TD-LTE双流波束赋形天线技术创新
- 格式:doc
- 大小:226.50 KB
- 文档页数:9
TD—LTE网络2天线和8天线性能对比研究作者:胡兵来源:《中国新通信》2014年第19期【摘要】多天线技术(MIMO)是TD-LTE系统的核心技术之一,能够在不增加频谱带宽和天线发射功率的情况下,大幅提高信道容量、频谱利用率和数据的传输质量。
文章对比分析了TD-LTE网络中2/8天线性能、建网成本和施工难度的差异,给出了各场景应用建议。
【关键字】 TD-LTE MIMO 2天线 8天线一、概述多天线技术(MIMO)是移动通信技术发展的重要趋势,是实现移动通信系统高容量、高频谱效率的重要手段。
TD-LTE系统也引入了多天线技术,结合OFDM以及波束赋形技术,可以显著提升空间分集的效果、改善小区边界区域的信道条件、很好地实现空、时、频多维信号的联合处理和调度,大幅提升系统的灵活性和传输效率。
2013年12月4日,工信部向三大运营商颁发TD-LTE商用牌照,正式开启了中国的4G 时代,TD-LTE的建设进程也大大加快。
但是随着可用站址资源的不断减少,天面已成为TD-LTE网络的建设瓶颈所在。
基站天线数的选择是TD-LTE的实际部署和后续发展需要考虑的一个重要问题。
本文将对比分析2/8天线的性能、建网成本和施工难度的差异,最后给出各场景的应用建议二、TD-LTE系统天线模式3GPP的规范中定义了多种MIMO传输模式,以适应不同的信道条件、不同的天线配置等场景的应用。
原则上,3GPP对天线数目与所采用的传输模式没有特别的搭配要求,但在实际应用中2天线系统常用模式为TM2、TM3,8天线系统常用模式为TM7、TM8。
TM2采用SFBC方式,属于2天线的发射分集方案,在用户无法进行可靠的信道质量反馈时使用,可以提高用户传输的可靠性。
该模式也作为TM3~TM8在信道条件差的情况下的回退方案。
TM3主传输方式为双流复用,能在信道调教较好的地方提高用户频谱效率一倍,在小区边缘回退为TM2。
TM7主传输方式为单流波束赋形,可以提升边缘用户吞吐量,信号条件好的时候可以自适应为TM3,部分条件下可回退为TM2。
面向VoLTE的TD-LTE技术白皮书(2013版)中国移动2013年6月目录1.前言 (5)2.发展愿景 (5)3.面向VoLTE的TD-LTE相关要求 (6)3.1无线网络方面 (6)3.1.1多频段组网 (6)3.1.2连续及深度覆盖 (8)3.1.3基站建设 (9)3.1.4网络性能 (10)3.1.5语音及数据业务互操作 (11)3.1.6 TDD和FDD融合组网 (11)3.2核心网方面 (12)3.2.1 EPC融合核心网 (12)3.2.2 融合用户数据HLR/HSS (12)3.2.3 IMS支持VoLTE/eSRVCC (13)3.2.4 DRA信令网 (13)3.2.5 电路域支持eMSC (14)3.2.6 LTE回传方案 (14)3.2.7 LTE流量服务 (15)3.3终端方面 (16)3.3.1 多模多频段 (16)3.3.2 VoLTE手机总体要求 (16)3.3.3终端互操作要求 (18)3.3.4终端国漫业务要求 (19)3.3.5逐步支持LTE-A部分功能 (19)3.3.6 用户卡 (19)3.4国际漫游方面 (20)3.5运营方面 (20)3.5.1告警管理 (20)3.5.2 安全管理 (21)3.5.3系统升级 (22)3.5.4设备维护重点功能 (22)3.5.5网络自组织 (22)3.5.6 网管北向接口方案 (23)3.5.7 OMC重点功能要求 (24)3.5.8 MR数据要求 (24)3.5.9 信令软采功能要求 (25)4.结束语 (25)附录1:技术要求汇总 (26)附录2:缩略语表 (37)1.前言结合产业和市场发展,中国移动发布近两年面向VoLTE的TD-LTE 网络发展技术要求,涵盖TD-LTE网络建设、终端、业务、用户发展等方面所需的端到端主要技术要求1,旨在高效推进TD-LTE产业端到端设备开发以更好的契合中国移动TD-LTE发展需求。
TD-LTE双流波束赋形天线技术双流波束赋形技术是TD-LTE的多天线增强型技术,是TD-LTE建网的主流技术,结合了智能天线波束赋形技术与MIMO空间复用技术,是中国移动和大唐移动共同创新的成果,也是中国通信产业技术能力的体现。
一、8天线双流波束赋形技术引入需求分析多天线技术是天线技术发展趋势,现有TD-SCDMA已经引入了8天线,TD- LTE也引入了8发2收的天线配置,到LTE-A则将引入8发8收的天线配置。
考虑到提升覆盖能力和降低引入TD-LTE的CAPEX,TD-LTE系统中引入了8天线方案。
另外,引入8天线还可以使TD-SCDMA平滑演进到TD-LTE,同时继续沿用并充分发挥TDD 系统在赋形方面的优势。
1.系统平滑演进需求目前,TD-SCDMA网络正在全国迅速铺开。
与此同时,TD-SCDMA演进技术TD-LTE也被提上了未来移动通信网络建设发展的日程。
如何在进行TD-SCDMA网络建设的同时保证能够向TD-LTE实现平滑演进已经成为了运营商和设备供应商共同关注的焦点问题。
出于系统平滑演进的考虑,大唐移动提出了产品设备共平台设计的解决方案,有效的保护网络建设现有投资,保证网络升级的快速便捷。
在主设备实现平滑演进的同时,从节约建网成本、降低建站难度等角度出发,需要尽可能保持TD-SCDMA网络已部署的天线系统不变,且可以在TD-LTE中继续使用。
为实现天线系统的平滑演进,TD-SCDMA网络中进行宏覆盖主要采用的8天线,需要在TD- LTE网络中继续使用。
2.技术演进需求波束赋形技术是一种基于小间距天线阵列的线性预处理技术,能够根据用户的信道特性进行波束赋形,具有扩大覆盖、提高系统容量、降低干扰的能力。
作为TD-SCDMA的核心技术,波束赋形技术已在中国移动3G网络中广泛使用。
在LTE技术规范Release 8版本中,引入了单流波束赋形技术,对于提高小区平均吞吐量及边缘吞吐量、降低小区间干扰有着重要作用。
C ommun icatio ns World Weekly无线通信大唐移动:南京T D -L T E 试验网进展迅速本刊记者|鲁义轩“在T D-L TE 网络规划时必须考虑其特有的系统特性,有效发挥TD -L TE 系统高速率传输、高频谱效率的技术优势。
”今年,TD-L TE 在亚洲地区(含澳大利亚和中东的亚洲部分)进展速度令人瞩目,除了中国移动之外,在开始TD-L TE 测试或商用的运营商中也不乏Bharti Ai rtel 、Reliance 、Softbank Mobile 、Omantel 、中华电信等主流运营商;另外,总部位于香港的Hutchison 3(和记黄埔)在北欧有建设FDD L TE 和TD-L TE 双模网络的计划,不排除后续在亚洲开始建设的可能性。
这是大唐移动LTE 产品线总工蔡月民在采访中给出的信息。
针对TD-LTE 在国内的规模试验以及新技术应用等问题,本刊记者与蔡月民进行了一次深入对话。
TD-L TE 试验的影响《通信世界周刊》:据您称,今年亚洲地区除了中国以外,澳大利亚、印度、马来西亚、日本、阿曼、台湾等国家和地区共有13家运营商和1所大学有T D-LT E 试验网和商用网部署计划或意向。
那么中国移动的T D LT 试验将对亚洲LT 发展起到什么样的影响作用?目前大唐参与的中国移动T D L T 试验网部署进展如何?蔡月民:中国移动今年的TD-LTE 规模试验,从某种意义上即正式宣告了TD-LTE 产业链条的各环节已经成熟,产品趋于商用。
经过本次试验之后,整个TD-LTE 产业链完成考验,L TE 产品的商用必将给亚洲乃至全球范围内青睐TD-L TE 技术的运营商以充分的信心及可靠的参考。
目前大唐移动承接的南京TD-LTE 网络建设,已在早期的两周时间内和江苏移动克服了物流、机房、传输等难题完成了第一批设备的到货和安装,并且于4月8日开通了TD -LTE 业务,实现了高速下载、高清视频播放业务等演示。
移动基站天线及波束赋形天线研究一、本文概述随着无线通信技术的快速发展,移动基站天线及波束赋形天线在提升网络覆盖、增强信号质量和提高频谱效率等方面发挥着至关重要的作用。
本文旨在深入研究移动基站天线及其波束赋形技术,探讨其设计原理、性能优化和应用前景。
本文将介绍移动基站天线的基本原理和分类,包括其工作原理、辐射特性以及不同类型天线的优缺点。
随后,将重点分析波束赋形天线的关键技术,如波束形成算法、阵列结构设计和信号处理技术等。
通过理论分析和实验验证,本文旨在揭示波束赋形天线在提高信号增益、降低干扰以及提升系统容量等方面的优势。
本文还将关注移动基站天线及波束赋形天线在实际应用中的挑战与解决方案。
例如,如何在复杂电磁环境下实现高效的天线布局和波束管理,以及如何在保证性能的同时降低天线系统的成本和复杂度。
本文将对移动基站天线及波束赋形天线的未来发展趋势进行展望,探讨新技术、新材料和新工艺对天线性能的影响,以及天线系统在5G、6G等未来通信网络中的应用前景。
通过本文的研究,旨在为无线通信领域的科研人员、工程师和决策者提供有益的参考和借鉴。
二、移动基站天线概述移动基站天线是无线通信系统中不可或缺的组成部分,其主要作用是实现无线信号的收发和波束赋形,从而确保无线通信的顺畅进行。
随着移动通信技术的不断发展和用户需求的日益增长,移动基站天线也在不断演进和优化。
移动基站天线通常由多个天线单元组成,这些天线单元按照一定的排列方式组成阵列,以实现信号的定向传输和接收。
根据不同的应用场景和频段,移动基站天线可以分为多种类型,如全向天线、定向天线、扇形天线等。
其中,全向天线能够向各个方向均匀地辐射信号,适用于覆盖范围广、用户分布均匀的场景;定向天线则能够将信号集中向特定方向传输,适用于需要高精度覆盖和减少干扰的场景。
除了天线类型外,移动基站天线的性能还受到天线增益、波束宽度、极化方式等多个因素的影响。
天线增益决定了天线辐射信号的强度,而波束宽度则决定了天线覆盖的区域范围。
无线通信技术中的多天线与波束赋形随着无线通信技术的不断发展,人们对于通信质量的要求也不断提高。
为了提高通信系统的性能和容量,多天线与波束赋形技术逐渐被广泛应用。
本文将详细介绍多天线与波束赋形技术的概念、原理、应用以及未来发展。
一、多天线技术的概念和原理1. 多天线技术是指在无线通信系统中采用多个天线来进行信号的传输和接收。
通过多个天线同时发射或接收信号,可以提高信号的传输速率和可靠性。
2. 多天线技术的原理是利用空间分集和空间复用的特性,在无线信道中进行信号的干扰与抑制。
通过合理设计天线的位置和数目,可以实现信号的分集和多用户之间的空间复用。
二、多天线技术的应用1. 天线分集:通过多个天线同时接受信号,可以增加接收到的信号幅度,从而提高信号的可靠性和抗干扰性。
这在移动通信系统中尤为重要,可以有效应对信道衰落、多径效应等问题。
2. 空间复用:通过多个天线同时发送信号,可以将同一个频段的信号分别发射到不同的方向,从而实现对不同用户的服务。
这在无线局域网和蜂窝通信系统中应用广泛,可以提高系统的容量和覆盖范围。
三、波束赋形技术的概念和原理1. 波束赋形技术是指通过优化天线阵列中各个天线的相位和幅度,使得发射或接收信号在特定方向上形成一个或多个波束。
通过准确控制波束的方向和形状,可以提高信号的增益和定向性。
2. 波束赋形技术的原理是利用干涉理论和波的传播特性,在天线阵列中产生相干干涉,从而实现波束的形成。
通过调节天线的相位和幅度,可以实现对波束的精确控制。
四、波束赋形技术的应用1. 数据传输:通过优化波束的方向和形状,可以提高信号的增益和方向性,从而提高数据传输的速率和可靠性。
这在高速移动通信和室内分布式系统中尤为重要。
2. 网络覆盖:通过调整波束的方向和形状,可以实现对特定区域的覆盖,从而提高系统的容量和覆盖范围。
这在城市热点区域和农村边缘地区的网络建设中具有重要意义。
3. 干扰抑制:通过调整波束的方向和形状,可以减小对附近用户的干扰,从而提高系统的抗干扰性能。
TD-LTE网络中的多天线技术在无线通信领域,对多天线技术的研究由来已久。
其中天线分集、波束赋形、空分复用(MIMO)等技术已在3G和LTE网络中得到广泛应用。
1 多天线技术简介根据不同的天线应用方式,常用的多天线技术简述如下。
上述多天线技术给网络带来的增益大致分为:更好的覆盖(如波束赋形)和更高的速率(如空分复用)。
3GPP规范中定义的传输模式3GPP规范中Rel-9版本中规定了8种传输模式,见下表。
其中模式3和4为MIMO技术,且支持模式内(发送分集和MIMO)自适应。
模式7、8是单/双流波束赋形。
原则上,3GPP对天线数目与所采用的传输模式没有特别的搭配要求。
但在实际应用中2天线系统常用模式为模式2、3;而8天线系统常用模式为模式7、8。
在实际应用中,不同的天线技术互为补充,应当根据实际信道的变化灵活运用。
在TD-LTE系统中,这种发射技术的转换可以通过传输模式(内/间)切换组合实现。
上行目前主流终端芯片设计仍然以单天线发射为主,对eNB多天线接收方式3GPP标准没有明确要求。
2 多天线性能分析针对以上多天线技术的特点及适用场景,目前中国市场TD-LTE主要考虑两种天线配置:8天线波束赋形(单流/双流)和2天线MIMO(空分复用/发送分集)。
2.1 下行业务信道性能下图是爱立信对上述传输模式的前期仿真结果:在下行链路中,2、8天线的业务信道在特定传输模式下性能比较归纳如下:•8X2单流波束赋型(sbf)在小区边缘的覆盖效果(边缘用户速率)好于2X2空分复用,但小区平均吞吐速率要低于2X2 MIMO场景。
•8X2双流波束赋型(dbf)的边界速率要略好于2X2天线空分复用。
对于小区平均吞吐速率,在正常负荷条件下,二者性能相当。
在高系统负荷条件下,8X2双流波束赋型(dbf)增益较为明显。
在实际深圳外场测试中,测试场景为典型公路环境。
虽然站间距与城区环境相同,但无线传播条件更接近于郊区的特点,即空旷环境较多,信道相关性较强,有利于8天线波束赋形技术。
TD-LTE双流波束赋形天线技术创新双流波束赋形技术是TD-LTE的多天线增强型技术,是TD-LTE建网的主流技术,结合了智能天线波束赋形技术与MIMO空间复用技术,是中国移动和大唐移动共同创新的成果,也是中国通信产业技术能力的体现。
一、8天线双流波束赋形技术引入需求分析多天线技术是天线技术发展趋势,现有TD-SCDMA已经引入了8天线,TD- LTE也引入了8发2收的天线配置,到LTE-A则将引入8发8收的天线配置。
考虑到提升覆盖能力和降低引入TD-LTE的CAPEX,TD-LTE系统中引入了8天线方案。
另外,引入8天线还可以使TD-SCDMA 平滑演进到TD-LTE,同时继续沿用并充分发挥TDD系统在赋形方面的优势。
1.系统平滑演进需求目前,TD-SCDMA网络正在全国迅速铺开。
与此同时,TD-SCDMA演进技术TD-LTE也被提上了未来移动通信网络建设发展的日程。
如何在进行TD-SCDMA网络建设的同时保证能够向TD-LTE实现平滑演进已经成为了运营商和设备供应商共同关注的焦点问题。
出于系统平滑演进的考虑,大唐移动提出了产品设备共平台设计的解决方案,有效的保护网络建设现有投资,保证网络升级的快速便捷。
在主设备实现平滑演进的同时,从节约建网成本、降低建站难度等角度出发,需要尽可能保持TD-SCDMA网络已部署的天线系统不变,且可以在TD-LTE中继续使用。
为实现天线系统的平滑演进,TD-SCDMA网络中进行宏覆盖主要采用的8天线,需要在TD- LTE网络中继续使用。
2.技术演进需求波束赋形技术是一种基于小间距天线阵列的线性预处理技术,能够根据用户的信道特性进行波束赋形,具有扩大覆盖、提高系统容量、降低干扰的能力。
作为TD-SCDMA的核心技术,波束赋形技术已在中国移动3G网络中广泛使用。
在LTE技术规范Release 8版本中,引入了单流波束赋形技术,对于提高小区平均吞吐量及边缘吞吐量、降低小区间干扰有着重要作用。
但是,面对LTE Release 9以及LTE-Advanced系统的更高速率需求,有必要对波束赋形技术加以扩展。
以LTE定义的最大发天线数8天线为例,由多天线理论可知,8×2天线系统的单用户MIMO至多可以同时传输两个数据流,这就意味着LTE Release 8规范中的单流波束赋形技术并没有充分开发信道容量。
根据信道容量相关理论可知,信道容量为信噪比的对数函数,随着信噪比提升,容量增加趋势越来越缓;在高信噪比情况下,将某个数据流的功率降低一半并不会导致该数据流容量大幅降低,此种情况利用另一半功率来发送一个新的数据流将会极大地提升传输容量。
为满足TD-LTE系统中使用8天线以及扩展波束赋形技术以提升容量的需求,中国移动和大唐移动共同推出了采用8天线配置的双流波束赋形技术。
二、双流波束赋形技术介绍双流波束赋形技术应用于信号散射体比较充分的条件下,是智能天线波束赋形技术(即单流波束赋形技术)和MIMO空间复用技术的有效结合,在TD-LTE系统中,利用TDD信道的对称性,同时传输两个赋形数据流来实现空间复用,并且能够保持传统单流波束赋形技术广覆盖、提高小区容量和减少干扰的特性,既可以提高边缘用户的可靠性,同时可有效提升小区中心用户的吞吐量。
根据多天线理论可知,接收天线数不能小于空间复用的数据流数。
8天线双流波束赋形技术的使用,接收端至少需要有2根天线。
根据调度用户的情况不同,双流波束赋形技术可以分为单用户双流波束赋形技术和多用户双流波束赋形技术。
1.单用户单用户双流波束赋形技术,由基站测量上行信道,得到上行信道状态信息后,基站根据上行信道信息计算两个赋形矢量,利用该赋形矢量对要发射的两个数据流进行下行赋形。
采用单用户双流波束赋形技术,使得单个用户在某一时刻可以进行两个数据流传输,同时获得赋形增益和空间复用增益,可以获得比单流波束赋形技术更大的传输速率,进而提高系统容量。
2.多用户多用户双流波束赋形技术,基站根据上行信道信息或者UE反馈的结果进行多用户匹配,多用户匹配完成后,按照一定的准则生成波束赋形矢量,利用得到的波束赋形矢量为每一个UE、每一个流进行赋形。
多用户双流波束赋形技术,利用了智能天线的波束定向原理,实现多用户的空分多址。
3.标准进展双流波束赋形技术的标准化进程是中国移动和大唐移动共同努力推动的过程。
2007~2008年,中国移动和大唐移动在IMT-Advanced技术组和标准子组上分别提交了关于双流波束赋形技术的整体解决方案,都获得了通过。
在3GPP双流波束赋形技术立项之前,大唐移动从2008年6月开始在LTE- Advanced(Release 10)技术范围内开始推动该技术。
2009年3月,双流波束赋形技术在3GPP完成立项,相关标准化工作在RAN 1展开讨论。
2009年12月,双流波束赋形技术的标准化工作已经基本完成,相关协议规范(TS 36.211、TS 36.212、TS 36.213、TS 36.331等)已在12月发布的最新版本中包括双流波束赋形技术相关标准内容,目前仅剩下射频相关指标未完成标准化,预计会在2010年一季度完成。
4.具体实现4+4双极化天线是一种典型的8天线形态,其天线形态适合使用双流波束赋形技术。
TD-SCDMA现有网络中的4+4双极化天线支持F+A+E频段,若今后在此频段内支持TD-LTE,则现有4+4双极化天线可以实现由TD- SCDMA向TD-LTE的平滑演进,可在TD-LTE系统中继续使用。
分析双流波束赋形技术的实现难易度。
从研究角度来看,双流波束赋形技术可认为就是多天线信道奇异值分解算法的典型应用,并没有太多新的理论问题需要解决;从信号处理的角度来看,其实现机制基本已经成熟,更多的工作是算法优化问题。
由上可知,基于现有的理论研究和信号处理技术,基于大唐移动对智能天线波束赋形技术的深入理解,双流波束赋形技术的实现非常简单,可以很快的应用于TD-LTE 系统。
5.应用场景8天线双流波束赋形技术是TD-LTE建网的主要技术,应用于室外场景的宏小区覆盖,可以有效的增加空间隔离度,降低数据流之间的干扰。
大唐移动提出TD-LTE的组网方案如图所示。
利用4+4双极化天线,使用双流波束赋形技术实现室外宏小区覆盖。
采用1+1双极化天线进行室外街道站的覆盖,作为宏覆盖的补盲。
在室内采用2×2 MIMO进行微小区覆盖。
三、8天线双流波束赋形技术优势1.系统吞吐量提升,构建高品质TD-LTE网络双流波束赋形技术可以有效的提高TD-LTE系统的吞吐量性能。
相比于TD-LTE 的基本天线配置方式 2×2 MIMO,采用8×2双流波束赋形技术在扇区吞吐量和边缘吞吐量都有较大提升。
根据IMT-Advanced的评估结果可知,8天线双流波束赋形相比于2 天线MIMO扇区吞吐量最大提升约80%,边缘吞吐量最大提升约130%。
2.小区半径提升,降低建网CAPEX投入由TD-LTE覆盖理论分析可知,TD-LTE 2天线的覆盖能力受限于上行业务信道。
根据仿真评估,以上行业务信道边缘速率64Kbps为前提,TD-LTE 8天线的小区覆盖半径约为TD-LTE 2天线的2倍。
相比于TD-LTE 2天线的网络建设,8天线的使用有效降低了TD-LTE站点数量,降低了TD-LTE建网CAPEX。
TD-LTE采用8天线的覆盖半径与TD-SCDMA覆盖半径相当,可以实现与 TD-SCDMA共覆盖、共站址。
在TD-SCDMA向TD-LTE平滑演进的过程中,现有的站址、天馈系统等资源都可以复用,进一步降低TD-LTE 建网CAPEX。
根据TD-SCDMA网络建设经验可知,实际建网时的单站覆盖半径可能只有500米甚至更小。
以TD-SCDMA实际覆盖半径作为TD-LTE的覆盖评估前提,分析TD-LTE 2天线和8天线的覆盖性能。
根据仿真评估可知,TD-LTE 8天线可以有效的改善受限问题,在提高边缘速率的同时,有效地扩大覆盖半径。
TD-LTE 2天线和8天线覆盖能力分析如上图所示。
当覆盖半径为500米时,TD-LTE 8天线的上行边缘速率为500kbps,2天线的上行边缘速率为64Kbps。
可知,在实现与TD-SCDMA实际覆盖半径相同时,TD-LTE 8天线的边缘速率相对于TD-LTE 2天线有明显优势,而TD-LTE 2天线的边缘速率相比于TD-SCDMA却并没有明显提高。
TD-LTE 2天线若要实现500kbps的边缘速率,其覆盖半径只有280米左右,无法实现与TD-SCDMA系统的共站址、共覆盖。
根据以上分析,可以认为,TD-LTE采用8天线可以极大提升覆盖能力,在保证与 TD-SCDMA共覆盖的前提下体现TD-LTE高速率的特点。
四、大唐移动率先发布双流波束赋形技术2009年12月,大唐移动在大唐电信集团北京总部举行了以“创新技术,成就梦想”为主题的TD-LTE新技术发布会,在业内率先发布双流波束赋形技术,建设了TD-LTE演示网,进行了8天线双流波束赋形技术的性能演示。
TD-LTE发布会演示网,其覆盖范围是北京市海淀区学院路从学院桥到学知桥的路段。
具体演示方案是在演示车的行驶过程中,随着实时信道环境的变化,体验TD-LTE 8天线双流波束赋形技术相比于2天线MIMO技术的吞吐量性能优势。
在演示过程中,可以明显体验到8天线的覆盖能力好于2天线。
在演示路段的两端,已经接近2天线的覆盖边缘,此时2天线的吞吐量性能受到影响发生衰落,8天线依然保持平稳数值。
当演示车行驶在演示路段边缘的立交桥下时,受到桥体遮挡,信号接收受到影响,2天线发生严重衰落,吞吐量下降明显。
8天线也受到一定影响,但吞吐量性能只是略有降低,仍保持稳定数值。
统计整个演示过程中的数值变化可知,8天线双流波束赋形技术相比于2天线MIMO,频谱效率平均优势约为40~50%。
五、结束语8天线双流波束赋形技术的引入,为实现TD-SCDMA系统向TD-LTE系统的平滑演进提供了技术保障。
其有效提升吞吐量和边缘覆盖的性能优势也使其成为TD-LTE创新技术中备受关注的亮点。