[数学]初中数学思想方法的教学与应用PPT课件
- 格式:ppt
- 大小:1.39 MB
- 文档页数:45
初中数学常见的思想方法专门与一样的数学思想:关于在一样情形下难以求解的问题,可运用专门化思想,通过取专门值、专门图形等,找到解题的规律和方法,进而推广到一样,从而使问题顺利求解。
常见情形为:用字母表示数;专门值的应用;专门图形的应用;用专门化方法探求结论;用一样规律解题等。
整体的数学思想:所谓整体思想,确实是当我们遇到问题时,不着眼于问题的各个部分,而是有意识地放大考虑问题的视角,将所需要解决的问题看作一个整体,通过研究问题的整体形式、整体结构、整体与局部的内在联系来解决问题的思想。
用整体思想解题时,是把一些彼此独立,但实质上又相互紧密联系的量作为整体来处理,一定要善于把握求值或求解的问题的内在结构、数与形之间的内在结构,要敏捷地洞悉问题的本质,有时也不要舍弃直觉的作用,把注意力和着眼点放在问题的整体上。
常见的情形为:整体代入;整式约简;整体求和与求积;整体换元与设元;整体变形与补形;整体改造与合并;整体构造与操作等。
分类讨论的数学思想:也称分情形讨论,当一个数学问题在一定的题设下,其结论并不唯独时,我们就需要对这一问题进行必要的分类。
将一个数学问题依照题设分为有限的若干种情形,在每一种情形中分别求解,最后再将各种情形下得到的答案进行归纳综合。
分类讨论是依照问题的不同情形分类求解,它表达了化整为零和积零为整的思想与归类整理的方法。
运用分类讨论思想解题的关键是如何正确的进行分类,即确定分类的标准。
分类讨论的原则是:(1)完全性原则,确实是说分类后各子类别涵盖的范畴之和,应当是原被分对象所涵盖的范畴,即分类不能遗漏;(2)互斥性原则,确实是说分类后各子类别涵盖的范畴之间,彼此互相独立,不应重叠或部分重叠,即分类不能重复;(3)统一性原则,确实是说在同一次分类中,只能按所确定的一个标准进行分类,即分类标准统一。
分类的方法是:明确讨论的对象,确定对象的全体,确立分类标准,正确进行分类,逐步进行讨论,猎取时期性结果,归纳小结,综合得出结论。
初中数学常用的十一种思想方法介绍初中数学常用的十一种思想方法介绍数学的思想和方法是初中数学的基础知识。
数学学习中要提高我们分析问题的能力,形成用数学的意识决问题,这些都离不开数学思想和数学方法。
我们在初中的数学学习中,学到了很多处理数学问题的思想和方法,下面,本人就教学过程中常用的数学思想方法介绍如下:一、数形结合思想根据数学问题的条件和结论之间内在联系,既分析其代数含义,又揭示其几何意义,使数量关系和图形巧妙和谐地结合起一,并充分得用这种结合,寻求解题思路,使问题得到解决。
二、联系与转化的思想事物之间是相互联系,相互制约的。
是可以相互转化的。
数学学科的各部分之间也是相互联系,可以相互转化的。
在解题时,如果能恰当处理它们之间的相互转化,往往可以化难为易,化繁为简。
如:代换转化、已知与未知的转化特殊与一般的转化、具体抽象的转化、部分与整体的转化、动与静的转化等等。
三、分类讨论的思想在数学中,我们常常需要根据研究对象性质的差异,分各种不同的情况予以考查,这种分类思考的方法是一一种重要的.数学思想方法。
同时也是一种重要的解题策略。
四、待定系数法当我们所研究的数学式子具有某种特定形式时,要确定它,只要求出式子中待确定的字母的值就可以,为此,把已知道条件代入特定形式的式子中,往往会得到含待定字母的方和或方程组就使问题得到解决。
待定系数法是一种重要的数学解题方法,在代数式恒等变形及研究函数中有着广泛的应用。
五、配方法把一个代数式设法构造成平方式,然后再进行所需要的变形,配方法是初中代数中重要的变形技巧,配方法在分解因式、解方程、讨论二次函数等问题,都有重要的作用。
六、换元法在解题过程中,把某个(或某些)字母的式子作为一个整体,用一个新的字母表示,以便进一步解决问题的一种方法。
换元法可以把一个较为复杂的式子化简,把问题归结为比原来更为基本的问题从而过到化繁为简、化难为易的目的。
七、分析法在研究或证明一个命题时,由结论向己知条件追溯,即从结论升始,推求它成立的充分条件,这个条件的成立如果还不显然,则再把它当作结论,进一步研究它成立的充分条件,直至达到已知条件(或己知的事实)为止,从而使命题得到证明,这种方法叫佬分析法。
初中数学类比思想方法的探究与应用一、引言数学是一门基础学科,也是一门充满了抽象思维和逻辑推理的学科。
为了更好地理解和应用数学知识,学习者常常需要从日常生活中寻找与数学问题相关的类比,从而更容易理解数学概念和定理。
本文将探究初中数学中的类比思想方法,并探讨其在实际生活中的应用。
二、初中数学类比思想方法的探究1.类比思想方法的定义类比思想方法是指将一个问题或现象与另一个问题或现象进行比较或类比,从中找出共同之处或相似之处,以便更好地理解和解决问题。
在数学中,类比思想方法可以将抽象的数学问题与生活中的具体事物进行联系,以加深对数学知识的理解和应用。
2.类比思想方法的特点(1)具体性:类比思想方法将抽象的数学问题与生活中的具体事物相联系,使问题更加具体明确,更易于理解。
(2)生动性:通过类比思想方法,数学问题与生活中的实际情况相结合,使问题更生动有趣,激发学生的学习兴趣。
(3)启发性:通过类比思想方法,可以启发学生发散思维,从不同的角度思考问题,并寻找解决方法。
3.类比思想方法的应用(1)在数学概念的理解中,通过类比思想,可以将抽象的数学概念与生活中的具体事物相联系,使学生更易于理解和掌握。
例如,在教学“平行四边形”的概念时,可以通过比喻类比,将平行四边形比作飞机的机翼,以便学生更加形象地理解。
(2)在解决数学问题中,类比思想方法可以帮助学生从不同的角度考虑问题,并找出解决方法。
例如,解决一个代数方程的过程可以类比成找寻一把钥匙去打开一扇锁。
(3)在应用数学知识解决实际问题中,通过类比思想方法可以将抽象的数学知识与实际问题相结合,提高解决问题的能力。
例如,在解决一个实际生活中涉及比例关系的问题时,可以将问题与类比的实际情境相联系,使问题更加具体化,易于理解和解决。
三、初中数学类比思想方法的应用案例1.类比思想在数学概念理解中的应用在教授初中数学中的平行四边形概念时,可以通过将平行四边形与飞机的机翼进行类比。
初中数学类比思想方法的探究与应用一、引言数学是一门抽象而理论化的学科,对于许多初中生来说,数学的概念和公式可能显得难以理解和抽象。
为了帮助这些学生更好地理解和应用数学知识,数学教育界引入了类比思想方法。
本文将浅谈初中数学类比思想方法的探究与应用。
二、什么是类比思想方法类比思想方法指的是通过将问题与我们熟悉的问题进行比较和类比,从而更好地理解和应用新概念和新方法。
类比思想方法是从具体到抽象的思维过程,在数学中应用类比思想方法可以帮助学生把抽象的数学概念和实际问题联系起来,使其更直观和易懂。
三、类比思想方法在初中数学中的应用1.数的比较对于初学者来说,理解大小关系可能存在困难。
此时我们可以采用类比思想方法,将数的大小比较类比为物体的大小,比如小明身高为1.5米,小红身高为1.3米,可以类比为小明比小红高0.2米。
这样一来,学生可以更直观地理解和应用数的比较。
在数的大小比较中,类比思想方法可以帮助学生理解和记忆相关概念,如大于、小于和等于。
2.代数中的变量代数中的变量可能是学生容易混淆和理解的概念之一。
在初学阶段,类比思想方法可以帮助学生将代数中的变量类比为未知数,即未知的物体或数字。
通过寻找不同变量之间的关系,学生可以更好地理解和应用代数中的变量。
例如,将方程2x + 3 = 7看作两个相同的物体加上三个物体等于七个物体,可以类比为2个x加上3等于7,从而找出x的值。
3.几何中的类比几何中的类比思想方法尤为重要,因为几何问题通常涉及到形状和空间的概念。
通过类比思想方法,学生可以将几何中的形状类比为日常生活中的物体,从而更好地理解相关概念。
例如,我们可以将正方形类比为蛋糕模具,圆形类比为饼干切割机,通过这种类比,学生可以更好地理解几何中的面积和周长等概念,以及不同形状之间的关系。
四、类比思想方法的优点和限制类比思想方法在初中数学教育中有许多优点。
首先,类比思想方法可以帮助学生更好地理解抽象的数学概念,使其更直观和易懂。
关于初中数学思想方法及教学初中数学是学生学习数学的重要阶段,也是培养学生数学思想和方法的关键阶段。
在初中数学教学中,如何引导学生形成正确的数学思想和方法,是一项重要的教学任务。
本文将对初中数学思想方法及教学进行探讨。
一、培养学生的数学思想1. 提倡逻辑思维初中数学的基本内容包括代数、几何、函数等多个方面,而这些内容都离不开逻辑思维。
在教学中,应该通过举例、引导学生发现规律等方式,培养学生的逻辑思维能力。
在解决代数问题时,可以引导学生进行逻辑推理,帮助他们形成正确的数学思维方式。
2. 激发学生的求知欲数学是一门需要动手实践的学科,学生在解决数学问题时,应该从实际问题出发,加强实际的应用能力。
教师要注重培养学生的求知欲,激发他们对数学问题的兴趣,让学生能够主动参与数学学习,积极探索数学内在的奥秘。
3. 培养学生的创新思维数学是一门创造性的学科,培养学生的创新思维是数学教学的一个重要目标。
在教学中,应该注重培养学生的解决问题的能力,引导学生进行数学探索,鼓励学生提出自己的想法和猜想,培养其创新意识和创新能力。
二、引导学生正确的数学方法1. 强调基础知识的掌握初中数学的学习是一个逐步深化的过程,基础知识的掌握对学生后续的学习至关重要。
在教学中,应该引导学生扎实基础,掌握数学的基本概念和基本方法,建立牢固的数学基础,为后续学习奠定基础。
2. 注重方法的灵活运用数学是一门灵活性较强的学科,同一个问题可以用不同的方法来解决。
在教学中,应该注重培养学生的解决问题的灵活性,让学生能够熟练掌握数学方法,并能够熟练运用不同的方法解决问题。
三、初中数学的教学策略1. 提倡因材施教每个学生的数学学习能力和兴趣都有所不同,因此在教学中应该因材施教,为每个学生量身定制教学方案,满足不同学生的学习需求。
教师应该根据学生的实际情况,采用不同的教学方法和策略,引导学生形成正确的数学思想和方法。
2. 体验式教学数学是一门需要动手实践的学科,体验式教学是一种有效的教学方法。
关于初中数学思想方法及教学初中数学是学生学习数学的一个重要阶段,也是数学思想方法逐步形成和发展的关键时期。
初中数学教育应该注重学生数学思维的养成和培养,同时也要注重数学教学方法的改革和创新,使学生在学习中逐渐建立起正确的数学思维方式和方法。
一、初中数学思想方法1. 抽象思维初中数学的内容相对来说较为抽象,需要学生具备一定的抽象思维能力。
学生需要通过数学问题的分析和归纳、数学公式的推导与应用,逐渐形成自己的抽象思维模式。
教师应引导学生进行抽象思维的训练,注重培养学生的逻辑思维能力,提高学生的抽象认识能力。
2. 实际问题解决能力初中数学在教学中要注重培养学生解决实际问题的能力。
数学知识的应用是数学教学中不可或缺的部分,学生的数学思想方法不仅仅在于学习数学知识的掌握,更应该学会将数学知识应用于实际问题的解决过程中。
教师可以通过设计一些生活中常见的问题,让学生应用所学的数学知识进行解决,培养学生的实际问题解决能力。
3. 推理能力数学推理是初中数学教学中非常重要的一部分,学生要通过推理证明的过程来验证数学命题的正确性。
教师可以通过给学生提供一些简单的证明题目,引导学生进行推理演绎,培养学生的数学推理能力,从而提高学生的数学思维方法。
1. 启发式教学法启发式教学法是一种注重启发学生思维潜能的教学方法。
初中数学教学应该通过引导学生主动思考、自主探索,激发学生的学习兴趣,培养学生的数学思维方法。
教师在课堂教学中可以设计一些富有启发性的问题,让学生通过讨论和探究的方式得到解决,从而激发学生的求知欲和探索欲。
2. 案例教学法初中数学教学中可以采用案例教学法来帮助学生理解和掌握数学知识。
通过案例教学,学生可以更加直观地看到数学知识的应用和解决实际问题的过程,帮助学生将抽象的数学知识与生活实际相结合,从而提高学生对数学知识的理解和应用能力。
4. 素质教育初中数学教学中应该注重学生的素质教育,教师要注重培养学生的创新精神、批判思维和合作意识。