鲁棒性较好,因为SVM在训练模型时只使用了支持向量,而对于非支持向量的数据点,其影响较小。
最后,SVM具有较好的泛化能力,即在面对新数据时能够给出较准确的预测结果。
三、支持向量机回归分析的缺点然而,支持向量机回归分析也存在一些缺点。
首先,SVM模型的训练时间较长,尤其在处理大规模数据时会变得非常耗时。
其次,SVM模型的解释性较差,即很难从模型本身得到一些直观的结论。
最后,SVM模型对参数的选择较为敏感,需要进行大量的调参工作才能得到较好的结果。
四、支持向量机回归分析的应用场景支持向量机回归分析在很多领域都有着广泛的应用。
例如,在金融领域,可以利用支持向量机模型来预测股票价格的变化趋势;在医学领域,可以利用支持向量机模型来预测病人的生存时间或疾病的发展情况;在工程领域,可以利用支持向量机模型来预测材料的强度或者产品的寿命等。
支持向量机回归(Support Vector Regression,SVR)是一种监督学习算法,用于回归分析。
它扩展了支持向量机(SVM)的概念,使其适用于回归问题,而不是仅仅用于分类。
SVR的目标是找到一个最佳的超平面,这个超平面不仅能够最大化数据点之间的间隔,还能最小化误差的平方和。
工作原理:1. 核函数映射:- 与SVM类似,SVR首先使用一个核函数将输入空间映射到一个更高维的特征空间。
这样做是为了在特征空间中找到一个最优解,因为在高维空间中,线性分割可能更容易实现。
2. 构建约束条件:- SVR在特征空间中构造一个最优超平面,该超平面最大化数据点与超平面之间的距离(即间隔),同时最小化误差的平方和。
为了实现这一点,SVR引入了两个约束条件:- 数据点必须位于超平面的一侧,即对于每个支持向量,误差的绝对值必须小于1(对于非线性SVR,这个半径是正数)。
- 超平面的法向量必须与拉格朗日乘子向量正交。
3. 拉格朗日乘子:- 为了处理这些约束,SVR使用拉格朗日乘子( Lagrange multipliers)来放松约束条件,将它们转化为可求解的优化问题。
拉格朗日乘子是一个对每个支持向量和支持向量之间区域的权重。
4. 优化问题:- SVR通过解决一个凸二次规划问题来找到最优的超平面。
这个优化问题旨在最小化误差的平方和,同时满足超平面的约束条件。
5. 支持向量:- 在回归问题中,支持向量是那些位于超平面附近的数据点,它们对于定义超平面至关重要。
对于线性SVR,支持向量是那些直接位于超平面上的点;对于非线性SVR,支持向量是那些在超平面邻域内的点。
6. 决策函数:- 一旦最优超平面确定,SVR使用它来构建一个决策函数,该函数预测新数据点的值。
对于线性SVR,决策函数是线性的;对于非线性SVR,决策函数是线性的,但在特征空间中。
### 关键点:- SVR适用于非线性回归问题,通过使用核技巧,它可以将数据映射到高维空间,并在那里应用线性分割。