细胞表面受体与信号转导
- 格式:ppt
- 大小:1.41 MB
- 文档页数:49
细胞信号传导通路在疾病中的作用及其调控机制在生命的进程中,生物体必须与外界进行持续的物质和能量交流,以维持其生命和功能。
而细胞信号传导通路是实现此种交流的重要方式。
细胞信号传导通路是一个复杂的跨膜信号传导系统,它将细胞外的各种化学和物理刺激转化成细胞内的生物化学反应,从而调控细胞的基本生命活动。
这个信号传导系统涉及到细胞膜表面受体、信号转导分子、蛋白激酶和转录因子等一系列分子和细胞器结构。
细胞信号传导通路的异常会导致多种疾病发生,如癌症、心血管疾病、免疫系统障碍等,因此,对这一系统进行相关研究和探索,对治疗这些疾病的发生和发展具有重要的临床意义和价值。
一、细胞信号传导系统中重要的分子机制:1. 受体分子细胞膜受体是重要的细胞信号转导分子。
细胞表面受体是一类大分子,它们在细胞表面向外界的分子信号,如激素、生长因子等特定的化合物相应,进而引发细胞内的生化反应。
常见的受体分子有G蛋白偶联受体、酪氨酸激酶受体、鸟苷酸环化酶受体及钙离子通道等等。
2. 信号分子细胞内的化合物不同于细胞表面受体,它们是细胞通过一定的信号通道收到信息后,传送到细胞内部,影响细胞内部的生理活动。
常见的信号分子有细胞凋亡促进因子,如肿瘤坏死因子、自发的信号分子,如cAMP、cGMP等。
3. 蛋白激酶蛋白激酶是调控细胞信号传导的关键酶。
它能在细胞内介导多种信号通道,如细胞凋亡、细胞增殖、凋亡抑制等。
二、信号传导系统在疾病中的作用:1. 表达异常细胞信号功能异常是引起许多疾病的重要原因之一。
细胞信号异常最为常见的就是基因异常,如HER2/neu基因的突变与胃癌、乳腺癌的发生有关。
2. 肿瘤的发生和发展肿瘤的形成是细胞凋亡受损的结果,许多信号分子的作用变异和信号分子之间的配合不良会导致细胞凋亡抑制或细胞增殖活动增强,促进肿瘤的发生和发展。
3. 免疫系统的发生改变细胞信号系统的异常会导致免疫系统的功能异常,如过度或不足的自身免疫反应、呼吸系统炎症等。
第七章细胞信号转导一. 名词解释细胞信号转导(siginal transduction):指细胞偶联各种刺激信号与其引起的特定生理效应之间的一些列分子反应机制。
信号(signal):对植物来讲,环境就是刺激,就是信号。
配体(ligand):激素、病原因子等化学信号,称为配体。
受体(receptor):能够特异地识别并结合信号、在细胞内放大和传递信号的物质。
细胞表面受体(cell surface receptor):位于细胞表面的受体。
细胞内受体(intracellular receptor):位于亚细胞组分如细胞核、内质网以及液泡膜上的受体。
跨膜信号转换(transmembrance transduction):信号与细胞表面的受体结合后,通过受体将信号传递进入细胞内的过程。
受体激酶:位于细胞表面的一类具有激酶性质的受体。
第二信使(second messengers):将作用于细胞膜的信息传递到细胞内,使之产生生理效应的细胞内信使。
级联反应(cascade):在连锁的酶促反应中,前一反应的产物是后一反应的催化剂,每进行一次修饰反应,就使调节信号产生一次放大作用。
蛋白激酶(protein kinase,PK):一类催化蛋白质磷酸化反应的酶。
第一信使(first messenger):能引起胞内信号的胞间信号和环境刺激,亦称为初级信使。
蛋白质磷酸化作用(protein phosphorylation):是指由蛋白激酶催化把磷酸基转移到底物蛋白质氨基酸残基的过程。
双信使系统(double messenger system):胞外刺激使PIP2转化为IP3和DAG两个第二信使,引发IP3/Ca2+和DAG/PKC两条信号转导途径,在细胞内沿两个方向传递,这样的信号系统称之为双信使系统。
二. 缩写符号HK:组氨酸激酶RR:应答调控蛋白RLK:类受体蛋白激酶CaM:钙调蛋白CDPK:钙依赖型蛋白激酶PIP2:4,5-二磷酸磷脂酰肌醇PIP:4-二磷酸磷脂酰肌醇PLC:磷脂酶C IP3:三磷酸肌醇DAG:二酰甘油PKC:蛋白激酶C PK:蛋白激酶PP:蛋白磷酸酶三. 简答题1. 细胞接收胞外信号进行信号转导的步骤。
细胞信号传递通路与信号转导细胞信号传递通路及信号转导一直是生物学和医学领域中的热门研究课题,这一领域涵盖了许多重要的生物过程与疾病发生发展过程。
本文将从细胞信号传递的基本概念入手,分析信号传递的主要类型以及信号转导的机制和重要作用。
一、细胞信号传递的基本概念细胞信号传递是指细胞内外环境的信息交流和传递过程。
这一过程起始于细胞接受到特定的信号,例如化学物质、光、压力、温度、重力等,信号将被通过受体蛋白的识别和转化,进而引发一系列的生物反应。
通常,细胞信号传递可分为内分泌、神经递质和细胞接触信号三种。
内分泌信号就是由内分泌腺分泌出来的激素通过血液系统传递到靶细胞上,从而诱导生物反应的一种信号传递方式。
神经递质信号则是由神经系统释放的化学物质,在神经节点周围与神经元或神经肌肉接头处作为信号分子,引发与神经母细胞发生反应的一种信号传递机制。
此外,细胞接触信号也被广泛研究,细胞接触信号是指当细胞表面的受体分子与信号转导分子结合,可通过分子接触引发一系列的细胞反应。
二、信号转导的机制和重要作用基本上,信号转导是细胞内外信号分子之间一系列、有次序的分子交互。
某一刺激通过多种信号转导蛋白激活下,可能会在细胞内部激活一些信号分子或转录因子,从而改变细胞代谢或活性的一种过程。
信号转导的过程可分为分子水平、细胞水平和器官水平三个层次。
在分子水平,信号分子进入细胞,与受体分子结合,通过不同的反应促进几乎每个细胞代谢路径的正常运作,包括细胞增殖、分化、凋亡、代谢等。
在细胞水平,信号分子的去留和寿命影响着细胞表型的选择,可导致细胞生长、方向性运动和发育等的变化,或在人体免疫防御和神经系统细胞内存储信息等过程起到重要作用。
在器官水平,信号转导机制影响到心血管、神经、消化系统支配内脏活动的机能,使人体系统内的动力学变得更加协调和稳定。
三、细胞信号传递通路研究的意义最近几年,细胞信号传递通路研究的价值越来越被广泛关注。
这一研究对于人类疾病的治疗和预防毫不含糊。