磁性材料名词解释
- 格式:docx
- 大小:867.57 KB
- 文档页数:17
磁性材料原理磁性材料是一类在磁场中具有特殊性质的材料。
它们在工业生产和科学研究中起着重要的作用。
本文将介绍磁性材料的原理及其应用。
一、磁性材料的概述磁性材料是指在外加磁场作用下,能够产生磁化现象的材料。
它们包括铁、钢、镍、钴等物质。
磁性材料有两种基本类型:铁磁性材料和非铁磁性材料。
铁磁性材料具有强烈的磁性,如铁、镍和钴等。
它们在强磁场中可以被永久磁化,形成磁体。
非铁磁性材料则具有较弱的磁性,它们一般不会被永久磁化。
二、磁性材料的原理1. 原子磁偶极矩磁性材料具有原子磁偶极矩。
原子内电子所带的自旋和轨道角动量导致了原子磁矩的形成。
在一个磁场中,这些原子磁矩会互相作用,从而形成磁性。
2. 域结构磁性材料中存在着不同的磁畴,每个磁畴具有自己的磁化方向。
在无外加磁场的情况下,这些磁畴的磁化方向是杂乱无序的。
当外加磁场作用于材料时,磁畴会逐渐重新排列,使整个材料形成统一的磁化方向。
3. 局域场和磁畴壁在磁性材料中,每个磁畴内的磁化强度是均匀的,但不同磁畴之间的磁化强度存在差异。
这种差异由局域场引起。
磁畴之间的过渡区域称为磁畴壁,磁畴壁上的磁化方向逐渐变化,使得整个材料的磁化过渡更加平滑。
三、磁性材料的应用1. 电磁设备磁性材料广泛应用于电磁设备中。
例如,铁磁性材料可以用于制造电动机、电磁铁和变压器等设备。
非铁磁性材料则用于制造电感器和传感器。
2. 数据存储磁性材料在数据存储领域有着重要的应用。
磁性材料通过改变磁化方向来储存和读取信息。
硬盘驱动器和磁带等设备都是基于磁性材料的数据存储原理。
3. 医疗应用磁性材料在医疗领域有广泛的应用。
例如,磁共振成像(MRI)利用磁性材料的特性来观察人体内部结构。
磁性材料也可以用于制造人工关节和植入式医疗器械。
4. 环境保护磁性材料在环境保护中的应用也越来越多。
例如,利用磁性材料可以制造高效的垃圾处理设备,帮助减少废物产生和环境污染。
四、磁性材料的发展前景随着科学技术的不断发展,磁性材料的应用领域将会不断扩大。
了解物理中的磁性材料和电磁感应在物理学中,磁性材料和电磁感应是两个非常重要的概念。
磁性材料是指具有吸引铁质或其他磁性物质能力的材料,而电磁感应是指当磁通量发生变化时,在导体中会产生感应电流。
本文将详细介绍磁性材料和电磁感应的相关原理和应用。
一、磁性材料磁性材料根据其特性可以分为软磁性材料和硬磁性材料两大类。
软磁性材料是指在外加磁场作用下,能迅速磁化和去磁化的材料,如铁、镍、钴等。
而硬磁性材料则是指在外加磁场的作用下,能保持永久磁力的材料,如铁氧体、钕铁硼、钢等。
磁性材料的磁性主要来自于其中的原子和分子微观磁矩的相互作用。
这些磁矩可以通过自旋和轨道磁矩的相互作用而产生。
在磁性材料中,原子磁矩的方向会随着外加磁场的改变而改变,从而导致材料整体呈现磁性。
磁性材料在许多领域有着广泛的应用。
例如,软磁性材料常用于电感、变压器、发电机等电磁设备中,用来储存和传输能量。
硬磁性材料则常用于制作永磁体,如用于磁吸附、磁存储和磁传感器等。
此外,磁性材料还被广泛应用于医学领域,如核磁共振成像(MRI)等。
二、电磁感应电磁感应是指在磁通量发生变化的情况下,导体中会产生感应电流。
这个现象是由英国物理学家迈克尔·法拉第在19世纪首次发现的。
根据法拉第的电磁感应定律,当导体或线圈中的磁通量发生改变时,会在导体中产生感应电动势,从而驱动电子流动形成感应电流。
电磁感应的应用十分广泛。
最典型的例子就是电磁感应用于发电机的原理。
发电机通过转动磁场感应线圈中的电流,从而将机械能转化为电能。
此外,电磁感应还应用于变压器、感应加热、电动机和电磁传感器等领域。
在电磁感应中,还存在一个重要的概念,即法拉第电磁感应定律。
根据该定律,感应电动势的大小与磁通量的变化率成正比。
具体而言,当磁通量发生变化时,感应电动势的大小可以用以下公式表示:ε = -dΦ/dt其中,ε代表感应电动势,Φ代表磁通量,dt代表时间的微小变化量。
这个公式反映了感应电动势与磁通量的直接关系。
磁性材料相关知识1. 磁性材料的概述磁性材料是一类具有磁性的材料,它们可以被外界的磁场所吸引或排斥。
磁性材料在许多领域有着广泛的应用,例如电机、传感器、存储设备等。
磁性材料根据其磁性质可以分为软磁性材料和硬磁性材料两大类。
2. 磁性材料的分类2.1 软磁性材料软磁性材料是一类具有较高磁导率和低矫顽力的材料,其磁化后能迅速消失。
软磁性材料可以有效地吸收和产生磁场,广泛应用于电机、变压器等领域。
常见的软磁性材料有铁、镍、钴等。
软磁性材料的磁导率高,能有效地集中磁场线,使其传导能力较强。
2.2 硬磁性材料硬磁性材料是一类具有较高矫顽力和磁饱和度的材料,其磁化后能长时间保持。
硬磁性材料主要应用于存储设备、传感器等领域。
常见的硬磁性材料有钕铁硼、钴磁体等。
硬磁性材料的矫顽力和磁饱和度高,能够长时间保持磁化状态。
3. 磁化过程磁性材料的磁化过程是指在外加磁场的作用下,磁性材料内部的原子磁矩重新进行排列的过程。
磁化过程可以分为顺磁化和逆磁化两种情况。
3.1 顺磁化顺磁化是指在外加磁场的作用下,磁性材料内部的原子磁矩与外磁场方向一致的过程。
顺磁化过程中,磁性材料会被吸引到磁场较强的地方。
顺磁性材料的磁化强度与外磁场强度成正比。
3.2 逆磁化逆磁化是指在外加磁场的作用下,磁性材料内部的原子磁矩与外磁场方向相反的过程。
逆磁化过程中,磁性材料会被排斥出磁场较强的地方。
逆磁性材料的磁化强度与外磁场强度成负相关。
4. 磁性材料的性能参数4.1 矫顽力矫顽力是指磁性材料在外磁场作用下,从无磁化状态转变为完全磁化状态所需的外磁场强度。
矫顽力越高,磁性材料越难磁化。
矫顽力的单位是安培/米(A/m)。
4.2 磁导率磁导率是指磁性材料在外磁场作用下,单位磁场强度下的磁化强度与外磁场强度的比值。
磁导率越大,磁性材料的磁性能越好。
磁导率的单位是亨利/米(H/m)。
4.3 磁饱和度磁饱和度是指磁性材料在外磁场作用下,达到最大磁化强度时的外磁场强度。
什么是磁性材料磁性材料是一类具有磁性的材料,其在外加磁场作用下会产生磁化现象。
磁性材料广泛应用于电子、通信、医疗、能源等领域,是现代社会中不可或缺的重要材料之一。
本文将从磁性材料的基本特性、分类、应用以及发展趋势等方面进行介绍。
首先,磁性材料的基本特性。
磁性材料具有磁化特性,即在外加磁场作用下会产生磁化现象。
根据磁化特性的不同,磁性材料可分为铁磁材料、铁氧体材料、永磁材料和软磁材料等几类。
铁磁材料在外加磁场下会产生明显的磁化,而铁氧体材料具有较高的磁导率和电阻率,因此在高频电路中得到广泛应用。
永磁材料则具有自身较强的磁化特性,常用于制作永磁体。
软磁材料则具有较低的矫顽力和磁导率,适用于变压器、电感器等领域。
其次,磁性材料的分类。
根据磁性材料的不同特性和应用领域,可以将其分为多种类型。
例如,按照磁性材料的组成成分可分为金属磁性材料、合金磁性材料和氧化物磁性材料等;按照磁性材料的磁性能力可分为软磁材料和硬磁材料;按照磁性材料的应用领域可分为电子器件用磁性材料、电机用磁性材料和传感器用磁性材料等。
再者,磁性材料的应用。
磁性材料在各个领域都有着重要的应用价值。
在电子器件中,磁性材料被广泛应用于制作电感、变压器、磁头等元器件;在电机领域,永磁材料被应用于制作各种类型的电机,如风力发电机、电动汽车驱动电机等;在通信领域,磁性材料被应用于制作微波器件、天线等;在医疗领域,磁性材料被应用于制作医疗设备,如核磁共振成像设备等;在能源领域,磁性材料被应用于制作发电机、电池等。
最后,磁性材料的发展趋势。
随着科学技术的不断进步,磁性材料的研究和应用也在不断发展。
未来,磁性材料将更加注重环保、节能、高效的特性,以适应社会对清洁能源和高效能源的需求。
同时,磁性材料的微纳米化、多功能化、智能化也将成为发展的趋势,以满足各种领域对材料性能的要求。
总之,磁性材料作为一类具有磁化特性的材料,在现代社会中具有重要的应用价值。
通过对磁性材料的基本特性、分类、应用和发展趋势的介绍,相信读者对磁性材料有了更深入的了解,也为今后的研究和应用提供了一定的参考。
磁性材料与磁场磁性材料作为一种特殊的物质,其在磁场中会表现出各种有趣的现象和性质。
本文将就磁性材料的基本概念、种类以及磁场对其的影响进行详细探讨。
一、磁性材料的基本概念磁性材料是指具有一定磁性的物质。
其内部原子、分子或电子的微观结构会导致其表现出吸引或排斥磁场的特性。
根据材料的磁性,可以将其分为顺磁性材料、抗磁性材料和铁磁性材料三类。
顺磁性材料,如铁、镍和铬等,具有很弱的磁性,且与外加磁场方向相同,即在磁场中表现出磁化的倾向。
而抗磁性材料,如铜、银和金等,表现出与外加磁场相反的磁化倾向,即在磁场中呈现出磁抵抗的特性。
铁磁性材料,如铁、钴和镍等,表现出强烈的磁化倾向,且能保持自身的磁性,即在磁场中表现出磁化和保留的特性。
二、磁场的基本性质磁场是由磁铁或电流在周围形成的一种力场。
磁场具有两个重要的性质,即磁感应强度和磁场力。
磁感应强度(B)是磁场的物理量,它的大小和方向表示磁场的强弱和方向。
磁场力是指磁场对磁性物质或带电粒子产生的力,其大小与物体的磁化程度和磁场强度有关。
三、磁性材料在磁场中的行为1. 吸引磁场铁磁性材料在外加磁场的作用下,会产生磁化,从而表现出吸引磁场的性质。
这是因为在磁场中,铁磁性材料内部的微观原子、分子或电子会重新排列,形成一个较强的磁性区域,使其吸引周围的磁场。
2. 磁感应强度变化磁性材料在磁场中的表现也会对外部磁场的磁感应强度产生影响。
当磁性材料置于磁场中时,其会干扰磁场的分布,引起磁感应强度的变化,形成一个由材料本身磁化产生的局部磁场,这种现象称为磁屏蔽。
3. 磁滞回线在一定范围内,铁磁性材料的磁化和磁场强度之间存在一种非线性关系。
在外加磁场的作用下,铁磁性材料会发生磁滞现象,即磁化的变化并不完全随着磁场强度的变化而线性变化,而是呈现出一种类似回线的形状。
磁滞回线的形状与材料本身的性质有关,是研究材料磁性的重要参数。
四、磁场对磁性材料的应用磁性材料在各个领域都有广泛的应用。
磁性材料入门知识磁性材料入门知识磁性材料是指在磁场中可以产生磁性的材料,包括铁、钢、铁合金、磁性玻璃、氧化物等等。
它们具有多种应用,如电机、电磁铁、电子、通讯、医疗、军事等领域。
本文将为你介绍磁性材料的基本知识。
1. 磁化强度磁化强度是衡量磁性材料磁化程度的物理量,通常用磁化强度或磁化矢量表示。
磁化强度的单位是安培每米(A/m)或高斯(Gs)。
磁力线越接近选定的物体,磁化强度就越强。
2. 磁场强度磁场强度是衡量磁场强弱的物理量,它和磁性材料的磁化程度有关。
磁场强度的单位是特斯拉(T)或高斯(Gs)。
3. 磁性导数磁性材料的磁性导数是指材料对磁场的响应,通常用来表示磁性材料的磁化程度。
高磁性导数的材料对磁场的响应非常灵敏,可以用来制造磁传感器。
4. 磁饱和当磁性材料的磁化强度达到一定值时,它将不再对外加磁场产生响应,这个过程称为磁饱和。
磁饱和是磁性材料失去磁性的一个重要特征。
5. 磁畴磁性材料分为多个微小的磁畴,每个磁畴具有自己的磁矩方向,这个方向通过相邻的原子强引力互相保持。
每个磁畴磁矩方向相同,但与相邻磁畴的磁矩方向不同。
6. 磁滞回线当一个交变电流通过一个螺线管时,磁针的磁化方向会随着电流变化,因此在磁针上会形成一个磁滞回线。
磁滞回线经常用来描述磁性材料的饱和磁化、滞磁和磁导率等性质。
7. 磁性材料分类根据磁性材料的磁导率和饱和磁化强度,可以将磁性材料分为软磁性材料和硬磁性材料。
软磁性材料是指具有高磁导率和低磁饱和的材料,通常用作电子元器件、电机和变压器等领域。
硬磁性材料是指具有高饱和磁化和低磁导率的材料,通常用于制造永磁体、磁存储、磁头等领域。
8. 磁性材料应用磁性材料广泛应用于各个领域。
在电子行业,磁性材料用于制造电感和磁芯等元器件。
在电机和发电机中,磁性材料用于制造转子和定子,改进机器效率并降低成本。
磁性材料还用于通讯、医疗、军事和安全等领域。
总之,磁性材料具有重要的应用和理论价值。
通过深入了解磁性材料的基本知识,可以更好地理解其在科技领域中的应用和发展前景。
磁性材料分类
磁性材料是指具有一定磁性的物质,根据其磁性特性的不同,磁性材料主要可以分为三类:铁磁材料、铁氧体材料和非铁磁材料。
1. 铁磁材料:铁磁材料是指能够持续保持较强磁性的材料,它们在外部磁场作用下,可以产生自发磁化,且除去磁场作用后,能够保持一定程度的剩磁。
典型的铁磁材料包括铁、镍、钴以及它们的合金,如铁氧体、钐铁氧体等。
这类材料在电磁机械、电磁传感器、磁记录介质等领域有广泛应用。
2. 铁氧体材料:铁氧体材料以含铁氧化物为主要成分,由铁氧体晶粒与其他成分组成的复合材料。
铁氧体材料具有优良的磁特性、高温稳定性、低价格等优点,广泛应用于电力电子、电子通信、电子计算机等领域。
根据铁氧体的晶粒结构不同,铁氧体材料又可以分为软磁铁氧体和硬磁铁氧体两类。
软磁铁氧体具有高导磁率和低磁滞损耗等特点,适用于高频的电感元件、变压器等;硬磁铁氧体则具有高矫顽力和高剩磁等特点,适用于永磁体、电机等领域。
3. 非铁磁材料:非铁磁材料是指在外加磁场下,几乎不发生自发磁化的材料。
常见的非铁磁材料包括铜、铝、木材、玻璃等。
这些材料的磁导率接近于1,磁化率极小,几乎不受磁场影响。
非铁磁材料在电子设备、通信设备、建筑装饰等领域有广泛应用。
总结起来,磁性材料主要分为铁磁材料、铁氧体材料和非铁磁
材料三类。
铁磁材料具有较强磁性和剩磁特性,适用于电磁机械等领域;铁氧体材料具有高温稳定性和优良的磁特性,广泛应用于电力电子领域;非铁磁材料几乎不受磁场影响,适用于电子设备和建筑装饰等领域。
初中物理磁学知识点梳理物理学是一门研究物质和能量之间相互作用的科学,而磁学则是物理学中一个重要的分支。
在初中物理学习中,磁学知识点是必须重点掌握的内容。
下面将对初中物理磁学知识点进行梳理,分为磁性材料、磁场、电磁感应和电磁线圈四个部分进行介绍。
一、磁性材料磁性材料是指能够产生磁场或被磁场所吸引的物质。
常见的磁性材料有铁、镍和钴等。
磁性材料可以分为永磁材料和临时磁性材料两类。
1. 永磁材料永磁材料是指在外部磁场的作用下,其自身能够保持磁性的材料。
永磁材料可以产生持久磁场,并具有很强的磁性。
常见的永磁材料有铁氧体、钕铁硼和钴硅钴等。
2. 临时磁性材料临时磁性材料是指在外部磁场的作用下,其自身能够显示出磁性,但在去掉外部磁场后会失去磁性的材料。
常见的临时磁性材料有铁、镍和钴等。
二、磁场磁场是指物体周围存在的磁性力场。
在磁场中,对磁性物体具有吸引或排斥力。
磁场可以根据磁力线的性质分为均匀磁场和非均匀磁场两类。
1. 均匀磁场均匀磁场是指磁场中磁感应强度大小方向均相同的磁场。
在均匀磁场中,磁力线是平行且间距相等的。
在均匀磁场中,通过一个理想的磁针可以找到磁场的方向。
2. 非均匀磁场非均匀磁场是指磁场中磁感应强度大小或方向不均匀的磁场。
在非均匀磁场中,磁力线会有变化,磁力线的间距不等。
三、电磁感应电磁感应是指通过改变磁场中磁感应强度的大小或方向,产生感应电流的现象。
电磁感应有三种方式,即电磁感应定律、发电机和电磁铁。
1. 电磁感应定律电磁感应定律是描述电磁感应现象的定律。
根据法拉第电磁感应定律,当导体中的磁感应强度发生变化时,导体的两端会产生感应电动势。
感应电动势的大小与磁感应强度的变化率成正比。
2. 发电机发电机是一种利用电磁感应产生电能的装置。
它通过旋转一个导电线圈或磁体,在磁场中产生感应电动势,从而产生电流。
发电机是现代发电的重要设备之一。
3. 电磁铁电磁铁是一种利用电磁感应产生磁场的装置。
当通过导线通电时,导线周围会产生磁场,形成一个临时的磁铁。
磁性材料的分类1、铁氧体磁性材料:一般是指氧化铁和其他金属氧化物的符合氧化物。
他们大多具有亚铁磁性。
特点:电阻率远比金属高,约为1-10(12次方)欧/厘米,因此涡损和趋肤效应小,适于高频使用。
饱和磁化强度低,不适合高磁密度场合使用。
居里温度比较低。
2 、铁磁性材料:指具有铁磁性的材料。
例如铁镍钴及其合金,某些稀土元素的合金。
在居里温度以下,加外磁时材料具有较大的磁化强度。
3 、亚铁磁性材料:指具有亚铁磁性的材料,例如各种铁氧体,在奈尔温度以下,加外磁时材料具有较大的磁化强度。
4 、永磁材料:磁体被磁化后去除外磁场仍具有较强的磁性,特点是矫顽力高和磁能积大。
可分为三类,金属永磁,例:铝镍钴,稀土钴,铷铁硼等;铁氧体永磁,例:钡铁氧体,锶铁氧体;其他永磁,如塑料等。
5、软磁材料:容易磁化和退磁的材料。
锰锌铁氧体软磁材料,其工作频率在1K-10M之间。
镍锌铁氧体软磁材料,工作频率一般在1-300MHZ6、金属软磁材料:同铁氧体相比具有高饱和磁感应强度和低的矫顽力,例如工程纯铁,铁铝合金,铁钴合金,铁镍合金等,常用于变压器等。
7 、损耗角正切:他是串联复数磁导率的虚数部分与实数部分的比值,其物理意义为磁性材料在交变磁场的每周期中,损耗能量与储存能量的2派之比。
8、比损耗角正切:这是材料的损耗角正切与起始导磁率的比值。
9 、温度系数:在两个给定温度之间,被测的变化量除以温度变化量。
10、磁导率的比温度系数:磁导率的温度系数与磁导率的比值。
11 、居里温度:在此温度上,自发磁化强度为零,即铁磁性材料(或亚磁性材料)由铁磁状态(或亚铁磁状态)转变为顺磁状态的临界温度。
专业术语:1 、饱和磁感应强度:(饱和磁通密度)磁性体被磁化到饱和状态时的磁感应强度。
在实际应用中,饱和磁感应强度往往是指某一指定磁场(基本上达到磁饱和时的磁场)下的磁感应强度。
2、剩磁感应强度:从磁性体的饱和状态,把磁场(包括自退磁场)单调的减小到0的磁感应强度。
磁性材料Jump to: navigation, search磁性材料magnetic material可由磁场感生或改变磁化强度的物质。
按照磁性的强弱,物质可以分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性等几类。
铁磁性和亚铁磁性物质为强磁性物质,其余为弱磁性物质。
现代工程上实用的磁性材料多属强磁性物质,通常所说的磁性材料即指强磁性材料。
磁性材料的用途广泛。
主要是利用其各种磁特性和特殊效应制成元件或器件;用于存储、传输和转换电磁能量与信息,或在特定空间产生一定强度和分布的磁场;有时也以材料的自然形态而直接利用(如磁性液体)。
磁性材料在电子技术领域和其他科学技术领域中都有重要的作用。
简史中国是世界上最先发现物质磁性现象和应用磁性材料的国家。
早在战国时期就有关于天然磁性材料(如磁铁矿)的记载。
11世纪就发明了制造人工永磁材料的方法。
1086年《梦溪笔谈》记载了指南针的制作和使用。
1099~1102年有指南针用于航海的记述,同时还发现了地磁偏角的现象。
近代,电力工业的发展促进了金属磁性材料──硅钢片(Si-Fe合金)的研制。
永磁金属从 19世纪的碳钢发展到后来的稀土永磁合金,性能提高二百多倍。
随着通信技术的发展,软磁金属材料从片状改为丝状再改为粉状,仍满足不了频率扩展的要求。
20世纪40年代,荷兰J.L.斯诺伊克发明电阻率高、高频特性好的铁氧体软磁材料,接着又出现了价格低廉的永磁铁氧体。
50年代初,随着电子计算机的发展,美籍华人王安首先使用矩磁合金元件作为计算机的内存储器,不久被矩磁铁氧体记忆磁芯取代,后者在60~70年代曾对计算机的发展起过重要的作用。
50 年代初人们发现铁氧体具有独特的微波特性,制成一系列微波铁氧体器件。
压磁材料在第一次世界大战时即已用于声纳技术,但由于压电陶瓷的出现,使用有所减少。
后来又出现了强压磁性的稀土合金。
非晶态(无定形)磁性材料是近代磁学研究的成果,在发明快速淬火技术后,1967年解决了制带工艺,正向实用化过渡。
分类磁性材料按磁性功能分,有永磁、软磁,矩磁、旋磁和压磁材料;按化学成分分,有金属磁和铁氧体;按结构分,有单晶、多晶和非晶磁体;按形态分,有磁性薄膜、塑性磁体、磁性液体和磁性块体。
磁性材料通常是按功能分类的。
永磁材料一经外磁场磁化以后,即使在相当大的反向磁场作用下,仍能保持一部或大部原磁化方向的磁性。
对这类材料的要求是剩余磁感应强度Br高,矫顽力BHC(即抗退磁能力)强,磁能积(BH)max (即给空间提供的磁场能量)大。
相对于软磁材料而言,它亦称为硬磁材料。
永磁材料有合金、铁氧体和金属间化合物三类。
①合金类:包括铸造、烧结和可加工合金。
铸造合金的主要品种有:AlNi(Co)、 FeCr(Co)、FeCrMo、FeAlC、FeCo(V)(W);烧结合金有:Re-Co(Re代表稀土元素)、Re-Fe以及AlNi(Co)、FeCrCo等;可加工合金有:FeCrCo、PtCo、MnAlC、CuNiFe和AlMnAg等,后两种中BHC较低者亦称半永磁材料。
②铁氧体类:主要成分为MO·6Fe2O3,M代表Ba、Sr、Pb或SrCa、LaCa等复合组分。
③金属间化合物类:主要以MnBi 为代表。
永磁材料有多种用途。
①基于电磁力作用原理的应用主要有:扬声器、话筒、电表、按键、电机、继电器、传感器、开关等。
②基于磁电作用原理的应用主要有:磁控管和行波管等微波电子管、显像管、钛泵、微波铁氧体器件、磁阻器件、霍尔器件等。
③基于磁力作用原理的应用主要有:磁轴承、选矿机、磁力分离器、磁性吸盘、磁密封、磁黑板、玩具、标牌、密码锁、复印机、控温计等。
其他方面的应用还有:磁疗、磁化水、磁麻醉等。
根据使用的需要,永磁材料可有不同的结构和形态。
有些材料还有各向同性和各向异性之别。
软磁材料它的功能主要是导磁、电磁能量的转换与传输。
因此,对这类材料要求有较高的磁导率和磁感应强度,同时磁滞回线的面积或磁损耗要小。
与永磁材料相反,其Br和BHC越小越好,但饱和磁感应强度Bs则越大越好。
软磁材料大体上可分为四类。
①合金薄带或薄片:FeNi(Mo)、FeSi、FeAl 等。
②非晶态合金薄带:Fe基、Co基、FeNi基或FeNiCo基等配以适当的Si、B、P和其他掺杂元素,又称磁性玻璃。
③磁介质(铁粉芯):FeNi(Mo)、FeSiA l、羰基铁和铁氧体等粉料,经电绝缘介质包覆和粘合后按要求压制成形。
④铁氧体:包括尖晶石型──M++ O·Fe2O3(M++代表NiZn、MnZn、MgZn、Li1/2Fe1/2Zn、CaZn等),磁铅石型──Ba3Me2Fe24O41(Me代表Co、Ni、Mg、Zn、Cu及其复合组分)。
软磁材料的应用甚广,主要用于磁性天线、电感器、变压器、磁头、耳机、继电器、振动子、电视偏转轭、电缆、延迟线、传感器、微波吸收材料、电磁铁、加速器高频加速腔、磁场探头、磁性基片、磁场屏蔽、高频淬火聚能、电磁吸盘、磁敏元件(如磁热材料作开关)等。
矩磁材料和磁记录材料主要用作信息记录、无接点开关、逻辑操作和信息放大。
这种材料的特点是磁滞回线呈矩形。
旋磁材料具有独特的微波磁性,如导磁率的张量特性、法拉第旋转、共振吸收、场移、相移、双折射和自旋波等效应。
据此设计的器件主要用作微波能量的传输和转换,常用的有隔离器、环行器、滤波器(固定式或电调式)、衰减器、相移器、调制器、开关、限幅器及延迟线等,还有尚在发展中的磁表面波和静磁波器件(见微波铁氧体器件)。
常用的材料已形成系列,有Ni 系、Mg系、Li系、YlG系和BiCaV系等铁氧体材料;并可按器件的需要制成单晶、多晶、非晶或薄膜等不同的结构和形态。
压磁材料这类材料的特点是在外加磁场作用下会发生机械形变,故又称磁致伸缩材料,它的功能是作磁声或磁力能量的转换。
常用于超声波发生器的振动头、通信机的机械滤波器和电脉冲信号延迟线等,与微波技术结合则可制作微声(或旋声)器件。
由于合金材料的机械强度高,抗振而不炸裂,故振动头多用Ni系和NiCo系合金;在小信号下使用则多用Ni系和NiCo系铁氧体。
非晶态合金中新出现的有较强压磁性的品种,适宜于制作延迟线。
压磁材料的生产和应用远不及前面四种材料。
展望磁电共存这一基本规律导致了磁性材料必然与电子技术相互促进而发展,例如光电子技术促进了光磁材料和磁光材料的研制。
磁性半导体材料和磁敏材料和器件可以应用于遥感、遥则技术和机器人。
人们正在研究新的非晶态和稀土磁性材料(如FeNa合金)。
磁性液体已进入实用阶段。
某些新的物理和化学效应的发现(如拓扑效应)也给新材料的研制和应用(如磁声和磁热效应的应用)提供了条件。
参考书目戴礼智编著:《金属磁性材料》,上海人民出版社,上海, 1973。
周志刚等编著:《铁氧体磁性材料》,科学出版社,北京,1981。
李荫远、李国栋编著:《铁氧体物理学》第二版,科学出版社,北京,1983。
具有铁磁性能的材料。
电工技术中常用的磁性材料可分为高磁导率、低矫顽力、低剩磁的软磁材料和高矫顽力、高剩磁的永磁材料两大类。
永磁材料又称硬磁材料。
磁性是物质的一种基本属性。
物质按照其内部结构及其在外磁场中的性状可分为抗磁性、顺磁性、铁磁性、反铁磁性和亚铁磁性物质。
铁磁性和亚铁磁性物质为强磁性物质,其他均为弱磁性物质。
磁性材料有各向同性和各向异性之分。
各向异性材料的磁性能依方向不同而异。
因此,在使用各向异性材料时,必须注意其磁性能的方向。
电工领域中常用的磁性材料都属于强磁性物质。
反映磁性材料基本磁性能的有磁化曲线、磁滞回线和磁损耗等。
磁化曲线和磁滞回线反映磁性材料磁化特性的曲线。
可以用于确定磁性材料的一些基本特性参量如磁导率μ、饱和磁通密度B s、剩余磁场强度即矫顽力H c、剩余磁通密度即剩磁B r,以及磁滞损耗P等。
基本磁化曲线是铁磁物质以磁中性状态为出发点,在反复磁化过程中B 随H 变化规律的曲线,简称磁化曲线(图1)。
它是确定软磁材料工作点的依据。
B 和H 的关系如下:B=μ0(H+M )式中μ0为真空磁导率(又称磁常数),在国际单位制(SI)中,其值为μ0=4π×10-7亨/米;H为磁场强度,单位为安/米(A/m);M 为磁化强度,单位为安/米(A/m)。
图中磁化到饱和时的B值称为饱和磁通密度B s,相应的磁场强度为 H s。
通常,要求磁性材料有高的B s值。
磁化曲线上任一点的B 与H 之比就是磁导率μ,即对于各向同性的导磁物质μ=B/H,常用的是相对磁导率μr=μ/μ0,它是无量纲的纯数,用以表示物质的磁化能力。
因此,按μr的大小,把各类物质划分为:μr<1的抗磁性物质,μr>1的顺磁性物质,μr»1的强磁性物质。
根据B-H 曲线可以描绘出μ-H 曲线,图中μm和μi分别称为最大磁导率和初始磁导率。
μi是在低磁场下使用软磁材料的一个重要参量。
图2表示外磁场H 变化一周时B 随H变化而形成的闭合曲线。
由于B 的变化滞后于H,这个现象称为磁滞。
闭合曲线称为磁滞回线。
图中可见,当Hs降为零时,B 并不回到零,而仅到b点,此值(Br)称为剩余磁通密度,简称剩磁。
若要使Br降到零,需加一反磁场,这个反磁场强度的绝对值称为磁感应矫顽力,简称矫顽力H c。
B r与B s之比称为剩磁比或称开关矩形比(B r/B s),它表征矩磁材料磁滞回线接近矩形的程度。
磁滞回线的形状和面积直接表征磁性材料的主要磁特性。
软磁材料的磁滞回线窄,故矫顽力低,磁滞损耗也低(图3a),常用于电机、变压器、继电器的铁心磁路。
若磁滞回线窄而接近于矩形(称为矩磁材料)(图3c),则这种软磁材料不仅矫顽力低而且B r/B s值也高,适宜作记忆元件和开关元件。
永磁材料其磁滞回线面积宽大(图3b),B r和H c都大,经饱和磁化后,储存的磁场能量大。
常用作发电机、电动机的永磁磁极和测量仪表、扬声器中的永磁体等。
磁损耗单位重量的磁性材料在交变磁场中磁化,从变化磁场中吸收并以热的形式耗散的功率称为磁损耗或铁损耗P。
它主要由磁滞损耗和涡流损耗引起。
其中由磁滞现象引起的能量损耗称为磁滞损耗,它与磁滞回线所包围的面积成正比。
磁滞损耗功率P h可由下式计算P h=кhƒB mn V式中ƒ为频率(Hz);B m为最大磁通密度(T);指数 n为经验参数,和B m大小有关;V为磁性材料的体积;кh为与铁磁物质性质有关的系数。
在交变磁场中导电物质(包括铁磁物质)将感应出涡流,由涡流产生的电阻损耗称为涡流损耗。
涡流损耗的功率Pe可由下式计算P e=кeƒ2B mn V式中кe为与材料的电阻率、截面大小、形状有关的系数。
P h和P e是衡量电工设备、仪表产品质量好坏的重要参数。
具有强磁性的材料。