纳米二氧化钛的制备及性质实验
- 格式:docx
- 大小:342.72 KB
- 文档页数:9
引言工业的飞速发展深刻变革着人们的生活与生产方式。
但其发展过程中的排放问题造成了巨大的环境污染。
因此,有效、安全、能耗低的光催化技术也成为当今的研发热点之一。
纳米二氧化钛是当前光催化技术常用的一种半导体材料。
其具有生物无毒性、高催化活性、成本较低等诸多优点。
但其结构上有一定的缺陷,例如:其禁带宽度为3.2eV、其电子空穴易复合等,这些使得其光催化性能降低。
因此,对二氧化钛进行改性以期改善其处理污水的效果是当今的热点话题之一。
一、二氧化钛光催化原理TiO2的光催化原理如图1所示。
其价带上的电子在吸收足够能量后,跃迁至导带,形成光生电子。
同时,价带上形成空穴,生成空穴——电子对。
空穴与光生电子对在电场的作用下发生分离,一同迁移到TiO2粒子的表面。
其中,空穴可以引发氧化反应,光生电子具有还原性,二者共同作用进而降解污染物。
图 1 二氧化钛光催化原理示意图但TiO2禁带宽度较宽,难以响应可见光;且电子与空穴自身复合率就较高。
以上原因都导致纳米TiO2的催化活性和催化效率较低,难以运用到光催化领域中。
二、纳米二氧化钛的制备1.微波水热法微波有助于加快化学反应,可用微波水热法制备纳米TiO2。
胡能等采用水热法制备了具有光催化活性的纳米TiO2。
继而对其结构、光学吸收与相态等方面进行表征分析,最后得出结论:在紫外光条件下,纳米TiO2能迅速降解废水里的染料等有机物,不仅对环境友好,同时具有高效率、稳定性强、节约能源等优点。
2.溶胶—凝胶法溶胶凝胶法是一种使用时间远超于微波水热法的新方法,其使用优点主要在于高混合性,反应物的分子在形成的凝胶中可以充分混合继而达到更加优秀的催化效果。
并且反应条件并不严苛,无须高温,能耗低,且反应大多数处于纳米状态。
但此法前期造价高昂,且反应时间较长,往往在几天或几周不等。
孙鹏飞等用溶胶—凝胶法合成的改性TiO2拥有较好的光催化性能,其中 Fe3+改性催化剂要优于B3+改性TiO2。
实验八溶胶-凝胶法制备纳米二氧化钛实验一、实验目的1、掌握溶胶-凝胶法制备纳米粒子的原理;2、了解TiO2纳米粒子光催化机理;二、实验原理溶胶-凝胶法Sol-Gel法是指无机物或金属醇盐经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法;溶胶凝胶法制备TiO2纳米粒子是通过钛酸四丁酯的水解和缩聚反应来实现的,其分步水解方程式为:TiORn+H2OTiOHORn-1+ROHTiOHORn-1+H2OTiOH2ORn-2+ROH……反应持续进行,直到生成TiOHn.缩聚反应:—Ti—OH+HO—Ti——Ti—O—Ti+H2O—Ti—OR+HO—Ti——Ti—O—Ti+ROH最后获得氧化物的结构和形态依赖于水解与缩聚反应的相对反应程度,当金属-氧桥-聚合物达到一定宏观尺寸时,形成网状结构从而溶胶失去流动性,即凝胶形成;三、原料及设备仪器1、原料:钛酸正四丁脂分析纯、无水乙醇分析纯、冰醋酸分析纯、盐酸分析纯、蒸馏水2、设备仪器:电磁搅拌器、恒温干燥箱、高温炉四、实验步骤以钛酸正丁酯TiOC4H94为前驱物,无水乙醇C2H5OH为溶剂,冰醋酸CH3COOH为螯合剂,从而控制钛酸正丁酯均匀水解,减小水解产物的团聚,得到颗粒细小且均匀的二氧化钛溶胶;1、室温下量取10mL钛酸丁酯,缓慢滴入到35mL无水乙醇中,用磁力搅拌器强力搅拌10min,混合均匀,形成黄色澄清溶液A;2、将2mL冰醋酸和10mL蒸馏水加到另35mL无水乙醇中,剧烈搅拌,得到溶液B,滴入2-3滴盐酸,调节pH值使pH=3;3、室温水浴下,在剧烈搅拌下将溶液A缓慢滴入溶液B中;4、滴加完毕后得浅黄色溶液,40℃水浴搅拌加热,约1h后得到白色凝胶倾斜烧瓶凝胶不流动;5、置于80℃下烘干,大约20h,得黄色晶体,研磨,得到淡黄色粉末;6、在600℃下热处理2h,得到二氧化钛纯白色粉体;五、思考题1、溶胶-凝胶法制备材料有哪些优点2、纳米二氧化钛粉体有哪些用途六、实验报告要求实验报告按照学校统一模板书写,包括下列内容:1、实验名称、目的和实验步骤;2、解答思考题;。
南京信息工程大学综合化学实验报告学院:环境科学与工程学院专业:08应用化学姓名:章翔宇潘婷袁成钱勇2010年6月25号纳米二氧化钛的制备及性质实验1、实验目的熟悉溶胶凝胶法制备纳米二氧化钛的方法及相关操作;理解二氧化钛吸附实验的原理和操作;掌握数据处理的方法2、溶胶凝胶法制备纳米二氧化钛2.1 需要的仪器恒压漏斗、茄行烧瓶、量筒、移液管、铁架台、磁力搅拌、磁子、冷凝管、温度计、烘箱、研钵2.2 需要的试剂钛酸丁酯异丙醇浓硝酸蒸馏水2.3 实验步骤1.50ml钛酸丁酯溶16ml的异丙醇中,摇匀(在恒压漏斗中进行)得到溶液A2.取200ml 的蒸馏水,加入0.32 ml 的浓硝酸,摇匀(在茄行烧瓶中进行),得到溶液B3.将烧瓶固定在铁架台上,进行磁力搅拌,将溶液A 逐滴滴加至溶液B中,使两溶液缓慢接触,并进行水解反应,得到溶液C溶液C室温回流,记载下当时的室温4.回流分若干天进行,保证回流时间不少于48小时,得到溶液D5.蒸干方式:将溶液D进行水浴加热85度并不断搅拌将水分蒸发干,得E6.将E放入烘箱100烘干7.研磨至粉末状;2.4 实验结果1、回流分4天进行,总计回流时间50小时,室温为15℃。
2、经研磨,得到白色细粉末状固体。
称量得二氧化钛质量为11.233g,理论产量不小于11.785g,损失为产品转移过程中损失。
3、纳米二氧化钛性质实验3.1 二氧化钛吸附试验1、仪器:烧杯(500mL),容量瓶(1000mL),样品瓶(6个),电子天平,磨口瓶,超声波清洗机,玻璃注射器,过滤器,分光光度计2、试剂:二氧化钛粉末,染料X-3B(分子量615),蒸馏水3、实验步骤:1、用电子天平称取60mg染料,配成1000mL的60mg/L溶液(避光保存)。
2、将烧杯润洗后,倒入100ml染料溶液,再倒入称量好的50mg的二氧化钛粉末。
静置后置于超声波清洗机中(70℃超声40分钟,注意避光)。
剩余原液取样保存编号。
纳米TiO粉体的制备与表征2一:引言•纳米材料是指在三维空间中至少在一维方向上尺寸在1-100nm 之间并具有特殊性能的材料,这大约相当于10~100个原子紧密排列在一起的尺度。
由于纳米材料至少在一维方向上为纳米尺度,所以纳米材料具有普通材料所不具背的性能,如表面效应、小体积效应、量子尺寸效应、宏观量子隧道效应等。
因此纳米TiO 2粉体具备许多特殊的功能比如性能稳定、无毒、光催化活性高、价格低廉、耐化学腐蚀性好,是良好的光催化剂、消毒剂杀菌剂。
•光催化作为一种新型环境净化技术引起人们越来越多的关注。
纳米TiO2以良好的性能稳定、效率高、无二次污染、成本低廉等优点,在光催化降解废水中的有机物方面具有广阔的应用。
面临的问题:催化的效率比较低,而且对太阳能的利用率比较低。
二:TiO简介21:TiO2特性纳米TiO2作为一种新型的功能材料,是目前应用最广泛的一种纳米材料。
纳米二氧化钛具有粒径小、吸收紫外光能力强以及良好的随角异色、光催化和抗菌杀毒等优点。
纳米TiO2晶体主要有锐钛型和金红石型两种晶型。
金红石型晶体则主要用于防紫外线、增强、增韧、降解有机污染物,是一种环保型产品;锐钛型晶体的主要作用有抗菌,分解有机物。
锐钛型纳米TiO2是一种新型抗菌剂,具有良好的杀菌效用、耐热性好、安全性能佳、持续性长、使用方便;在抗菌过程中可以生成具有很强化学活性的自由基,因此能有效地分解空气中多种有毒气体。
金红石型纳米TiO2具有高光催化活性,抗紫外线能力强等优点。
对长波区紫外线的阻隔以散射为主,对中波区紫外线的阻隔则以吸收为主。
2:TiO2的光催化机理当能量大于TiO2禁带宽度的光照射半导体时,光激发电子跃迁到导带,形成导带电子(矿),同时在价带留下空穴(矿)。
由于半导体能带的不连续性,电子和空穴的寿命较长,它们能够在电场作用下或通过扩散的方式运动,与吸附在半导体催化剂粒子表面上的物质发生氧化还原反应,或者被表面晶格缺陷俘获。
实验溶胶凝胶法制备纳米二氧化钛实验精编版 MQS system office room 【MQS16H-TTMS2A-MQSS8Q8-MQSH16898】实验八溶胶-凝胶法制备纳米二氧化钛实验一、实验目的1、掌握溶胶-凝胶法制备纳米粒子的原理。
2、了解TiO2纳米粒子光催化机理。
二、实验原理溶胶-凝胶法(Sol-Gel法)是指无机物或金属醇盐经过溶液、溶胶、凝胶而固化,再经热处理而成的氧化物或其它化合物固体的方法。
溶胶凝胶法制备TiO2纳米粒子是通过钛酸四丁酯的水解和缩聚反应来实现的,其分步水解方程式为:Ti(OR)n+H2OTi(OH)(OR)n-1+ROHTi(OH)(OR)n-1+H2OTi(OH)2(OR)n-2+ROH……反应持续进行,直到生成Ti(OH)n.缩聚反应:—Ti—OH+HO—Ti——Ti—O—Ti+H2O—Ti—OR+HO—Ti——Ti—O—Ti+ROH最后获得氧化物的结构和形态依赖于水解与缩聚反应的相对反应程度,当金属-氧桥-聚合物达到一定宏观尺寸时,形成网状结构从而溶胶失去流动性,即凝胶形成。
三、原料及设备仪器1、原料:钛酸正四丁脂(分析纯)、无水乙醇(分析纯)、冰醋酸(分析纯)、盐酸(分析纯)、蒸馏水2、设备仪器:电磁搅拌器、恒温干燥箱、高温炉四、实验步骤以钛酸正丁酯[Ti(OC4H9)4]为前驱物,无水乙醇(C2H5OH)为溶剂,冰醋酸(CH3COOH)为螯合剂,从而控制钛酸正丁酯均匀水解,减小水解产物的团聚,得到颗粒细小且均匀的二氧化钛溶胶。
1、室温下量取10mL钛酸丁酯,缓慢滴入到35mL无水乙醇中,用磁力搅拌器强力搅拌10min,混合均匀,形成黄色澄清溶液A。
2、将2mL冰醋酸和10mL蒸馏水加到另35mL无水乙醇中,剧烈搅拌,得到溶液B,滴入2-3滴盐酸,调节pH值使pH=3。
3、室温水浴下,在剧烈搅拌下将溶液A缓慢滴入溶液B中。
4、滴加完毕后得浅黄色溶液,40℃水浴搅拌加热,约1h后得到白色凝胶(倾斜烧瓶凝胶不流动)。
南京信息工程大学综合化学实验报告学院:环境科学与工程学院专业:08应用化学姓名:章翔宇潘婷袁成钱勇2010年6月25号纳米二氧化钛的制备及性质实验1、实验目的熟悉溶胶凝胶法制备纳米二氧化钛的方法及相关操作;理解二氧化钛吸附实验的原理和操作;掌握数据处理的方法2、溶胶凝胶法制备纳米二氧化钛2.1 需要的仪器恒压漏斗、茄行烧瓶、量筒、移液管、铁架台、磁力搅拌、磁子、冷凝管、温度计、烘箱、研钵2.2 需要的试剂钛酸丁酯异丙醇浓硝酸蒸馏水2.3 实验步骤1.50ml钛酸丁酯溶16ml的异丙醇中,摇匀(在恒压漏斗中进行)得到溶液A2.取200ml 的蒸馏水,加入0.32 ml 的浓硝酸,摇匀(在茄行烧瓶中进行),得到溶液B3.将烧瓶固定在铁架台上,进行磁力搅拌,将溶液A 逐滴滴加至溶液B中,使两溶液缓慢接触,并进行水解反应,得到溶液C溶液C室温回流,记载下当时的室温4.回流分若干天进行,保证回流时间不少于48小时,得到溶液D5.蒸干方式:将溶液D进行水浴加热85度并不断搅拌将水分蒸发干,得E6.将E放入烘箱100烘干7.研磨至粉末状;2.4 实验结果1、回流分4天进行,总计回流时间50小时,室温为15℃。
2、经研磨,得到白色细粉末状固体。
称量得二氧化钛质量为11.233g,理论产量不小于11.785g,损失为产品转移过程中损失。
3、纳米二氧化钛性质实验3.1 二氧化钛吸附试验1、仪器:烧杯(500mL),容量瓶(1000mL),样品瓶(6个),电子天平,磨口瓶,超声波清洗机,玻璃注射器,过滤器,分光光度计2、试剂:二氧化钛粉末,染料X-3B(分子量615),蒸馏水3、实验步骤:1、用电子天平称取60mg染料,配成1000mL的60mg/L溶液(避光保存)。
2、将烧杯润洗后,倒入100ml染料溶液,再倒入称量好的50mg的二氧化钛粉末。
静置后置于超声波清洗机中(70℃超声40分钟,注意避光)。
剩余原液取样保存编号。
纳米二氧化钛的制备及其光催化活性测试一、实验目的:① 了解纳米二氧化钛的粒性和物性。
② 研究二氧化钛光催化降解甲基橙和亚甲基蓝水溶液的过程和性质。
③ 了解光催化剂的一种评价方法。
二、实验原理:本实验采用金属醇盐水解法制备纳米二氧化钛,反应方程式有Ti(O-C 4H 9)4+4H 2OTi(OH)44C 4H 9OH+Ti(OH)4+Ti(O-C 4H 9)42TiO 2+4C 4H 9OH Ti(OH)4Ti(OH)4+2TiO 24H 2O+三、仪器及试剂试剂:钛酸正四丁脂,无水乙醇,盐酸,去离子水仪器:电热炉、恒温水浴箱、50mL 量筒和10 mL 量筒各一个、烧杯(100 mL)两个、玻璃棒、抽滤瓶、布氏漏斗、滤纸、PH 试纸。
四、实验步骤① 纳米TiO2的制备观察水解① 配置甲基橙溶液称取一定量甲基橙,加水溶解,移入250ml 容量瓶,定容。
② 光催化活性测试200ml 烧杯 加100ml 去离子水 500ml 烧杯 200ml 无水乙醇,10ml 钛酸四丁酯混合离心分离 一份500℃1h一份300℃1h一份常温1h计算降解率测吸光度离心取上清液取样每隔日光灯照射超声波分散份甲基橙不同温度分别加入−→−−→−−→−−→−−→−−−−−−−−→−10min 15min 42iO 0.15g T五、数据记录及处理 温度 光+100℃光+300℃TiO 2光+500℃TiO 2不加TiO2+光照暗+300℃ TiO 20min 0.678 0.678 0.678 0.678 1.034 10min 0.681 0.578 0.711 0.809 0.832 20min 0.680 0.348 0.449 0.929 30min 0.680 0.216 0.331对数据作图如下由以上得:500度光催化前 甲基橙溶液A=0.678 光催化30分钟后 甲基橙溶液A=0.331甲基橙的光降解率 W%=(0.678-0.331)/0.678×100%=51.2% 300度光催化前 甲基橙溶液A=0.678光催化30分钟后甲基橙溶液A=0.216甲基橙的光降解率W%=(0.678-0.216)/0.678×100%=68.1%100度光催化前后无大变化,降解率W%=0 无催化活性六、结果讨论①300度光催化活性最好,500度次之,100度几乎无光催化活性。
毕业设计(论文)纳米二氧化钛的制备与光催化性能研究1 绪论二氧化钛,化学式为TiO2,俗称钛白粉,多用于光触媒、化妆品,能靠紫外线消毒及杀菌,现正广泛开发,将来有机会成为新工业。
二氧化钛可由金红石用酸分解提取,或由四氯化钛分解得到。
二氧化钛性质稳定,大量用作油漆中的白色颜料,它具有良好的遮盖能力,和铅白相似,但不像铅白会变黑[1];它又具有锌白一样的持久性。
二氧化钛还用作搪瓷的消光剂,可以产生一种很光亮的、硬而耐酸的搪瓷釉罩面。
在过去的研究中,用半导体粉末对水、油和空气中的有毒有机化合物进行光催化降解和完全矿化引起了人们的大量关注。
由于抗光腐蚀性,化学稳定性,成本低,无毒和强氧化性,二氧化钛被作为应用最广泛的光催化剂来光降解水和空气中的有毒化合物。
但是二氧化钛具有较大的带隙(锐钛矿相二氧化钛为3.20ev)因此,只有较小一段太阳光区域,大约为2%~3%紫外光区可被应用[2]。
人们尝试用各种制备方法,如贵金属掺杂、氧化物复合、表面修饰等等方法,防止和减少电子与空穴的复合,提高催化剂的光催化活性。
众所周知,吸附和催化的效率与固体的孔径及表面积有关,因此,对二氧化钛进行修饰、改性及增大比表面积是提高光量子效率和增大反应速率的一个有效的方法与途径。
1.1 TiO2的结构与基本性质1.1.1物理常数及结构特征表1 TiO的物理常数1.1.2 TiO2的结构特征在自然界中,TiO2存在三种晶型结构,即金红石、锐钛矿和板钛矿。
这些结构的区别取决于TiO68-八面体的连接方式,图1-1是TiO68-八面体的两种连接方式,锐钛矿结构是由TiO68-八面体共边组成,而金红石和板钛矿结构则是由TiO68-八面体共顶点且共边组成。
锐钛矿TiO2中的每个八面体与周围8个八面体相连,金红石TiO2中每个八面体与周围10个八面体相连。
事实上锐钛矿可以看做是一种四面体结构,而金红石和板钛矿则是晶格稍有畸变的八面体结构[3]。
简单地认为锐钛矿比金红石活性高是不严谨的,它们的活性受其晶化过程的一些因素影响。
纳米二氧化钛太阳能电池的制备及其性能测试一、前言1.1实验目的(1)了解纳米二氧化钛染料敏化太阳能电池的组成、工作原理及性能特点。
(2)掌握合成纳米二氧化钛溶胶、组装成电池的方法与原理。
(3)学会评价电池性能的方法。
1.2实验意义随着世界各国的工业发展,煤、石油等传统能源的使用量急剧增长,寻找干净的新能源成为当务之急。
太阳能是唯一种永不枯竭的清洁能源,受到众多研究者的青睐。
目前市场上的太阳能电池种类较多,其中硅半导体太阳能电池占了绝对的优势,另外还有无机半导体太阳能电池、p-n结型太阳能电池等。
1991年Gratzel等制备了TiO2太阳能电池,把多吡啶钌配合物吸附在多孔膜上,制作成染料敏化纳米晶TiO2太阳能电池,简称DSSC。
该太阳能电池的光电转换效率大于10%,且具有永久性、清洁性和灵活性三大优点。
只要有太阳光,DSSC就可以一次投资而长期使用。
1.3文献综述与总结1991年瑞士学者Grätzel等在Nature上发表文章,提出了一种新型的以染料敏化二氧化钛纳米薄膜为光阳极的光伏电池,现称为Grätzel型电池。
这种电池的出现为光电化学电池的发展带来了革命性的创新。
目前,此种电池的效率已稳定在10%左右,成本比硅太阳能电池大为降低,且性能稳定。
纳米TiO2的粒径和膜的微结构对光电性能的影响很大,纳米TiO2的粒径小,比表面积越大,吸附能力越强,吸附染料分子越多,光生电流也就越强,所以人们采用不同方法使之纳米化、多孔化、薄膜化。
只有紧密吸附在半导体表面的单层染料分子才能产生有效的敏化效率。
[1](1)半导体电极的制备目前,合成纳米TiO2的方法有溶胶凝胶法、水热反应法、溅射法、醇盐水解法、溅射沉积法、等离子喷涂法和丝网印刷法等。
应用在DSSC中的TiO2多孔薄膜常用制备方法有胶体涂膜直接低温烧结法、水热法烧结、热液法烧结、微波烧结、紫外-化学气相沉积法等。
[1]溶胶凝胶法是用水解钛酸正丁酷(或无机钛盐,如TiCl4)制得TiO2胶体溶液,后经由浸渍、提拉、丝网印刷、旋涂等方法在导电基底上生长纳米高温锻烧制备出纳米TiO2电极,向溶胶中加入聚合物则有助于TiO2纳米晶粒径的大小的控制。
《材料化学综合实验II》实验指导书实验一 纳米二氧化钛的制备及光催化性能研究一、实验目的1. 掌握二氧化钛的溶胶-凝胶的制备方法。
2. 了解二氧化钛光催化降解污染物的原理。
3. 熟悉测定光催化性能的方法。
二、 实验原理1、溶胶-凝胶法制备二氧化钛溶胶-凝胶法是20世纪 80年代兴起的一种制备纳米粉体的湿化学方法,具有分散性好、煅烧温度低、反应易控制等优点。
制备溶胶所用的原料为钛酸丁酯(Ti(O-C 4H 9)4)、水、无水乙醇(C 2H 5OH)以及盐酸(或者醋酸、硝酸等)。
反应物为钛酸丁酯和水,分散介质为乙醇,盐酸用来调节体系的酸度防止钛离子水解过速,使钛酸丁酯在乙醇中水解生成钛酸(Ti(OH)4),钛酸脱水后即可获得TiO 2。
水解反应方程式如下。
Ti(O-C 4H 9)4+4H 2O Ti(OH)44C 4H 9OH +Ti(OH)4Ti(OH)42TiO 24H 2O+ 在后续的热处理过程中,只要控制适当的温度条件和反应时间,就可以获得不同晶型的二氧化钛。
2、二氧化钛光催化降解污染物二氧化钛作为光催化剂的代表,在太阳能光解水, 污水处理等方面有着重要的应用前景。
TiO 2有三种晶型,四方晶系的锐钛矿型、金红石型和斜方晶系的板钛型。
此外,还存在着非晶型TiO 2。
其中板钛型不稳定;金红石型禁带宽度为3ev ,表现出最高的光敏性,但因为表面电子-空穴对重新结合的较快,几乎没有光催化活性;锐钛矿禁带宽度稍大一些,为3.2ev ,在一定波长范围的紫外光辐照下能被激发,产生电子和空穴,且二者能发生分离,另外它的表面对O 2的吸附能力较强,具有较高的光催化活性。
当它受到波长小于或等于387.5nm 的光(紫外光)照射时,价带的电子就会获得光子的能量而越前至导带,形成光生电子(e -);而价带中则相应地形成光生空穴(h +),如图1所示。
如果把分散在溶液中的每一颗TiO 2粒子近似看成是小型短路的光电化学电池,则光电效应应产生的光生电子和空穴在电场的作用下分别迁移到TiO2表面不同的位置。
溶胶凝胶法制备纳米二氧化钛的工艺条件实验【实验目的】1.掌握溶胶-凝胶法基本原理2.了解纳米TiO2的制备方法【背景介绍】纳米TiO2是一种n型半导体材料,晶粒尺寸介于1~100 nm,其晶型有两种:金红石型和锐钛型。
由于纳米TiO2比表面积大,表面活动中心多,因而具有独特的表面效应、小尺寸效应、量子尺寸效应和宏观量子隧道效应等,呈现出许多特有的物理、化学性质,在涂料、造纸、陶瓷、化妆品、工业催化剂、抗菌剂、环境保护等行业具有广阔的应用前景。
20世纪70年代末日本专利首次公开了纳米TiO2的制备方法,20世纪80年代才开始正式生产。
纳米TiO2的制备方法可归纳为物理方法和化学方法。
物理制备方法主要有机械粉碎法、惰性气体冷凝法、真空蒸发法、溅射法等;物理化学综合法又可大致分为气相法和液相法。
目前的工业化应用中,最常用的方法还是物理化学综合法。
本实验主要讨论溶胶-凝胶法( Sol - Gel法)制备纳米二氧化钛的最佳工艺条件的选择。
【仪器与试剂】试剂:钛酸丁酯(化学纯) 、无水乙醇(分析纯) 、95%乙醇(分析纯) 、冰醋酸(化学纯) 、羟基丙酯纤维素(化学纯) 、三乙胺(化学纯)。
仪器:电子天平,恒温磁力搅拌器,真空干燥箱,管式气氛炉,烧杯等玻璃仪器。
【实验步骤】1.样品的制备(1) 取17 mL的钛酸丁酯加入到盛有40 mL的无水乙醇的分液漏斗中混匀,得到溶液A;(2) 另取10 mL冰醋酸和42. 5mL的95%乙醇混匀得到溶液B;(3) 将A溶液缓慢地滴加到B溶液中并且用磁力搅拌器迅速地搅拌,得到透明的胶体;(4)室温下自然风干一段时间后再在烘箱中105℃左右进行烘干得到干凝胶;(5)将干凝胶研磨成粉,再置于马福炉中进行煅烧,得到二氧化钛微粒。
2. 样品的表征(1) 用激光粒度分布仪(Nano-S 90,JeolCO.,JAPAN)测定TiO2微粒的粒径和粒度分布。
【结果与讨论】(1) 解释红外光谱图,对各峰进行确认。
纳米TiO2的制备及其光催化性能的检验实验报告一、实验目的:1、了解纳米TiO2的性质及应用。
2、掌握制备纳米TiO2的原理和方法,并比较不同方法的优缺点。
3、掌握检验纳米TiO2光催化性能的一般方法。
4、掌握离心机、分光光度计等仪器的使用方法。
二、性质:(1)基本化学性质:纳米TiO2化学性能稳定,常温下几乎不与其它化合物反应,不溶于水、稀酸,溶于氢氟酸和热浓硫酸。
不与空气中CO2 ,SO2,O2等反应,具有生物惰性。
纳米TiO2具有热稳定性,无毒性。
与硫酸氢钾或与氢氧化碱或碳酸碱共同熔融成钛酸碱后可溶于水。
相对密度约4.0。
熔点1855℃。
(2)光催化:纳米TiO2是一种n型半导体材料,禁带宽度较宽,其中锐钛型为3.2eV,金红石型为3.0eV,当它吸收了波长小于或等于387.5nm 的光子后,价带中的电子就会被激发到导带,形成带负电的高活性电子e-,同时在价带上产生带正电的空穴h+,吸附在TiO2表面的氧俘获电子形成•O2-,而空穴则将吸附在TiO2表面的OH-和H2O氧化成具有强氧化性的•OH,反应生成的原子氧、氢氧自由基都有很强的化学活性, 氧化降解大多数有机污染物,同时空穴本身也可夺取吸附在半导体表面的有机物质中的电子,使原本不吸收光的物质被直接氧化分解,这两种氧化方式可能单独起作用也可能同时起作用,对于不同的物质两种氧化方式参与作用的程度有所不同。
这些原子氧、氢氧自由基和空穴还能与细菌内的有机物反应,生成CO2、H2O 及一些简单的无机物,从而杀死细菌,清除恶臭和油污。
此外,半导体表面产生的高活性电子具有很强的还原能力,电子受体可直接接受光生电子而被还原, 故也可用来还原去除环境中的某些特定污染物,如: Cu2+等有毒离子。
另外,光催化效率与激发态电子、空穴到达表面的时间有关, 纳米TiO2粒子作为光催化剂, 其粒径越小,电子、空穴到达反应表面的数量越多,光催化效率越高但是,由于TiO2本身禁带宽, 产生的电子-空穴对不仅极易复合而且寿命较短, 光响应范围较窄, 使光催化活性受到了一定的限制,且利用的光谱范围受到一定的限制。
纳米TiO2的制备方法综述关键字:纳米TiO2制备均匀沉淀法实验操作前言:TiO2由于其粒子具有表面效应、量子尺寸效应、小尺寸效应、宏观量子隧道效应等性质使得其晶体具有优异的特性。
纳米Ti02在可见光区有较强的紫外光吸收能力、反射能力和散射能力,因此它可以广泛应用于防晒化妆品、光催化剂、高档涂料、人造纤维中。
由于其具有非常好的催化性能,可应用于空气净化、除臭杀菌、污水净化等领域。
同时Ti02纳米颗粒具有很好的亲油性和亲水性,可以制成防雾和自净化玻璃。
另外Ti02微粒具有良好的耐候性、耐腐蚀性、较高的热稳定性和化学稳定性、高比表面积、无毒、易分散、易烧结和低熔点等独特性能,又被广泛应用于功能陶瓷、油墨、高性能涂料、半导体材料、太阳能电池等诸多领域[1]。
目前,纳米Ti02的制备方法很多,一般可以分为物理法和化学法。
以下对Ti02纳米粒子的制备工艺进行了详细的分析和比较[2]。
1、物理法常用的物理法有气相冷凝法、粉碎法、真空冷凝法。
气相冷凝法是通过多种方法使物质挥发成气相,并经过特殊工艺冷凝成核得到纳米粉体。
由于使材料气化的方法有很多种,因此气相冷凝法的具体工艺也千差万别。
在气化和冷凝过程中须有保护性气氛,可以通过控制蒸发和冷凝的工艺条件来控制粉体的粒径。
气相蒸发沉积法、溅射法、蒸发-凝聚法、等离子法都是气相冷凝制备纳米粉体的重要方法,该方法制备的粉体纯度高,颗粒大小分布均匀,尺寸可控,适合于生产高熔点纳米金属粒子或纳米颗粒薄膜。
粉碎法,是利用球磨机转动和振动时的巨大能量,将原料粉碎为细小颗粒。
其制备纳米粉体的优点是工艺简单,易实现连续生产,并能制备出高熔点的金属和合金材料;缺点是其对设备要求很高,而且颗粒大小不均匀,容易引入杂质。
真空冷凝法用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。
其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。
2、化学法化学法在制备纳米Ti02粉体的方法中很重要,而目前研究最多的是气相法和液相法。
实验三水热法制备纳米二氧化钛一、实验目的1、了解水热法制备纳米二氧化钛的原理、方法和操作2、掌握根据实验原理选择实验装置的一般方法。
二、实验原理水热法,通常是指在密闭的反应体中,以水作为反应介质,将反应器加热到一定温度,使反应器中具有一定填充度的水溶剂膨胀充满整个容器而产生很高压力的条件下,进行无机合成和材料制备的一种高效的方法。
具有操作简单,方便分子设讣,可用于金属氧化无纳米材料的合成。
其实质是使纳米粒子在高温高压下从饱和溶液中生长出来。
TiO2在自然界中存在三种晶体结构:金红石型、锐钛矿型和板钛矿型,其中金红石型和锐钛矿型TiO2均具有光催化活性,尤以锐钛矿型光催化活性最佳。
二氧化钛的用途极为广泛,目前已经用于化工、环保、医药卫生、电子工业等领域。
纳米二氧化钛具有良好的紫外线吸收能力,且具有很好的光催化作用,因而可以用做织物的抗紫外和抗菌的整理剂。
本实验纳米二氧化钛制备原理如下:Ti(OC4H9)4+2H2O TiO2+4C4H9OH可分为两个独立的反应,即:Ti(OC4H9)4+xH2O ―► Ti(OC4H9)4-xOHx+xC4H9OHTi(OC4H9)4-xOH x+Ti(OC4H9)4 —► (OC4H9)4-xTiO x Ti(OC4H9)4-x4-xC4H9OH 当x=4时水解完全,反应为可逆反应,因此在反应过程中保持足够量的水保证醇盐水解完全。
三、主要仪器与药品1.仪器磁力加热反应器,水热反应釜(60ml), 250ml烧杯,100ml量筒,电子分析天平,pH 试纸。
2.试剂钛酸丁酯(化学纯);二乙醇胺、十二胺(化学纯);氨水(稀释至30%)、无水乙醇(分析纯),去离子水。
四、操作步骤方法一:在盛有0.5g表面活性剂十二胺的烧杯中加入20ml二次蒸镭水,在磁力搅拌下使之充分溶解(可以适当加热,然后加入氨水调节pH值至10o迅速加入钛酸丁酯溶液(Ti(OC4H9)4,使Ti°+的浓度为0.25mol/L, M=340.36),搅拌30min,生成胶状沉淀。
纳米二氧化钛的制备及其光催化活性评价一、实验目的3、了解纳米半导体材料的性质。
4、了解纳米半导体光催化的原理。
二、实验原理二氧化钛,化学式为,俗称钛白粉。
多用于光触媒、化装品,能靠紫外线消毒及杀菌。
以纳米级为代表的具有光催化功能的光半导体材料,因其颗粒细小、比外表积大而具有常规材料所不具备的优点,以及较高的光催化活性、高效的光点转化性能等,在抗菌除雾、空气净化、废水处理、化学合成及燃料敏化太阳能电池等方面显出广阔的应用前景。
1、纳米二氧化钛的制备溶胶凝胶法中,反响物为水、钛酸四丁酯,分相介质为乙醇,冰醋酸可调节体系的酸度防止钛离子水解过度,使钛酸四丁酯在无水乙醇中水解生成,脱水后即可得到。
在后续的热处理过程中,只要控制适当的温度条件和反响时间,就可以得到二氧化钛。
在以乙醇为溶剂,钛酸四丁酯和水发生不同程度的水解反响,钛酸四丁酯在酸性条件下,在乙醇介质中水解反响是分步进行的。
一般认为,在含钛离子溶液中钛离子通常与其它离子相互作用形成复杂的网状基团。
上述溶胶体系静置一段时间后,由于发生胶凝作用,最后形成稳定的凝胶。
此过程中涉及的反响为:2、光催化活性评价光触媒在光照条件下〔可以是不同波长的光照)所起到的催化作用的化学反响,通称为光反响。
光催化一般是多种相态之间的催化反响。
本次试验是进行紫外光催化活性评价,分别通过测量在亚甲基蓝和甲基橙中,反响前后的溶液的吸光度的变化算出降解率来评价制备的二氧化钛的活性。
三、实验仪器与试剂仪器:磁力搅拌器,搅拌磁子,水浴锅,PH试纸,胶头滴管,量筒,玻璃棒,烧杯,坩埚,石棉网,电炉,真空枯燥箱,量杯,充气管,自制紫外灯光催化装置,离心机。
试剂:亚甲基蓝,甲基橙,盐酸,冰醋酸,钛酸丁酯,四氯化钛,硫酸氧钛,纳米二氧化钛,无水乙醇。
四、实验步骤〔1〕二氧化钛的制备1、室温下取10ml钛酸丁酯,缓慢滴入到35ml无水乙醇中,用磁力搅拌器强力搅拌10min,混合均匀,形成黄色澄清溶液A。