从双基到四基
- 格式:ppt
- 大小:4.72 MB
- 文档页数:54
初中数学教学目标从“双基”到“四基”的转变策《义务教育数学课程标准(2011年版)》提出的“四基” 课程目标,将“数学的基础知识、基本技能”的“双基”目标,发展为“数学的基础知识、基本技能、基本思想、基本活动经验”的“四基”目标.但在日常教研交流中,笔者发现有两个现象,一个是很多老师对何谓“四基”还不甚了解,另一个是部分老师认为“四基”的提出就是完全否定过去的“双基”目标导向.换句话说,我们很多老师并没有真正了解:为什么要把“双基”发展成“四基”?“四基”对学生的基础教育培养又有何意义?基于此,就如何继承“双基”中的优良做法,以及如何把握数学基础教育发展的方向,归纳了如下几点看法,希望有助于摆正我们数学基础教育教学的前进方向.一、继承“双基”教学中的优良传统在数学的课堂教学中,加强基本知识和基本技能的教学,是我们数学课堂长期的实践中总结下的精华,启发式教学是我们初中教师最擅长使用,也是最得心应手的教学方式之一,这都是值得我们继承的.那么在实际的教学中,有哪些具体的做法是我们要弘扬与发展的呢?1.温故而知新学生对于未知领域的知识内容是很感兴趣的,我觉得把新知识的学习建立在旧知识的基础上,既方便于学生对新知识的理解和掌握,也方便老师更好地组织教学.比如在教《锐角三角函数(1)》(人教版九下)时,为了更好地温故知新,我就改变了背景陌生且叙述冗长引例,先让每个学生拿出一副三角板来研究边、角关系,并复习已学的旧知识:(1)三角板的各内角度数;(2)直角三角形两锐角互余;(3)直角三角形30°角所对的边是斜边的一半;(4)等腰三角形两腰相等;(5)勾股定理.“温故而知新”的教育原则,正是我们数学课堂教学所要传承的典型方法,也是我们数学教师最为精心设计的一个部分.因为它符合学生的认知规律,使学生由旧知中产生困惑,形成一个情境来激发探求新知的欲望,从而能很好地让学生经历了新知识的发生和发展过程,学生在这样子的环境中学习,会感到既轻松又有效.这无疑是“双基”教学中一个精华的、有效的做法.2.加强变式教学我觉得加强例题的变式教学也是继承“双基”教学的一个优良传统.变式教学作为课堂教学活动的一个重要环节,可以将一道题目进行变化或适当地拓展,给学生提供一个发展思维的阶梯.这不仅拓展整个课堂教学的空间,也避免了题海战术,真正起到事半功倍的效果.比如我发现学生对公式的记忆大多很机械,若我能在授课时让学生在有限的时间内看到尽量多的公式变形形式,并在各种形式中寻找不变的规律,这样不仅能帮助学生记忆公式应用公式,也能培养学生化归能力.在教《平方差公式》(人教版八上)时,我举了如下例子:下列式子能否用平方差公式计算,并指出公式中的a、b分别是什么?(1)(2m+n)(2m-n);(-2m-n)(2m-n);(-2m+n)(-2m-n);(-2m-n)(2m+n).(2)(2m+n+3)(2m-n-3);(-2m-n-3)(2m-n+3);(-2m-n-3)(2m+n+3).通过上述形式的变化能够加深学生对公式的理解,在变化的式子中让学生发现并掌握公式的本质特征:平方差公式应用时公式中的a,b与顺序无关,相同项即公式中的a,相反项即公式中的b.学生只要找出相同项和相反项,然后把相同项的平方减相反项的平方,问题就解决了.变式教学注重知识间内在的关联,强调学科知识的系统构建. 因此,例题的变式教学当然是“双基”教学中又一个优良的做法. 但要让它发挥更大作用,还要通过学生逐步地体验与积累,比如尽可能通过学生的合作交流,在解题后还要进行归纳和反思,以挖掘问题的本质,并揭示规律,这样才能形成学生自己的基本技能.3.注重课堂教学小结刚接触新的数学知识,学生难免没有方法,若老师只是用大量的练习来训练,让学生在不断地碰壁与失误中总结经验,那代价未免太大了.如果我们老师能充分利用课堂小结环节的作用,帮助学生梳理知识脉络,进而与其它知识融会贯通,势必会产生事半功倍的效果.比如充分利用图表、口诀、框架等记忆方法进行课堂小结,有效地做到了巩固复习、记忆和反馈功能,这在数学教学的实践证明是行之有效的.所以注重课堂小结是“双基” 教学中又一具体表现.另外,注重课堂练习巩固也是我们“双基”教学的突出特色之一,比如在每节数学课堂中,当新知识建立后,我们就会趁热打铁地安排巩固训练.因为数学的概念、命题、公式、法则的理解与应用,都需要通过各层次题目的反复训练达到的,所以这种夯实基本功的做法收到的效果是有目共睹的.其实双基教学就是我们课堂中最为基本、最应当要强调的东西,如:温故知新、加强课堂练习巩固、加强变式教学、注重巩固小结等.注重基本教学是我国现在数学教育鲜明的特色,也是我国千百年来所提倡的优良传统. 二、实现“双基”教学到“四基”教学的转变1.“双基”为什么要发展为“四基”数学基础教育中,“双基”教学的作用和其历史贡献值得肯定的.2001年颁发的《基础教育课程改革纲要(试行)》规定课程应达三维目标:知识与技能、过程与方法、情感态度与价值观. 而新《义务教育数学课程标准(2011版)》提出了四维目标:知识与技能、数学思考、问题解决、情感态度.不管是三维还是四维目标,“双基”仅仅涉及到“知识与技能”的目标,而新增加的“两个基础”则涉及另外的目标一一过程方法、数学思考和情感态度等.可以说,发展成“四基”是多维数学教育目标的要求.“双基”在实施过程中往往出现“见物不见人”的现象,而教育必须以人为本.所以我们在教学中,除了要让学生掌握必备的基本的数学知识和技能外,还要在课内注重渗透数学的基本思想,积累数学活动经验.新增加的“两个基础”就直接与人相关,也符合“素质教育”的理念,所以发展成“四基”也是提高学生数学素养的基本要求.2.实现从“双基”到“四基”的发展性转变①达成启发式教学与探究式教学的有效融合启发式教学是我们教师在讲解中永远应该弘扬的传统,现实的数学课堂,以发问方式启发、引导学生学习知识和发展能力,已成为数学教师主流的教学行为.但也出现重形式提问,重结果启发,重外在情境启发等现象.随着新课标对数学探究教学的强调,特别是新教材中,几乎每个课时都创设了探究活动,这对我们现行的课堂教学触动很大.所以,如何达成启发式教学与探究教学间有效的融合,是摆在当前课堂教学的一大问题.我觉得要做好两个方面的工作:一是创设好有启发作用的问题情境,可以用生活中实例来构建数学模型,也可以用纯数学的旧知来引导学生;二是充分利用学生资源做好探究活动,如引导学生经历观察、试验、猜测、验证、推理概括等过程.比如:在学习八年级数学《13.2画轴对称图形(2)》时,我先让学生在平面直角坐标系中画出点A(2, 3)、点B(-4, -1)关于x轴的对称点,然后引导学生观察点A与、点B与这两对对称点间横、纵坐标的关系,并归纳出关于x轴对称点的坐标特点.接着让学生用类比的方法画出点A、B关于y轴的对称点,并自行归纳出关于y轴对称点坐标的特点.最后让每个小组在讨论中总结了点(x,y)关于x轴、y轴对称的一般规律,并用这一规律完成练习:已知点P(2a+b,-3a)与点(8,b+2),若点P与关于x 轴对称,求a、b的值;若点P与关于y轴对称,求a、b的值. 在我的引导和启发下,学生自己去探索、合作,并获得结论,从中探究一条“从特殊例子得出一般结论,再用结论去解决特殊问题”解决数学问题的方法.达成启发式与探究式在教学上的有效融合,我们需要关注操作层面上求同存异和互为补充,力求趋于一致.课堂上我们要提倡教师善于启发、引导,与学生“合作”,也要关注学生自主或合作交流完成对数学问题的主动探索.②积累基本活动经验,感悟基本思想数学活动经验是学生经历了具体的活动而形成的,既有感知的内容,也可以是反思后的经验.比如:在九年级数学《24.1.4 圆周角(1)》中,由于圆心角的位置固定不变,而圆周角随顶点的位置变化而变化,要探究同弧所对圆周角与圆心角的三种位置关系,要先让学生经历动手画图、操作、体验等具体的数学活动,在感知的基础上学生发现二者的数量关系.接着再引导学生利用三角形及等腰三角形的性质加以证明.在这个过程中我们应鼓励学生去自己探索,自己获得结论.在学生积累一定的数学基本活动经验的基础上,就可以“悟出”一些数学思想,比如分类讨论思想、化归转化思想.数学是思维的科学,发展学生的数学思维能力是中小学数学教学的重要任务.我们数学教学在发展数学思维能力方面有两个特色:一是数学思想方法的渗透,二是解题教学的变式训练.数学思想在课堂教学中的渗透,首先是将数学思想是融于数学知识、技能和方法之中的,正如上面的教学;其次,数学思想的获得是通过理解、提炼、总结、再理解、应用等循环过程,让学生逐步“悟”出数学思想.③强调基本的概念教学基本的概念教学,是数学课程教学的主要内容之一.学生如果没有掌握好数学基本概念及其内在联系,常常会造成数学运用能力不强,也就造成学习成绩无法提高的现象.所以我们要强调基本的概念教学,在教学中我们要充分地挖掘概念的内在联系,并从中寻找解题的思路.比如函数概念的学习,如果直接要求学生从之前的静态问题转变为运动变化问题,这对学生而言是有困难的.所以我们要做好各方面的联系,比如函数图像是让学生体会数形结合的思想方法;基本初等函数的二维空间的思考模式,使学生的数学思维更为活跃;三角函数成为学生研究三角形以及周期变化的重要工具.我们老师要做的是让学生的大脑扩充或提升新数学知识体系,并重新认识已学内容的观点.开启学生的思想智慧,发展学生的创新意识与创造力,是数学教育的根本目标。
第1篇摘要:本文从双基教学到四基教学的转变出发,结合我国教育现状,探讨了在教学实践中如何实现这一转变,并分析了四基教学的优势和实施策略。
一、引言随着我国教育事业的不断发展,教学理念也在不断更新。
从传统的“双基”(基础知识、基本技能)教学到“四基”(基础知识、基本技能、基本方法、基本态度)教学的转变,是我国教育教学改革的重要方向。
本文将从教学实践的角度,探讨如何实现这一转变,并分析四基教学的优势和实施策略。
二、双基教学到四基教学的转变1. 双基教学的特点双基教学是指在教学过程中,注重基础知识的传授和基本技能的培养。
这种教学模式强调知识传授的系统性、全面性和针对性,注重学生的基础知识和基本技能的培养。
2. 四基教学的特点四基教学是在双基教学的基础上,进一步强调基本方法和基本态度的培养。
这种教学模式注重培养学生的创新精神和实践能力,强调学生主动参与、自主探究的学习过程。
3. 双基教学到四基教学的转变原因(1)时代发展需求:随着科技的飞速发展,社会对人才的需求越来越高,要求学生具备更强的创新能力和实践能力。
(2)教育改革趋势:我国教育改革不断深化,从应试教育向素质教育转变,四基教学正是素质教育的重要组成部分。
(3)学生发展需求:学生需要适应未来社会的发展,具备较强的综合素质,以应对各种挑战。
三、四基教学的优势1. 培养学生的创新精神和实践能力四基教学强调学生主动参与、自主探究的学习过程,有助于培养学生的创新精神和实践能力。
2. 提高学生的综合素质四基教学注重学生基本方法、基本态度的培养,有助于提高学生的综合素质。
3. 促进学生的全面发展四基教学关注学生的个性化发展,有助于促进学生全面发展。
四、四基教学的实施策略1. 教师转变观念教师应树立正确的教育观念,关注学生的全面发展,将四基教学理念融入教学实践。
2. 改革教学方法教师应采用多种教学方法,如探究式教学、合作学习等,激发学生的学习兴趣,培养学生的创新精神和实践能力。
从“双基”向“四基”的华丽转身打开文本图片集《国家数学课程标准》制定组组长、东北师大校长史宁中教授提出了“数学教学的四基”,引起了数学教育界的广泛关注。
以前强调的双基是指基础知识、基本技能,双基教学重视基础知识、基本技能的传授,讲究精讲多练,主张‘练中学’,相信‘熟能生巧’,追求基础知识的记忆和掌握、基本技能的操演和熟练,以使学生获得扎实的基础知识、熟练的基本技能和较高的学科能力为其主要的教学目标。
现在提出的四基不但包括了基础知识、基本技能、还增加了基本思想、基本活动经验。
那么,如何在课堂教学中落实“四基”精神,提高儿童的数学素养呢?下面结合自己平时教学的体会谈谈自己的体会。
先讲一个教学小故事:苏教版小学数学六年级上册第一单元有这样一条练习题:本班61名学生,竟然有27名同学计算3月1日到9月1日有几个月时写出了这样的算式:9-3+1=7(个),正确率仅为55.73%,我有点诧异,六年级学生怎么会出现这样的错误。
晚上回家后,看到儿子在写数学作业(他今年三年级)。
我灵机一动,何不让他试一试。
于是,我问:“蛋蛋,从3月1号到9月1号经过了几个月啊?”(我故意省去2021年这个干扰条件)。
他稍微思考了一下说:“6个月”。
我问:“你是怎么想的啊?”他说:“三月到四月是1个月,三月到五月是2个月,三月到六月是3个月,所以三月到九月应该是6个月”。
我郁闷了,三年级学生会的题目,六年级学生怎么会做错。
为了进一步深入了解原因,我邀请了今年教三年级的张老师对他们班57名学生进行了问卷调查,结果只有4名学生做错,正确率为92.98%。
于是我分别从六年级做错的学生和三年级做对的学生中随机各选出10名学生进行了面谈交流,希以了解学生的真实想法。
下面是三年级几个有代表性的想法:师:这道题目你做的非常好,能说说你是怎么想的吗?生1:我是扳手指数出来的,从三月开始,三月不算,就数四月、五月、六月、七月、八月、九月,一共是6各月。
双基、“四基”和数学核心素养从双基到“四基”,再到数学核心素养,数学教育目标是一脉相承的。
1992年中华人民共和国国家教育委员会制订的《九年义务教育全日制初级中学数学教学大纲(试用)》(如图1)是把数学思想和方法含在“双基”里面的,其对基础知识的表述为:“初中数学的基础知识主要是初中代数、几何中的概念、法则、性质、公式、公理以及由其内容反映出来的数学思想和方法。
”“四基”是把“数学基本思想”从“双基”里面单独列出来,另外再加上“数学基本活动经验”,这是对“双基”的继承和发展。
数学核心素养是六个:数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析,其中前三个就是数学基本思想,也是传承,后三个是传统的数学能力。
因此,基于“四基”的数学教学也是基于数学核心素养的数学教学。
图1 国家教委1992年制订的初中数学教学大纲一、双基1952年3月,教育部颁发的《中学暂行规程(草案)》中提出:中学的教育目标之一,是使学生“得到现代化科学的基础知识和技能,养成科学的世界观”。
这是“双基”概念首次被提出。
自此,我国数学教育界开始使用“双基”概念,并强调基础教育课程的主要内容应是基础知识、基本技能,教学中一定要抓“双基”,考试一定要考“双基”。
数学双基教学是植根于中国本土的教学观念,带有鲜明的中国特色,是中国数学教育的优势所在。
历史经验告诉我们,什么时候加强双基,教学质量就提高;什么时候削弱双基,教学质量就下降,实行数学双基教学,应当是我国数学教学长期坚持的方针。
在新课程实施中,由于过分强调学生“自主”,冲淡了对“双基”的掌握。
甚至有人怀疑“双基教学”还可不可以提?“双基教学”还要不要?新课程实施中的种种迹象表明,我们的数学课堂淡化了“双基教学”。
知识、技能目标是三维目标中的基础性目标,对基础知识和基本技能的掌握是课堂教学的一项极其重要的常规性任务,它是教师钻研教材和设计教学过程首先必须明确的问题。
然而,由于认识上的片面和观念上的偏差,在不少课堂上,最应该明确的知识、技能目标,反而出现缺失或者变得含糊。
浅谈数学教学⽬标从“双基”到“四基”的变化2019-04-18[摘要]随着教育改⾰的不断深化,初中数学课程的设置紧紧围绕着注重培养学⽣的各种能⼒来开展。
⽬标中最⼤的变化就是从原来的“双基”培养模式向“四基”转变,即从原来的基础知识、基本技能变化到基础知识、基本技能、基本思想和基本活动经验。
本⽂从为什么添加后⾯的两基以及添加两基后的教学要求进⾏了初步探讨。
[关键词]双基四基基本思想活动经验中图分类号:G4 ⽂献标识码:A ⽂章编号:1009-914x(2014)08-01-01《义务教育阶段数学课程标准(2011年版)》中指出:“通过义务教育阶段的数学学习,学⽣能获得适应社会⽣活和进⼀步发展所必需的数学的基础知识、基本技能、基本思想、基本活动经验”。
基础教育阶段的课程⽬标从原来的基础知识、基本技能变成了现在的“四基”。
⼀、“双基”到“四基”的原因第⼀,双基仅仅涉及了三维⽬标的第⼀维⽬标“知识与能⼒”,⽽另外两维⽬标“过程与⽅法”和“情感态度与价值观”没有有涉及。
第⼆,教学当中必须以⼈为本,因为我们的教师⽚⾯理解双基,在教学实施当中往往以本为本,见物不见⼈。
所以新增的基本思想和基本活动经验与⼈有关,符合素质教育的教学理念。
第三,培养创新⼈才,仅凭双基是不够的。
双基是培养创新⼈才的基础,但创新⼈才不能仅仅靠熟练掌握知识和技能来培养,重要的是⾃⼰能够独⽴思考,⾃⼰能够发现问题,提出问题和解决问题。
总之,数学教学固然要教会学⽣需要的基本知识,基本技能,但是仅仅以教会这些作为⽬标是不够,更重要的是让学⽣在学习结论的过程中,不断学习数学思想,并参与发现问题、提出问题、分析问题、解决问题的全过程,积累解决问题的经验和学习的经验,达到“教是为了不教”“学是为了会学”的⽬的。
⼆、关于数学的“基本思想”什么是数学基本思想呢?所谓数学思想,是指现实世界的空间形式和数量关系反映到⼈们的意识之中,经过思维活动⽽产⽣的结果。
数学教学如何从“双基”到“四基”的转变新课标中把数学教学中的“双基”发展为“四基”,过去的“双基”指的是基础知识与基本技能;现在新课标指的“四基”包括基础知识、基本技能、基本思想和基本活动经验。
即通过数学教学达到以下要求:掌握数学基础知识;训练数学基本技能;领悟数学基本思想;积累数学基本活动经验。
这表明“以传授系统的数学知识”为基本目标的:学科体系为本的数学课程结构,将让位于“以促进学生整体发展”为基本目标的数学课程结构。
并进一步在基本理念中指出:“人人学有价值的数学;人人都获得必需的数学;不同的人在数学上得到不同的发展。
”过往的数学课程重视基础知识、基本技能,这亦是我国数学课程的一大优点,但以学科为中心的价值取向,使数学课程过于重视知识的系统、严谨,而忽视了学生观察、探索、猜想的意识与能力,忽视应用能力、创新意识与创新能力的培养,忽视数学作为文化的重要组成部分对人的素质的提高所发挥的巨大作用。
“双基”变“四基”,更是对教师教学水平、教学能力的一大考验。
重视知识的生成过程,重视学生的实践活动经验,重视学生在活动过程中的猜想、推理、验证,这是“四基”里面蕴涵的精神。
如何在数学课堂中更好地实现“四基”的达成,也成为我们当下数学老师需要积极思考的问题。
下面我就新人教版八年级下册《平行线的性质》这一课,来说说我在数学教学从“双基”到“四基”的转变过程中所作的尝试。
“学起于思,思源于疑”。
探究源于问题,教学过程需要问题来活化,教学对象需要问题来触动,因此,新知的生长点往往来自于一些能突出认知矛盾,激发探究欲望的问题——探究点。
通过探究点的引领,借助于情境的支持,引发认知冲突,在原有知识经验不能同化新知识下,迫使学生及时地调整,以适应新知的学习。
这节课我设计三个环节,其中第一个环节就是复习引入,打下铺垫。
我首先复习全等三角形的性质,然后复习平行线的性质。
初步的打算是不但让学生复习上节课的内容,同时过渡到下面环节。