湍流模型理论(DOC)
- 格式:doc
- 大小:116.00 KB
- 文档页数:9
湍流模型及其在物理学中的应用湍流是一个普遍存在于自然界和人类社会中的现象,具有复杂性、不可预知性和不稳定性等特点。
湍流现象包括气体、液体、等离子体、大气等许多领域,因此它的研究具有重要的理论和实际意义。
为了研究湍流现象,科学家们发展了许多不同的模型和方法,其中湍流模型是重要的研究工具之一。
本文将介绍湍流模型和它在物理学中的应用。
一、湍流模型概述湍流模型是对湍流现象进行数学描述的一种方法,它认为湍流现象是由一系列不同尺度的涡旋体产生的,涡旋体之间存在相互作用和相互影响。
目前常用的湍流模型包括:1. 线性模型:线性模型假设涡旋体是线性的、稳定的。
这种模型有简单、精确、易于解析等特点,但它并不能精确地描述实际湍流现象。
2. 非线性模型:非线性模型是近年来湍流研究的主要方向。
它认为涡旋体是非线性的、不稳定的,并且涡旋体之间存在复杂的相互作用和相互影响。
这种模型适用于对高度非线性湍流现象的研究,但通常需要进行复杂的计算。
3. 统计模型:统计模型是一种基于大量实验数据和经验规律的模型。
它主要通过统计分析来确定湍流现象的统计特性。
目前最常用的统计模型是雷诺平均 Navier-Stokes 方程(RANS),该方程将湍流速度分解为平均流和涡旋脉动流两部分。
这种模型适用于时间尺度大于湍流时间尺度的湍流现象。
通过使用不同的模型可以更好地描述和了解湍流现象,从而为湍流研究提供了重要的工具和技术。
二、湍流模型在物理学中的应用湍流研究既具有理论意义,又具有实际应用价值。
下面介绍湍流模型在物理学中的一些应用。
1. 大气湍流预测大气湍流预测是天气预报、气候变化预测等领域的重要研究方向之一。
湍流对气象学有着深远的影响,因此了解和预测大气湍流现象对准确预测天气和气候变化至关重要。
目前常用的预测方法包括数值模拟、机器学习等。
其中,湍流模型是数值模拟的重要组成部分,通过使用湍流模型可以更好地模拟大气湍流,并提高预测精度。
2. 涡旋动力学研究涡旋动力学是湍流研究的一个重要分支领域,它研究涡旋体之间的相互影响和相互作用,以及这些影响和作用所产生的复杂运动规律。
湍流模型理论§3.1 引言自然界中的实际流动绝大部分是三维的湍流流动,如河流,血液流动等。
湍流是流体粘性运动最复杂的形式,湍流流动的核心特征是其在物理上近乎于无穷多的尺度和数学上强烈的非线性,这使得人们无论是通过理论分析、实验研究还是计算机模拟来彻底认识湍流都非常困难。
回顾计算流体力学的发展,特别是活跃的80年代,不仅提出和发展了一大批高精度、高分辨率的计算格式,从主控方程看相当成功地解决了Euler方程的数值模拟,可以说Euler方程数值模拟方法的精度已接近于它有效使用范围的极限;同时还发展了一大批有效的网格生成技术及相应的软件,具体实现了工程计算所需要的复杂外形的计算网格;且随着计算机的发展,无论从计算时间还是从计算费用考虑,Euler方程都已能适用于各种实践所需。
在此基础上,80年代还进行了求解可压缩雷诺平均方程及其三维定态粘流流动的模拟。
90年代又开始一个非定常粘流流场模拟的新局面,这里所说的粘流流场具有高雷诺数、非定常、不稳定、剧烈分离流动的特点,显然需要继续探求更高精度的计算方法和更实用可靠的网格生成技术.但更为重要的关键性的决策将是,研究湍流机理,建立相应的模式,并进行适当的模拟仍是解决湍流问题的重要途径。
要反映湍流流场的真实情况,目前数值模拟主要有三种方法:1。
平均N-S方程的求解,2。
大涡模拟(LES),3。
直接数值模拟(DNS)。
但是由于叶轮机械内部结构的复杂性以及目前计算机运算速度较慢,大涡模拟和直接数值模拟还很少用于叶轮机械内部湍流场的计算,更多的是通过求解平均N-S方程来进行数值模拟。
因为平均N-S方程的不封闭性,人们引入了湍流模型来封闭方程组,所以模拟结果的好坏很大程度上取决于湍流模型的准确度。
自70年代以来,湍流模型的研究发展迅速,建立了一系列的零方程、一方程、两方程模型和二阶矩模型,已经能够十分成功的模拟边界层和剪切层流动。
但是,对于复杂的工业流动,比如航空发动机中的压气机动静叶相互干扰问题,大曲率绕流,激波与边界层相互干扰,流动分离,高速旋转以及其他一些原因,常常会改变湍流的结构,使那些能够预测简单流动的湍流模型失效,所以完善现有湍流模型和寻找新的湍流模型在实际工作中显得尤为重要。
湍流模型介绍范文
湍流是流体动力学中最经典的问题之一,它是流体动力学研究的重要
研究内容。
它解释了流体加速度、压强分布、能量消耗等物理问题,对于
流体的稳定和可控性流动有重要的理论意义和工程实用价值。
湍流是指流体在微观上无序的运动,是流体动力学中最为重要的研究
问题之一、湍流从经典流体动力学的研究开始,并从上世纪20年代开始
有效地分析和解释了液体及气体的湍流特性,是一种具有重要理论意义和
广泛工程应用的性质。
湍流的主要特征是流体在一些方向上呈现出无规则
的游走运动,其速度在空间上周期性变化,而每一次变化都有一定的方向,但其流体结构比较复杂,特别是对于湍流流动的性质研究,许多流体动力
学问题尚未有效解决。
湍流模型是用来描述湍流流动的性质的一种数学模型。
经典的湍流模
型是在19世纪末期,由英国的贝尔(G.I.Boltzmann)提出的,他的湍流
模型是首先将湍流流动分解成振荡和定常流动两部分,并用一系列简单的
数学方程来描述湍流的特性。
在20世纪30年代,英国的拉瓦锡
(L.R.von Karman)提出了完整的湍流动力学模型,它是由经典的湍流和
贝尔拉瓦锡方程组组成的。
湍流模型推导对纳维斯托克斯方程做时间平均处理,即采用雷诺平均法(RANS :Reynolds-Averaged Navier-Stokes ),可以得到湍流基本方程。
对于任意变量φ,按照雷诺时间平均法,可以拆分为如下格式:φφφ'+=“-” 表示对时间的平均,上标“’”代表脉动量。
按照dt TTt tφφ⎰∆+∆=1计算平均值,将流动变量i u 和p 转换成时间平均和脉动值之和u u u i '+=,p p p '+=为了使方程组更具有封闭性,必须模化雷诺应力,引入模型使方程组封闭。
其方法之一是湍流粘性系数法。
按照基于Boussinesq 的涡粘假设湍流粘性系数法有ij i i t i jj i t j i x u k x u xu u u δμρμρ⎪⎪⎭⎫ ⎝⎛∂∂+-⎪⎪⎭⎫ ⎝⎛∂∂+∂∂=''-32 上述方程式中t μ为涡粘系数,i u 为时均速度,ij δ是Kronecker 符号,k 为湍流动能(当j i =时,1=ij δ;当j i ≠时,0=ij δ)。
2i i u u k ''=确定涡粘性系数t μ就是整个湍流模型的目标关键,确定湍流粘性系数法具体可以分为零方程模型、一方程模型、和二方程模型等等。
一 零方程模型零方程模型也可称作代数模型,直接建立雷诺应力和时均值的代数关系,从而把涡粘系数和时均值联系到一起的模型。
1 混合长度模式混合长度模式是基于分子运动的比拟,在二维剪切层中导出的。
混合长度l 类比分子运动自由程,在经历混合长度的横向距离上,脉动速度正比于混合长度及流向平均速度梯度,即:yUlu ∂∂∝' (1.1-1) 而粘性系数应当正比于脉动速度和混合长度之积(分子粘性系数正比于自由程和分子热运动速度之积),从而涡粘系数有如下的估计式:yUl l u v t ∂∂∝'∝2(1.1-2) 在湍流输运中,涡粘系数和沃扩散系数之比定义为普朗特数t Pr ,即:t t t v κ=Pr (1.1-3)工程计算中通常采用0.1~8.0Pr =t 。
湍流模型一、 引言以时均量表示的湍流基本方程都刻有相应的瞬时值方程经雷诺分解后再取时均导出。
因此经雷诺平均后,得到了描述湍流时均化的基本方程组,其共包含四个方程,包含一个平均流连续方程一个、以及三个雷诺方程。
但是方程组中的未知量的个数远远多于方程数,除了四个时均量)3,2,1(,=i u p i 外,还有对称的雷诺应力张量''j i u u 的六个分量,因此湍流的时均化方程是不封闭的。
若导入雷诺应力方程,尽管''j i u u 被表达,但是只能在现有方程组中导入更多的变量,方程组不封闭的问题仍旧得不到有效的解决。
湍流模型问题就是建立脉动关联量与平均量之间的关系,或更一般的说,建立高阶关联量与低阶关联量之间的关系,使湍流平均运动的方程组能够封闭。
由于没有“附加”的物理定律可用于建立这些关系,所以湍流模型问题很复杂很困难的。
人们只能以大量的试验观测为基础,通过量纲分析、张量分析或其它手段,包括合理的推理和猜测,提出假设,建立模型,然后与试验对比,进行进一步的修正和精确化。
由此可见,迄今为止建立的湍流模型没有一个是建立在完全严密的理论基础上的,所以也称之为湍流的半经验理论。
二、 湍流模型的主要型式模式理论的思想可以追溯至100多年前。
1872年布辛涅斯克就提出了用涡粘性系数来模拟雷诺应力 )(''i j j i T j i x U x U u u ∂∂+∂∂=-υρ1925年,普朗特沿这一方向做了重要的工作,提出了混合长度理论。
但是混合长度理论本身没有给出确定混合长度l 的理论,冯卡门的相似性假设却使估计l 与空间坐标的关系成为可能。
对于冯卡门的理论,在离避免很近的区域,流动状态将受分子粘性很大的影响,而相似性理论都不能反映这一情况。
为此,范德列斯特提出了对相似理论中的l 的修正公式。
现在广泛使用的一种零方程模型是由薛贝赛和斯密斯提出的两层模型,对于边界层的内层,以范德列斯特模型为基础,在外层则用尾迹型。
低速流体流动中的湍流模型引言湍流是流体力学中一个复杂而重要的现象,它经常在自然界和工程实践中出现。
湍流现象给流体的流动带来了不确定性和不稳定性,使得流动过程变得复杂且难以预测。
在高速流动中,湍流现象更加明显,但同样在低速流动中也会有一定程度的湍流出现。
因此,研究低速流动中的湍流模型对于理解与控制流体流动具有重要的理论和实际意义。
低速流体流动的特点低速流体流动是指流场中的流速较慢,流动过程中的湍流现象相对较弱。
在低速流动中,流体的速度梯度较小,粘性作用在流动量级上起主导作用。
流体粘性具有剪切阻力效应,当流体在壁面附近流动时,流体颗粒之间的相互作用会导致速度剖面的变化。
此外,低速流动通常具有较高的雷诺数(Reynolds number),所以流动在全过程中都保持在层流状态。
低速流体流动的湍流模型及评估方法湍流模型是用来描述湍流流动的数学模型。
在低速流体流动中,湍流模型主要有两种:1) 统计湍流模型,2) 湍流可压缩性模型。
统计湍流模型统计湍流模型是在统计学的框架下,通过描述湍流统计量之间的关系来描述和预测湍流流动。
最常见的统计湍流模型是基于雷诺平均(Reynolds-averaged)的Navier-Stokes方程,通过对流场的统计平均值进行建模。
这种模型适用于各类低速流动和多种流动与换热过程。
统计湍流模型根据湍流运动的不同时间尺度,又可分为:1) Eddy-Viscosity模型,2) Reynolds Stress模型。
1.Eddy-Viscosity模型是一种基于湍流粘性模型的统计湍流模型。
这种模型假设湍流运动中存在一定的等效的湍流粘性,通过引入湍流粘性系数来描述湍流现象。
Eddy-Viscosity模型在工程实践中应用广泛,因为它相对简单和高效。
2.Reynolds Stress模型是将湍流动量传输建模为湍流应力的纳维尔-斯托克斯方程。
这种模型通过对流场的湍流应力进行求解,得到湍流的分布情况。
流体的湍流模型和湍流模拟流体力学是研究流体的运动规律和性质的学科,其中湍流模型和湍流模拟是其中非常重要的研究方向。
湍流是流体力学中一种复杂而普遍存在的现象,它具有不规则、无序和随机性等特点。
湍流模型和湍流模拟的发展,对于理解和预测真实世界中的湍流现象,以及涉及湍流的工程设计和应用具有重要意义。
一、湍流模型湍流模型是描述湍流现象的数学模型,在流体力学中起着扮演着非常重要的作用。
根据流体力学理论,湍流是由于流体中微小尺度的速度涡旋突然出现和消失所导致的现象。
由于湍流涡旋的尺度范围很广,从而难以直接模拟和计算。
因此,使用湍流模型来近似描述湍流现象,成为了一种常用的方法。
常见的湍流模型包括雷诺平均湍流模型(Reynolds-averaged Navier-Stokes equations, RANS)和大涡模拟(large eddy simulation, LES)等。
雷诺平均湍流模型是基于平均流场的统计性质,通过求解雷诺平均速度和湍流应力来评估湍流效应。
而大涡模拟是将湍流现象分解为不同尺度的涡旋,并通过直接模拟大涡旋来研究湍流运动。
二、湍流模拟湍流模拟是利用计算机来模拟湍流现象的方法,通常基于数值方法对流体力学方程进行求解。
湍流模拟分为直接数值模拟(direct numerical simulation, DNS)、雷诺平均湍流模拟和大涡模拟等。
直接数值模拟是将流场划分为网格,并通过离散化流体力学方程和湍流模型来求解湍流流场的详细信息。
由于该方法需要计算微小尺度的细节,计算量非常大,限制了其在实际工程中的应用。
因此,直接数值模拟主要用于湍流现象的基础研究和理论验证。
相比之下,雷诺平均湍流模拟和大涡模拟能够更有效地模拟湍流现象。
雷诺平均湍流模拟通过对湍流参数进行求解,来描述平均的湍流效应。
而大涡模拟则将湍流现象分为大涡旋和小涡旋,通过模拟大涡旋来捕获湍流流场的主要特征。
三、湍流模型与湍流模拟的应用湍流模型和湍流模拟在工程设计和应用中有着广泛的应用。
K-e湍流模型第一篇:K-e湍流模型K是紊流脉动动能(J),ε 是紊流脉动动能的耗散率(%)K越大表明湍流脉动长度和时间尺度越大,ε 越大意味着湍流脉动长度和时间尺度越小,它们是两个量制约着湍流脉动。
但是由于湍流脉动的尺度范围很大,计算的实际问题可能并不会如上所说的那样存在一个确切的正比和反比的关系。
在多尺度湍流模式中,湍流由各种尺度的涡动结构组成,大涡携带并传递能量,小涡则将能量耗散为内能。
在入口界面上设置的K和湍动能尺度对计算的结果影响大,至于k 是怎么设定see fluent manual “turbulence modelling”作一个简单的平板间充分发展的湍流流动,基于k-e模型。
确定压力梯度有两种方案,一是给定压力梯度,二是对速度采用周期边界条件,压力不管!k-epsiloin湍流模型参数设置:k-动能能量;epsilon-耗散率;在运用两方程湍流模型时这个k值是怎么设置的呢?epsilon可以这样计算吗?Mepsilon=Cu*k*k/Vt%这些在软件里有详细介绍。
陶的书中有类似的处理,假定了进口的湍流雷诺数。
fluent帮助里说,用给出的公式计算就行。
k-e模型的收敛问题!应用k-e模型计算圆筒内湍流流动时,网格比较粗的时计算结果能收敛,但是当网格比较密的时候,湍流好散率就只能收敛到10的-2次方,请问大侠有没有解决的办法?用粗网格的结果做初场网格加密不是根本原因,更本的原因是在加密过程中,部分网格质量差注意改进网格质量,应该就会好转.在求解标准k-e双方程湍流模型时(采用涡粘假设,求湍流粘性系数,然后和N-S方程耦合求解粘性流场),发现湍动能产生项(雷诺应力和一个速度张量相乘组成的项)出现负值,请问是不是一种错误现象?如果是错误现象一般怎样避免。
另外处理湍动能产生项采用什么样的差分格式最好。
而且因为源项的影响,使得程序总是不稳定,造成k,e值出现负值,请问有什么办法克服这种现象。
流体力学中的流体流动的湍流模型在流体力学中,流体流动是一个复杂而广泛的研究领域。
湍流作为流体流动的一种重要模型,具有不可忽视的影响。
本文将讨论湍流模型在流体力学中的应用和意义。
一、湍流的概念和特点湍流是指在流体中存在不规则、混乱的流动现象。
与之相对的是层流,层流是指流体以平行且有序的路径运动。
湍流的主要特点包括:不规则性、三维性、旋转性和不可预测性。
湍流具有广泛的应用领域,如气象学、航空航天、工程流体力学等。
二、湍流模型的分类湍流模型主要用于描述湍流流动的数学和物理特性,有多种分类方法。
根据直接数值模拟(DNS)、雷诺平均模拟(RANS)和大涡模拟(LES)等,湍流模型可分为直接模拟模型、统计模型和动态模型等。
1. 直接模拟模型直接模拟模型是基于流体力学方程的解析解,通过数值方法模拟流体流动的全过程。
这种模型能够精确描述湍流的数学和物理特性,但计算量大,适用范围有限。
2. 统计模型统计模型是通过对湍流流动的统计数据进行建模,以得到平均场变量的表达式。
常见的统计模型包括雷诺平均模型(RANS)、湍动能方程模型和湍流动能理论模型等。
这些模型适用于工程实际,计算量相对较小。
3. 动态模型动态模型是指结合统计模型和直接模拟模型的模型。
它能够根据流动状态自适应地调整模型参数,以提高模型的准确性。
动态模型适用于大尺度流动和高雷诺数流动的模拟。
三、湍流模型的应用湍流模型在流体力学研究和工程实践中有着广泛的应用。
以下是一些典型的应用案例:1. 空气动力学湍流模型在飞行器气动性能研究中起到了重要作用。
通过模拟湍流的生成和演化过程,可以预测飞行器在不同工况下的气动特性。
这对于飞机设计、空气动力学优化和飞行安全都具有重要意义。
2. 水力学湍流在水动力学中的应用同样不可忽视。
例如,在水坝设计中,湍流模型可以用来预测水体在溢流过程中的流速、压力和能量损失等参数。
这对于保证水坝的安全性和有效性至关重要。
3. 工业应用湍流模型在工业领域中的应用十分广泛。
流体的湍流模型湍流是流体力学中一个重要的概念,指的是流体运动过程中的混乱无序的状态。
湍流现象普遍存在于自然界中,例如大气中的风、海洋中的波浪以及河流中的涡流等。
湍流模型是用来描述湍流运动的数学模型,它通过建立流体的动量和能量传输方程,来揭示湍流形成和演化的规律。
一、湍流模型的基本原理湍流的形成是由于流体运动过程中存在的各种非线性的物理过程,比如惯性力、摩擦力和压力梯度等。
湍流模型的基本原理是基于雷诺平均导出的方程式,其中雷诺平均是指对流体宏观属性进行时间平均运算。
通过平均之后,湍流运动可以被看作是均匀流动和湍流脉动两个部分的叠加。
二、湍流模型的分类湍流模型可以分为两大类:一类是基于统计理论的湍流模型,另一类是基于运动方程的湍流模型。
基于统计理论的湍流模型通常使用统计学中的概率密度函数和相关函数等概念来描述湍流运动中的各种参数。
而基于运动方程的湍流模型则是通过对流体动量和能量传输方程进行进一步的分析和求解,从而得到流体湍流运动的演化规律。
三、湍流模型的应用湍流模型在工程领域中有着广泛的应用。
例如在空气动力学研究中,湍流模型可以用来评估飞机的气动性能,优化机体的设计。
在流体力学领域,湍流模型可以用于预测和模拟液体的流动,帮助优化流体管道的设计和运行。
湍流模型还可以应用于天气预报、水利工程和环境保护等领域。
四、湍流模型的发展趋势随着计算机科学和数值模拟技术的发展,湍流模型也在不断地完善和演进。
近年来,随着大规模计算能力的提升,湍流模型的数值模拟能力得到了显著的提高,可以更准确地描述湍流现象和湍流的演化规律。
另外,机器学习和人工智能等新兴技术的引入,也为湍流模型的发展带来了新的机遇和挑战。
五、结语湍流模型是流体力学研究中的重要工具,通过对湍流现象的建模和仿真,可以帮助我们更好地理解和预测流体运动的行为。
随着科学技术的不断发展,湍流模型将继续完善和更新,为人类的科学研究和工程应用提供更准确、可靠的支持。
我们相信,在不久的将来,湍流模型将在更多领域发挥出重要的作用,促进科学技术和工程领域的进步和发展。
湍流模型湍流模型,就是以雷诺平均运动方程与脉动运动方程为基础,依靠理论与经验的结合,引进一系列模型假设,而建立起的一组描写湍流平均量的封闭方程组。
湍流模型,是指确定湍流输运项的一组代数或微分方程,通过这组方程,Reynolds方程得以封闭.它基于对湍流过程的假设,借助经验常数或函数,建立高阶湍输运项与低阶湍输运项直至与平均流之间的某种关系。
k-ε模型①标准的k-ε模型:最简单的完整湍流模型是两个方程的模型,要解两个变量,速度和长度尺度。
在FLUENT 中,标准k-ε模型自从被Launder and Spalding提出之后,就变成工程流场计算中主要的工具了。
适用范围广、经济、合理的精度。
它是个半经验的公式,是从实验现象中总结出来的。
湍动能输运方程是通过精确的方程推导得到,耗散率方程是通过物理推理,数学上模拟相似原型方程得到的。
振动资讯应用范围:该模型假设流动为完全湍流,分子粘性的影响可以忽略,此标准κ-ε模型只适合完全湍流的流动过程模拟。
②RNG k-ε模型:RNG k-ε模型来源于严格的统计技术。
它和标准k-ε模型很相似,但是有以下改进:a、RNG模型在ε方程中加了一个条件,有效的改善了精度。
b、考虑到了湍流漩涡,提高了在这方面的精度。
c、RNG理论为湍流Prandtl数提供了一个解析公式,然而标准k-ε模型使用的是用户提供的常数。
d、标准k-ε模型是一种高雷诺数的模型,RNG理论提供了一个考虑低雷诺数流动粘性的解析公式。
这些公式的作用取决于正确的对待近壁区域。
这些特点使得RNG k-ε模型比标准k-ε模型在更广泛的流动中有更高的可信度和精度。
③可实现的k-ε模型:可实现的k-ε模型是近期才出现的,比起标准k-ε模型来有两个主要的不同点:·可实现的k-ε模型为湍流粘性增加了一个公式。
·为耗散率增加了新的传输方程,这个方程来源于一个为层流速度波动而作的精确方程。
术语“realizable”,意味着模型要确保在雷诺压力中要有数学约束,湍流的连续性。
湍流模型理论§3.1 引言自然界中的实际流动绝大部分是三维的湍流流动,如河流,血液流动等。
湍流是流体粘性运动最复杂的形式,湍流流动的核心特征是其在物理上近乎于无穷多的尺度和数学上强烈的非线性,这使得人们无论是通过理论分析、实验研究还是计算机模拟来彻底认识湍流都非常困难。
回顾计算流体力学的发展,特别是活跃的80年代,不仅提出和发展了一大批高精度、高分辨率的计算格式,从主控方程看相当成功地解决了Euler方程的数值模拟,可以说Euler方程数值模拟方法的精度已接近于它有效使用范围的极限;同时还发展了一大批有效的网格生成技术及相应的软件,具体实现了工程计算所需要的复杂外形的计算网格;且随着计算机的发展,无论从计算时间还是从计算费用考虑,Euler方程都已能适用于各种实践所需。
在此基础上,80年代还进行了求解可压缩雷诺平均方程及其三维定态粘流流动的模拟。
90年代又开始一个非定常粘流流场模拟的新局面,这里所说的粘流流场具有高雷诺数、非定常、不稳定、剧烈分离流动的特点,显然需要继续探求更高精度的计算方法和更实用可靠的网格生成技术。
但更为重要的关键性的决策将是,研究湍流机理,建立相应的模式,并进行适当的模拟仍是解决湍流问题的重要途径。
要反映湍流流场的真实情况,目前数值模拟主要有三种方法:1.平均N-S方程的求解,2.大涡模拟(LES),3.直接数值模拟(DNS)。
但是由于叶轮机械内部结构的复杂性以及目前计算机运算速度较慢,大涡模拟和直接数值模拟还很少用于叶轮机械内部湍流场的计算,更多的是通过求解平均N-S方程来进行数值模拟。
因为平均N-S方程的不封闭性,人们引入了湍流模型来封闭方程组,所以模拟结果的好坏很大程度上取决于湍流模型的准确度。
自70年代以来,湍流模型的研究发展迅速,建立了一系列的零方程、一方程、两方程模型和二阶矩模型,已经能够十分成功的模拟边界层和剪切层流动。
但是,对于复杂的工业流动,比如航空发动机中的压气机动静叶相互干扰问题,大曲率绕流,激波与边界层相互干扰,流动分离,高速旋转以及其他一些原因,常常会改变湍流的结构,使那些能够预测简单流动的湍流模型失效,所以完善现有湍流模型和寻找新的湍流模型在实际工作中显得尤为重要。
§3.2 湍流模型概述§3.2.1 湍流模型的引入湍流模式理论或简称湍流模型,就是以雷诺平均运动方程与脉动运动方程为基础,依靠理论与经验的结合,引进一系列模型假设,而建立起的一组描写湍流平均量的封闭方程组。
湍流运动物理上近乎无穷多尺度漩涡流动和数学上的强烈非线性,使得理论实验和数值模拟都很难解决湍流问题。
虽然N-S方程能够准确地描述湍流运动地细节,但求解这样一个复杂的方程会花费大量的精力和时间。
实际上往往采用平均N-S方程来描述工程和物理学问题中遇到的湍流运动。
当我们对三维非定常随机不规则的有旋湍流流动的N-S方程平均后,得到相应的平均方u u,从而形成了湍流基本方程,此时平均方程中增加了六个未知的雷诺应力项i j程的不封闭问题。
根据湍流运动规律以寻找附加条件和关系式从而使方程封闭就促使了几年来各种湍流模型的发展,而且在平均过程中失去了很多流动的细节信息,为了找回这些失去的流动信息,也必须引入湍流模型。
目前虽然许多湍流模型已经取得了某些预报能力,但至今还没有得到一个有效的统一的湍流模型。
同样,在叶轮机械内流研究中,如何找到一种更合适更准确的湍流模型也有待于进一步研究。
§3.2.2 湍流模型的发展历程模型理论的思想可追溯到100多年前,为了求解雷诺应力使方程封闭,早期的处理方法是模仿粘性流体应力张量与变形率张量关联表达式,直接将脉动特征速度与平均运动场中速度联系起来。
十九世纪后期,Boussinesq提出用涡粘性系数的方法来模拟湍流流动,通过涡粘度将雷诺应力和平均流场联系起来,涡粘系数的数值用实验方法确定。
到二次世界大战前,发展了一系列的所谓半经验理论,其中包括得到广泛应用的普朗特混合长度理论,以及G.I泰勒涡量传递理论和Karman相似理论。
他们的基本思想都是建立在对雷诺应力的模型假设上,使雷诺平均运动方程组得以封闭。
1940年,我国流体力学专家周培源教授在世界上首次推出了一般湍流的雷诺应力输运微分方程;1951年在西德的Rotta又发展了周培源先生的工作,提出了完整的雷诺应力模型。
他们的工作现在被认为是以二阶封闭模型为主的现代湍流模型理论的最早奠基工作。
但因为当时计算机水平的落后,方程组实际求解还不可能。
70年代后期,由于计算机技术的飞速发展,周培源等人的理论重新获得了生命力,湍流模型的研究得到迅速发展。
建立的一系列的两方程模型和二阶矩模型,已经能十分成功地模拟边界层和剪切层流动,但是对于复杂的工业流动,比如大曲率绕流,旋转流动,透平叶栅动静叶互相干扰等,这些因素对湍流的影响还不清楚,这些复杂流动也构成了进入二十一世纪后学术上和应用上先进湍流模型的研究[48]。
§3.2.3湍流模型研究的现状和进展湍流模型可根据微分方程的个数分为零方程模型、一方程模型、二方程模型和多方程模型。
这里所说的微分方程是指除了时均N-S方程外,还要增加其他方程才能是方程封闭,增加多少个方程,则该模型就被成为多少个模型。
下面分别介绍各种湍流模型的研究现状和进展。
3.2.3.1 零方程模型零方程模型建立在涡粘性假设基础上,把平均N-S方程中的雷诺应力假设为平均物理量的某种函数,使方程组封闭。
由于涡粘系数在整个边界层中并不是一个常数,而且湍流边界层仅仅局限于依靠壁面的一个小部分区域内,普朗特在dU dy)直接1925年提出了动量传递混合长度理论,将湍流应力和平均速度(/建立关系,此后各国学者在这方面做了大量工作,下面简介几个应用比较广泛的零方程模型。
一种在工程上最为常用的代数模型是由Cebeci-Smith[49]给出的,可用来计算湍流边界层。
C-S模型在工程计算中得到了广泛的应用,其准确度和可靠性也得到了较多实验的验证。
实践证明,对于逆压力梯度或顺压力梯度很大的平衡湍流边界层及接近分离区的流动,其精度不是很好。
后来Baldwin与Lomax对该公式进行了修正,得到了Baldwin-Lomax(B-L)[50]模型。
B-L模型以涡粘性假设为基础,属于局部平衡模型,其中系数是不可压缩流体平板附面层实验结果。
由于该模型简单,计算工作量小,且对于湍流附面层流动计算具有一定精度,故广泛应用于工程计算中。
在应用中人们也发现了B-L模型的不足之处,模型中各系数都是平板附面层经验值,没有考虑压力梯度对附面层的影响。
还有很多研究者都曾对代数模型进行了修正,但收效甚微。
NASA Ames研究中心曾对代数模型做过广泛系统的研究,发现对于复杂流动的预测它所得到的结果远不如两方程模型精确。
虽然零方程模型精度不高,但由于零方程模型简单,因此在全世界得到了广泛的应用。
一般来说,零方程模型有如下优缺点,一是零方程模型适用于中等压力梯度的二维流动,能够很好预报主流速度,但对湍流应力仅能做定性预报。
二是零模型只适用于预测具有轻微的横向流动的二维边界层。
三是零方程模型不适用于绕流,旋转效应及有分离的流动,对三维复杂流动或是湍流运输效应占主导地位的流动会产生较大误差。
四是各向同性假设使得零方程模型不能预测大逆压梯度,或是由于湍流输运所造成的二次流动。
五是零方程模型不能预测激波引起的分离流动。
3.2.3.2 一方程模型一方程模型将湍动能方程作为一个附加的偏微分方程,加上其他代数经验关系式使方程组封闭,一般也称为能量方程模型。
它考虑了对流和湍流扩散输运,以湍动能表示特征速度,并由方程求出脉动特征速度,放弃了将脉动特征速度与平均速度梯度直接联系起来的做法,因此能量方程模型比零方程模型更优越。
但是能量方程模型也假定了涡粘性系数各向同性,而且特征长度仍需要经验确定,对运动过程影响的考虑也不充分,因而对于复杂流动的应用受到很大的限制。
大多数的一方程模型采用涡粘性假设,其精度和计算量介于零方程模型和二方程模型之间。
一方程模型的来源由两种,一种从经验和量纲分析出发,针对简单流动逐步发展起来,如Spalart-Allmaras(S-A)模型[51];另一种由二方程模型简化而来,如Baldwin-Barth(B-B)模型[52]。
上述两种模型都有相似的特点,不象零方程模型那样需要分内外层模型,也不需要沿法线方向网格线寻找最大值,因此可用到非结构网格中,但是计算量比零方程模型大。
随着模型理论的发展和广大科研工作者的努力,一方程模型也不断得到改进和完善。
宁方飞等推导了Splart-Allmaras 模型的守恒形式,将其用于了二维扩压器和三维压气机转子湍流流场的计算,取得了很好的效果,表明Splart-Allmaras 模型用于内流计算是成功的[53]。
3.2.3.3 两方程模型两方程模型是目前湍流模型研究中的热门,也是目前应用最广泛的一种湍流模型,这与其内在的物理本质有必然联系。
应用比较广泛的两方程模型有Jones 与Launder 提出的标准k ε-(S-k-eps )模型[54],和经过修正的各种低雷诺数k ε-模型,以及由k ε-模型发展而来的k ω-模型和q ω-模型。
另外还有很多关于k ε-模型的非线性代数应力模型。
自Jones 与Launder 提出的标准k ε-模型以来,该模型就以其简单,计算精度精度较高而广泛应用于各种湍流研究中。
标准k ε-模型在推演过程中,采用了以下几项基本处理:(1)用湍动能k 反映特征速度;(2)用湍动能耗散率ε反映特征长度尺度;(3)引进了2/t C k μνε=的关系式(4)利用Boussinesq 假定进行简化。
正因为如此,可以认为k ε-有以下优点:一是通过求解偏微分方程考虑湍流物理量的输运过程,即通过求解偏微分方程来确定脉动特征速度与平均速度梯度的关系,而不是直接将两者联系起来。
二是特征长度不是由经验确定,而是以耗散尺度作为特征长度,并由求解相应的偏微分得到,因而k ε-模型在一定程度上考虑了流动场中各点的湍动能传递和流动的历史作用。
计算结果表明,它能较好地用于某些复杂流动,例如环流、渠道流、边壁射流和自由湍射流,甚至某些复杂的三维流。
然而,标准k ε-模型也有一定的局限性,主要表现在:一是仍然采用了Boussinesq 假定,即采用了梯度型和湍流粘性系数各向同性的概念,因而使k ε-模型难以准确模拟剪切层中平均场流动方向的改变对湍流场的影响;二是采用了一系列的经验常数,这些系数都是在一定实验条件下得出来的,因而也限制了模型的使用范围。
近十年来人们不断对k ε-模型进行了改进。
在近壁面雷诺数较低,雷诺应力具有明显的各向异性,分子粘性对流动的影响相对增强,它不仅影响了平均流的输运,而且直接或间接地影响各种湍流过程,此外,湍流动能k 的产生率及耗散率ε达到极大,近似处于局部平衡,平均流速度和温度的二阶导数大,即平均流参数的梯度变化大。