硅片制备--多晶硅铸锭炉和单晶炉知识分享
- 格式:ppt
- 大小:534.50 KB
- 文档页数:38
多晶硅到硅片的制备流程和工艺流程下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!本店铺为大家提供各种类型的实用资料,如教育随笔、日记赏析、句子摘抄、古诗大全、经典美文、话题作文、工作总结、词语解析、文案摘录、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you! In addition, this shop provides you with various types of practical materials, such as educational essays, diary appreciation, sentence excerpts, ancient poems, classic articles, topic composition, work summary, word parsing, copy excerpts, other materials and so on, want to know different data formats and writing methods, please pay attention!多晶硅到硅片的制备流程和工艺流程1. 简介在半导体产业中,硅片是制造各种电子器件的基础材料之一。
在【技术应用】单晶、多晶硅片生产工艺流程详解(上)中,笔者介绍了单晶和多晶硅片工艺流程的前半部分,概述了一些工艺流程和概念,以及术语的相关知识。
而本文则是从切片工艺开始了解,到磨片和吸杂,看硅片如何蜕变。
切片切片综述当单晶硅棒送至硅片生产区域时,晶棒已经过了头尾切除、滚磨、参考面磨制的过程,直接粘上碳板,再与切块粘接就能进行切片加工了。
为了能切割下单个的硅片,晶棒必须以某种方式进行切割。
切片过程有一些要求:能按晶体的一特定的方向进行切割;切割面尽可能平整;引入硅片的损伤尽可能的少;材料的损失尽量少。
碳板当硅片从晶棒上切割下来时,需要有某样东西能防止硅片松散地掉落下来。
有代表性的是用碳板与晶棒通过环氧粘合在一起从而使硅片从晶棒上切割下来后,仍粘在碳板上。
碳板不是粘接板的唯一选择,任何种类的粘接板和环氧结合剂都必须有以下几个特性:能支持硅片,防止其在切片过程中掉落并能容易地从粘板和环氧上剥离;还能保护硅片不受污染。
其它粘板材料还有陶瓷和环氧。
石墨是一种用来支撑硅片的坚硬材料,它被做成与晶棒粘接部位一致的形状。
大多数情况下,碳板应严格地沿着晶棒的参考面粘接,这样碳板就能加工成矩形长条。
当然,碳板也可以和晶棒的其它部位粘接,但同样应与该部位形状一致。
碳板的形状很重要,因为它要求能在碳板和晶棒间使用尽可能少的环氧和尽量短的距离。
这个距离要求尽量短,因为环氧是一种相当软的材料而碳板和晶棒是很硬的材料。
当刀片从硬的材料切到软的材料再到硬的材料,可能会引起硅片碎裂。
这里有一些选择环氧类型参考:强度、移动性和污染程度。
粘接碳板与晶棒的环氧应有足够强的粘度,才能支持硅片直到整根晶棒切割完成,因此,它必须能很容易地从硅片上移走,只有最小量的污染。
刀片当从晶棒上切割下硅片时,期望切面平整、损伤小、沿特定方向切割并且损失的材料尽量小。
有一个速度快、安全可靠、经济的切割方法是很值得的。
在半导体企业,两种通常被应用的方法是环型切割和线切割。
多晶硅铸锭炉的工作原理:将多晶硅料装入有涂层的坩埚内放在定向凝固块上;关闭炉镗后抽真空,加热待硅料完全熔化后,隔热笼缓慢往上提升,通过定向凝固块将硅料结晶时释放的热量辐射到下炉腔内壁上,使硅料中形成一个竖直温度梯度。
这个温度梯度使坩埚内的硅液从底部开始凝固,从熔体底部向顶部生长。
硅料凝固后,硅锭经过退火、冷却后出炉完成整个铸锭过程。
热场是多晶硅铸钻炉的心心脏,其内装石墨加热器、隔热层、坩埚和硅料等。
多晶硅工艺生产过程必须通过加热室的调整来实现,因此,多晶硅铸锭炉加热室的结构设计显得至关重要。
1加热方式分析为使硅料熔融,必须采用合适的加热方式。
从加热的效果而言,感应加热和辐射加热均可以达到所需的温度。
如果采用感应加热的方式,由于磁场是贯穿硅料进行加热,在硅料内部内部很难形成稳定的温度梯度,破坏晶体生产的一致性,而采用辐射加热可以对结晶过程的热量传递进行精确控制,易于在坩埚内部形成垂直的温度梯度,因此我们优先采用辐射加热的方式。
2 加热器的设计多晶硅铸锭炉加热器的加热能力必须超过1650℃,同时材料不能和硅材料反应,不对硅料造成污染,能在真空及惰性气氛中长期使用。
符合使用条件可供选择的加热器有金属钨、钼和非金属石墨等。
由于钨、钼价格昂贵,加工困难,而石墨来源广泛,可加工成各种形状。
另外,石墨具有热惯性小、可以快速加热,耐高温、耐热冲击性好,辐射面积大、加热效率高、且基本性能稳定等特点,因此我们采用高纯石墨作为加热材料。
根据盛装硅料坩埚的特点,加热器设计为如图2形状。
1.石墨加热板;2.石墨加热板;3.角接器;4.石墨电极;5.支承环;6、7、8.碳、碳螺栓、螺母图 2 石墨加热器基本结构2.1石墨加热器的设计计算该炉基本参数:额定功率:165 KV A:最大线电流:3800A:最大输出电压:25V。
加热器的接线方式(见图3)。
图3 加热器的接线方式由I线=3800A,可得:I相=3800/ √3=2194A则每个电阻的电流:I R =2194/2=1097每个电阻的阻值:R=25/1097=0.0228欧该加热器由4块加热板组成,则每块加热板电阻:R板=R*4/6=0.0228*4/6=0.0342欧功率校核:P总=6V2/103R代入得:P总=165KV A,符合额定功率指标。
铸锭多晶硅的工艺流程铸锭多晶硅工艺和直拉单晶工艺都属于定向凝固过程,不过后者不需要籽晶。
当硅料完全融化后,缓慢下降坩埚,通过热交换台进行热量交换,使硅熔液形成垂直的,上高下低的温度梯度,保证垂直方向散热,此温度梯度会使硅在锅底产生很多自发晶核,自下而上的结晶,同时要求固液界面水平,这些自发晶核开始长大,由下而上地生长,直到整锅熔体结晶完毕,定向凝固就完成了,当所有的硅都固化之后,铸块再经过退火,冷却等步骤最终生产出高质量的铸锭。
冷却到规定温度后,开炉出锭。
铸锭多晶硅的优缺点相对于直拉单晶来说,铸锭多晶硅有如下优点1、备制造简单,容易实现全自动控制。
2、料比较广泛,可以利用直拉头尾料、集成电路的废片以及粒状硅料等,当然要将原工艺过程中的污染经过喷砂,腐蚀等手段清洗干净。
3、料量大,产量高,适合大规模生产。
4 、片大小可以随意选取i,例如690MM的方锭可以切成125MM 的方锭25个,也可切成156MM的方锭16个等。
铸锭溶晶生产大尺寸方片,但直拉法就难一些。
点晶体的熔无论融化了已经变成的熔体,或尚未融化的固体都在处在同一个温度值,尽管继续加热,温度却始终保持不变,这个温度就是晶体的熔点。
单晶硅的导热性与方向有关。
多晶硅片上有很多的晶粒,晶粒之间有明显的晶界,由于晶向各不相同,呈现出深浅不同的色差。
直拉单晶炉的热系统及热场1、热系统直拉单晶炉的热系统是指为了融化硅料,并保持在一定温度下进行单晶生长的整个系统,它包括加热器、保温罩、保温盖、托碗(石墨坩埚)、电极等部件,它们是由耐高温的高纯石墨和碳毡材料加工而成的。
加热系统长期使用在高温下,所以要求石墨材质结构均匀致密、坚固、耐用,变形小,无空洞,气孔率≤24%,无裂纹,弯曲强度40~60Mpa,颗粒度0.02~0.05mm,体积密度1.70~1.80g/310-cm,灰分≤1⨯4(100ppm),金属杂质含量少,一般检测值在410-%数量级。
10-%~6加热器是热系统中最重要的部件,是直接的发热体,温度最高时达到1600。
多晶硅铸锭炉操作与生产流程
1.原料准备
2.模具装配
将石墨模具装配成铸锭上模具和下模具,并在模具之间安装密封圈,
确保在铸造过程中不会泄漏。
3.预热
将装配好的石墨模具放入铸锭炉中,通过加热炉子使模具达到一定的
温度,以便后续的铸造工作。
4.硅块装配
将切割好的硅块放入模具中,并用石墨杆轻轻压实,确保硅块与模具
接触良好,避免产生气孔和缺陷。
5.密封
将装配好的铸锭放入铸锭炉中,并将炉门密封,以防止炉内温度损失。
6.加热
将密封好的铸锭炉放入高温炉中,并通过控制炉内的温度和时间,使
硅块逐渐熔化,并达到所需的熔化温度。
在这个过程中,需要控制炉内的
气氛,确保炉内没有氧气和杂质进入。
7.冷却
在达到所需的熔化温度后,将炉子从高温炉中取出,并迅速放入冷却池中或者冷水中进行快速冷却。
这个过程被称为凝固,通过快速冷却,硅块中的硅液会迅速变成固态,形成铸锭的基本形状。
8.脱模
在冷却完全后,将冷却好的铸锭从模具中取出,并进行去杂、抛光等处理,最终得到一块完整的多晶硅铸锭。
9.收尾处理
将脱模后的多晶硅铸锭进行检查,对其进行尺寸、重量、外观以及其他性能指标的检测,以确定其质量和可用性。
10.包装和贮存
对于符合质量要求的多晶硅铸锭,进行包装,并将其分别存放在特定的贮存场所中,以便后续的晶体生长和硅片切割工艺。
以上是多晶硅铸锭炉的操作与生产流程的基本步骤,每个步骤都需要严格控制和操作,以确保多晶硅铸锭的质量和性能。
在实际生产中,还需要根据具体的设备型号、工艺要求和质量标准进行相应的调整和改进。
第七章硅的理化性质,纯硅和硅片的制备7.1概述早在1876年,英国科学家亚当斯等在研究半导体材料时发现:当用太阳能照射硒半导体时,如同伏特电池一样,会产生电流,称为光生伏特电。
但是,硒产生的光电效应很弱,到20世纪中期转化率只有1%左右。
1954年,美国贝尔实验室的Chapin等研制出世界上第一块真正意义上的硅太阳电池,光电转化率达到6%左右,又很快达到10%,从此拉开了现代太阳能光伏的研究、开发和应用的序幕。
几乎同时,CuS/CdS异质结电池也被开发,称为薄膜太阳电池研究的基础。
到目前为止,太阳能光电工业基本是建立在硅材料基础上,世界上绝大部分的太阳能光电器件是用晶体硅制造的,其中单晶硅太阳电池是最早被研究和利用的。
但是由于生产成本较昂贵,至20世纪70年代铸造多晶硅发明以来,由于价格较便宜,迅速挤占单晶硅的市场,成为最有竞争力的太阳电池材料。
目前,国际太阳电池材料电池市场中,单晶硅和多晶硅约占市场的80%以上。
7.1.1硅的理化性质(1)物理性质硅有晶态和无定形态两种同素异形体。
晶态硅根据原子排列不同分为单晶硅和多晶硅,它们均有金刚石晶格,属于原子晶体,晶体硬而脆,抗拉应力远远大于抗剪切应力,在室温下没有延展性;在热处理温度大于750℃时,硅材料由脆性材料转变为塑性材料,在外加应力下,产生滑移位错,形成塑性变形。
硅材料还具有一些特殊的物理化学性质,如硅材料熔化时体积缩小,固化时体积增大。
硅具有良好的半导体性质,其本征载流子浓度为1.5×1010个/cm3,本征电阻率为1.5×1010Ω·cm,电子迁移率为1350cm2/(V·s),空穴迁移率为480cm2/(V·s)。
作为半导体材料,硅具有典型的半导体材料的电学性质。
①电阻率特性硅材料的电阻率在10-5~1010Ω·cm之间,介于导体和绝缘体之间,高纯未掺杂的无缺陷的晶体硅材料称为本征半导体,电阻率在10Ω·cm以上。