追及与相遇问题(含答案)
- 格式:docx
- 大小:620.82 KB
- 文档页数:16
第12讲 追及和相遇问题甲、乙两人沿平直的公路进行自行车追逐比赛,他们初始在同一位置A ,某时刻甲以12m/s 的速度从A 位置开始匀速运动,经过时间2s 后,乙再从A 位置出发追赶甲,乙先做初速度为零的匀加速直线运动,加速度大小为23m/s ,速度达到15m/s 后做匀速直线运动。
(1)求乙追上甲之前,甲、乙间的最大距离; (2)经过多少时间乙才能追上甲?【答案】(1)4s ;(2)20.5s 【解析】(1)乙出发时,甲运动的位移1124m x vt ==乙追上甲之前,当甲、乙速度相等时,它们间距离最大,设乙运动的时间为2t ,有2v at =解得24s t =甲乙相距的最大距离122m 48m 2vs x vt t =+-=(2)乙加速到最大速度所用的时间为m35s v t a== 设乙运动4t 时间追赶上甲,则()2143m 4312x vt at v t t +=+- 解得420.5st1.追及相遇问题两物体在同一直线上一前一后运动,速度相同时它们之间可能出现距离最大、距离最小或者相遇(碰撞)的情况,这类问题称为追及相遇问题.2.分析追及相遇问题的思路和方法(1)讨论追及相遇问题的实质是分析两物体能否在同一时刻到达同一位置,注意抓住一个条件、用好两个关系.一个条件速度相等这是两物体是否追上(或相撞)、距离最大、距离最小的临界点,是解题的切入点两个关系时间关系和位移关系通过画示意图找出两物体位移之间的数量关系,是解题的突破口(2)常用方法物理分析法抓住“两物体能否同时到达同一位置”这一关键,认真审题,挖掘题中的隐含条件,建立物体运动关系的图景,并画出运动情况示意图,找出位移关系图像法将两者的v-t图像画在同一坐标系中,然后利用图像分析求解数学分析法设从开始到相遇的时间为t,根据条件列位移关系方程,得到关于t的一元二次方程,用判别式进行讨论.若Δ>0,即有两个解,说明可以相遇两次;若Δ=0,说明刚好追上或相遇;若Δ<0,说明追不上或不能相碰例题1.平直公路上有甲、乙两辆汽车,甲以0.5 m/s2的加速度由静止开始行驶,乙在甲的前方200 m处以5 m/s的速度做同方向的匀速运动,问:(1)甲何时追上乙?甲追上乙时的速度为多大?此时甲离出发点多远?(2)在追赶过程中,甲、乙之间何时有最大距离?这个距离为多少?【答案】(1)40 s20 m/s400 m(2)10 s225 m【解析】(1)设甲经过时间t 追上乙,则有x 甲=12a 甲t 2,x 乙=v 乙t ,根据追及条件,有12a 甲t 2=x 0+v 乙t ,代入数据解得t =40 s 和t =-20 s(舍去) 这时甲的速度v 甲=a 甲t =0.5×40 m/s =20 m/s 甲离出发点的位移x 甲=12a 甲t 2=12×0.5×402 m =400 m.(2)在追赶过程中,当甲的速度小于乙的速度时,甲、乙之间的距离仍在继续增大;但当甲的速度大于乙的速度时,甲、乙之间的距离便不断减小;当v 甲=v 乙,甲、乙之间的距离达到最大值.由a 甲t ′=v 乙,得t ′=v 乙a 甲=50.5 s =10 s ,即甲在10 s 末离乙的距离最大.x max =x 0+v 乙t ′-12a 甲t ′2=200 m +5×10 m -12×0.5×102 m =225 m.对点训练1. 汽车以20 m/s 的速度在平直公路上行驶时,制动后40 s 停下来.现在同一平直公路上以20 m/s 的速度行驶时发现前方200 m 处有一货车以6 m/s 的速度同向匀速行驶,司机立即制动,则:(1)求汽车刹车时的加速度大小;(2)是否发生撞车事故?若发生撞车事故,在何时发生?若没有撞车,两车最近距离为多少? 【答案】(1)0.5 m/s 2 (2)不会相撞 4 m 【解析】(1)汽车制动加速度大小a =v At =0.5 m/s 2(2)当汽车减速到与货车共速时t 0=v A -v Ba =28 s汽车运动的位移x 1=v A 2-v B 22a =364 m此时间内货车运动的位移为x 2=v B t 0=168 m Δx =x 1-x 2=196 m <200 m ,所以两车不会相撞.此时两车相距最近,最近距离Δs =x 0-Δx =200 m -196 m =4 m.例题2. 甲、乙两汽车在同一条平直公路上同向运动,其速度-时间图像分别为如图所示的甲、乙两条图线。
高中物理相遇和追及问题(完整版)相遇追及问题一、考点、热点回顾追及问题分为速度小者追速度大者和速度大者追速度小者两种情况。
1.速度小者追速度大者类型:匀加速追匀速图象说明:① t=t 以前,后面物体与前面物体间距离增大② t=t 时,两物体相距最远为x+Δx匀速追匀减速③ t=t 以后,后面物体与前面物体间距离减小④能追及且只能相遇一次匀加速追匀减速2.速度大者追速度小者类型:匀减速追匀速开始追及时,后面物体与前面物体间的距离在减小,当两物体速度相等时,即 t=t0 时刻:①若Δx=x0,则恰能追及,两物体只能相遇一次,这也是避免相撞的临界条件②若Δx<x0,则不能追及,此时两物体最小距离为 x0-Δx③若Δx>x0,则相遇两次,设 t1 时刻Δx1=x0,两物体第一次相遇,则 t2 时刻两物体第二次相遇匀减速追匀加速注意:① Δx 是开始追及以后,后面物体因速度大而比前面物体多运动的位移;② x 是开始追及以前两物体之间的距离;③ t2-t1=t-t2;④ v1 是前面物体的速度,v2 是后面物体的速度。
二、相遇问题相遇问题分为同向运动的两物体的相遇问题和相向运动的物体的相遇问题。
解此类问题的思路:1.根据追赶和被追赶的两个物体的运动性质,列出两个物体的位移方程,并注意两物体运动时间之间的关系。
2.通过对运动过程的分析,画出简单的图示,找出两物体的运动位移间的关系式。
追及的主要条件是两个物体在追上时位置坐标相同。
3.寻找问题中隐含的临界条件。
例如速度小者加速追赶速度大者,在两物体速度相等时有最大距离;速度大者减速追赶速度小者,在两物体速度相等时有最小距离,等等。
利用这些临界条件常能简化解题过程。
4.求解此类问题的方法,除了根据追及的主要条件和临界条件解联立方程外,还可以利用二次函数求极值,应用图象法和相对运动知识求解。
相遇问题的分析思路:相遇问题分为追及相遇和相向运动相遇两种情形,其主要条件是两物体在相遇处的位置坐标相同。
多次相遇与追及问题知识框架一、由简单行程问题拓展出的多次相遇问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
例题精讲【例 1】甲、乙两车同时从A 地出发,不停的往返行驶于A ,B 两地之间。
已知甲车的速度比乙车快,并且两车出发后第一次和第二次相遇都在途中C 地。
问:甲车的速度是乙车的多少倍?【考点】行程问题 【难度】☆☆☆ 【题型】解答【解析】 2倍。
解:如下图所示,因为每次相遇都共行一个来回,所用时间相等,所以乙车两次相遇走的路程相等,即2AC CB =,推知23AC AB =.第一次相遇时,甲走了43AB BC AB +=,乙走了23AC AB =,所以甲车速度是乙车的2倍。
【答案】2倍【巩固】 甲、乙二人从相距 60千米的两地同时相向而行,6时后相遇。
习题课2 追及与相遇问题[学习目标] 1.理解追及与相遇问题的实质.2.会分析追及问题的临界条件.一、对“相遇”与“追及”的认识 1.相遇问题相向运动的两物体,当各自发生的位移大小之和等于开始时两物体间的距离时即相遇. 2.追及问题同向运动的两物体,若后者能追上前者,则追上时,两者处于同一位置,且后者速度一定不小于前者速度,即v 1≥v 2.例1 如图1所示,甲、乙两车沿着同一条平直公路同向行驶,甲车以20 m /s 的速度匀速运动,乙车原来速度为8 m/s ,从距甲车80 m 处以大小为4 m/s 2的加速度做匀加速运动,问:乙车经多少时间能追上甲车?图1答案 10 s解析 设经时间t 乙车追上甲车.在这段时间内甲、乙两车位移分别为 x 甲=v 甲t ,x 乙=v 乙t +12at 2追上时的位移条件为x 乙=x 甲+x 0, 即20t +80=8t +2t 2 整理得:t 2-6t -40=0 解得:t 1=10 s ,t 2=-4 s(舍) 乙车经10 s 能追上甲车.二、追及问题的分析思路及临界条件 1.追及问题中的两个关系和一个条件(1)两个关系:即时间关系和位移关系,这两个关系可通过画草图得到.(2)一个条件:即两者速度相等,它往往是物体间能否追上、追不上或(两者)距离最大、最小的临界条件,也是分析判断的切入点. 2.能否追上的判断方法物体B 追赶物体A :开始时,两个物体相距x 0.若v A =v B 时,x A +x 0≤x B ,则能追上;若v A =v B 时,x A +x 0>x B ,则没有追上.3.若被追赶的物体做匀减速直线运动,一定要注意判断追上前该物体是否已经停止运动. 4.解题思路和方法分析物体运动过程→画运动示意图→找两物体位移关系→列位移方程例2 当交叉路口的绿灯亮时,一辆客车以a =2 m /s 2 的加速度由静止启动,在同一时刻,一辆货车以10 m/s 的恒定速度从客车旁边同向驶过(不计车长),则: (1)客车什么时候追上货车?客车追上货车时离路口多远? (2)在客车追上货车前,两车的最大距离是多少? 答案 (1)10 s 100 m (2)25 m解析 (1)客车追上货车的过程中,两车所用时间相等,位移也相等,即v 2t 1=12at 21,代入数据解得t 1=10 s ,x =12at 21=12×2×102 m =100 m.(2)两车距离最大时,两车应具有相等的速度,即v 2=at 2,代入数据解得t 2=5 s. Δx =v 2t 2-12at 22=10×5 m -12×2×52 m =25 m.后面速度小的做匀加速直线运动的物体追前面速度大的匀速运动的物体,一定能追上.v 1<v 2两者距离逐渐增加,v 1>v 2两者距离逐渐减小,即当v 1=v 2时,两者具有最大的距离.例3 某人离公共汽车尾部20 m ,以速度v 向汽车匀速跑过去,与此同时,汽车以1 m/s 2的加速度从静止启动,做匀加速直线运动.试问,此人的速度v 分别为下列数值时,能否追上汽车?如果能,要用多长时间?如果不能,则他与汽车之间的最小距离是多少? (1)v =6 m /s ;(2)v 1=7 m/s. 答案 (1)不能 2 m (2)能 4 s解析 (1)当汽车速度达到6 m/s 时,所需的时间 t =v a =61s =6 s 在这段时间内的人的位移x 1=v t =6×6 m =36 m汽车的位移x 2=12at 2=12×1×62 m =18 m因为x 1<x 2+20 m ,所以人不能追上汽车,此时两车有最小距离,最小距离Δx =x 2+20 m -x 1=2 m.(2)当汽车速度达到7 m/s 时,所需的时间 t 1=v 1a =71s =7 s在这段时间内的人的位移x 1′=v 1t 1=7×7 m =49 m 汽车的位移x 2′=12at 21=12×1×72 m =24.5 m因为x 1′>x 2′+20 m ,所以人能追上公共汽车. 设经过t ′时间人追上汽车,有v 1t ′=12at ′2+20 m解得t 1′=4 s ,t 2′=10 s(舍去)若速度大的做匀速直线运动的后者追速度小的做匀加速直线运动的前者,v 1>v 2两者距离减小,v 1<v 2两者距离增大;能否追上的临界条件是速度相等时的位移关系.若v 1=v 2时x 1≥x 2+s 0(s 0为两者初始距离)则能追上.若追不上,v 1=v 2时,两者有最小距离.1.(用图像分析追及相遇问题)甲、乙两辆汽车在平直的公路上沿同一方向做直线运动,t =0时刻同时经过公路旁的同一个路标.在如图2描述两车运动的v -t 图中,直线a 、b 分别描述了甲、乙两车在0~20 s 的运动情况.关于两车之间的位置关系,下列说法正确的是( )图2A .在0~10 s 内两车逐渐靠近B .在10~20 s 内两车逐渐远离C .在t =10 s 时两车在公路上相遇D .在5~15 s 内两车的位移相等 答案 D解析 在0~10 s 内,乙车在甲的前方,而且乙的速度大于甲的速度,则两车逐渐远离,故A 错误.在10~20 s 内,乙车在甲的前方,乙的速度小于甲的速度,则两车逐渐靠近.故B 错误.根据图像的“面积”等于物体的位移大小,可以看出,在t =10 s 时乙车的位移大于甲车的位移,t =0时刻又在同一位置出发,所以在t =10 s 时两车没有相遇,故C 错误.在5~15 s 内两车图线的“面积”相等,则通过的位移相等.故D 正确.2.(追及问题分析)一辆汽车以3 m /s 2的加速度开始启动的瞬间,另一辆以6 m/s 的速度做匀速直线运动的自行车恰好从汽车的旁边通过.(1)汽车一定能追上自行车吗?若能追上,汽车经多长时间追上?追上时汽车的瞬时速度多大?(2)在汽车追上自行车前,当v 汽<v 自时,两者间的距离如何变化?当v 汽>v 自时,两者间的距离如何变化?汽车追上自行车前多长时间与自行车相距最远?此时的距离是多大? 答案 见解析解析 (1)因为汽车做加速运动,自行车做匀速运动,故汽车一定能追上自行车.汽车追上自行车时,两者位移相等,x 汽=x 自,即12at 2=v 自t ,得:t =2v 自a =2×63 s =4 sv 汽=at =3×4 m /s =12 m/s.(2)开始阶段,v 汽<v 自,两者间的距离逐渐变大.后来v 汽>v 自,两者间的距离又逐渐减小.所以汽车追上自行车前,当v 汽=v 自时,两者距离最大. 设经过时间t 1,汽车速度等于自行车速度,则at 1=v 自, 代入数据得t 1=2 s此时x 自′=v 自t 1=6×2 m =12 m x 汽′=12at 21=12×3×22 m =6 m最大距离Δx =x 自′-x 汽′=6 m.3.(避碰问题分析)一辆货车以8 m /s 的速度在平直公路上行驶,由于调度失误,在后面600 m 处有一辆客车以72 km/h 的速度向它靠近.客车司机发觉后立即合上制动器,但客车要滑行2 000 m 才能停止.求: (1)客车滑行的加速度大小; (2)通过计算分析两车是否会相撞. 答案 (1)0.1 m/s 2 (2)见解析解析 (1)设v 2=72 km /h =20 m/s ,由公式v 2t -v 20=2ax 得客车刹车的加速度大小为a =v 222x=2022×2 000m /s 2=0.1 m/s 2. (2)假设不相撞,设两车达到共同速度用时为t ,则 v 2-at =v 1,t =120 s货车在该时间内的位移x 1=v 1t =8×120 m =960 m 客车在该时间内的位移x 2=v 1+v 22t =1 680 m位移大小关系:x 2=1 680 m>600 m +x 1=1 560 m ,故会相撞.课时作业一、选择题(1~2为单选题,3~5为多选题)1.甲、乙两物体先后从同一地点出发,沿一条直线运动,它们的v -t 图像如图1所示,由图可知( )图1A .甲比乙运动快,且早出发,所以乙追不上甲B .t =20 s 时,乙追上甲C .在t =20 s 之前,甲比乙运动快;在t =20 s 之后,乙比甲运动快D .由于乙在t =10 s 时才开始运动,所以t =10 s 时,甲在乙前面,它们之间的距离为乙追上甲前的最大距离 答案 C解析 从题图中看出开始甲比乙运动快,且早出发,但是乙做匀加速运动,最终是可以追上甲的,A 项错误;t =20 s 时,速度图像中甲的速度图线与时间轴所围的面积大于乙的,即甲的位移大于乙的位移,所以乙没有追上甲,B 项错误;在t =20 s 之前,甲的速度大于乙的速度,在t =20 s 之后,乙的速度大于甲的速度,C 项正确;乙在追上甲之前,当它们速度相同时,它们之间的距离最大,对应的时刻为t =20 s ,D 选项错误.2.甲车以3 m /s 2的加速度由静止开始做匀加速直线运动,乙车落后2 s 在同一地点由静止出发,以4 m/s 2的加速度做匀加速直线运动,两车速度方向一致.在乙车追上甲车之前,两车距离的最大值是( ) A .18 m B .24 m C .22 m D .28 m答案 B解析 乙车从静止开始做匀加速直线运动,落后甲2 s ,则开始阶段甲车在前.当乙车速度小于甲车的速度时,两车距离增大;当乙车速度大于甲车的速度时,两车距离减小,则当两车速度相等时距离最大.即:a 甲(t 乙+2 s)=a 乙t 乙,解得:t 乙=6 s ;两车距离的最大值为Δx =x 甲-x 乙=12a 甲(t 乙+2 s)2-12a 乙t 2乙=24 m ,故选B. 3.A 与B 两个质点向同一方向运动,A 做初速度为零的匀加速直线运动,B 做匀速直线运动.开始计时时,A 、B 位于同一位置,则当它们再次位于同一位置时( ) A .两质点速度相等B .A 与B 在这段时间内的平均速度相等C .A 的瞬时速度是B 的2倍D .A 与B 的位移相同 答案 BCD解析 设A 的加速度为a ,B 的速度为v ,经过时间t ,A 、B 再次位于同一位置,由题意可得12at 2=v t ,t =2v a ,故此时A 的速度v ′=at =2v ,所以A 错误,C 正确;由题意知A 、B 在t 时间内位移相同,根据平均速度的定义式v =x t ,可知A 与B 在这段时间内的平均速度相等,所以B 、D 正确.4.在平直公路上,自行车与同方向行驶的一辆汽车在t =0时同时经过某一个路标,它们的位移x (m)随时间t (s)变化的规律:汽车为x =10t -14t 2,自行车为x =6t ,则下列说法正确的是( )A .汽车做匀减速直线运动,自行车做匀速运动B .不能确定汽车和自行车各做什么运动C .开始经过路标后较小时间内汽车在前,自行车在后D .当自行车追上汽车时,它们距路标96 m 答案 ACD解析 汽车的位移时间关系为x =10t -14t 2,可知汽车做匀减速直线运动,自行车的位移时间关系为x =6t ,可知自行车做匀速直线运动,选项A 正确,B 错误;开始阶段汽车的初速度大于自行车的速度,所以在较小时间内汽车的位移大于自行车的位移,汽车在前,自行车在后,选项C 正确;根据10t -14t 2=6t 得t =16 s ,此时距路标的距离s =96 m ,选项D 正确.5.一辆汽车正在以v =20 m /s 的速度匀速行驶.突然,司机看见车的正前方x =33 m 处有一只狗,如图2甲所示,若从司机看见狗开始计时(t =0),司机采取了一系列动作.整个过程中汽车的运动规律如图乙所示,g 取10 m/s 2.则下列判断正确的是( )图2A .汽车先做匀速运动再做反向匀减速运动B .汽车减速运动的加速度大小为5 m/s 2C .若狗正以v ′=4 m/s 的速度与汽车同向奔跑,则不能摆脱被撞的噩运D .汽车从司机发现狗至停止运动的这段时间内前进的距离为48.4 m 答案 BC解析 汽车先做匀速运动,再做同方向的匀减速运动,A 错误;汽车做匀减速运动的加速度为a =-204 m /s 2=-5 m/s 2,B 正确;当汽车由v =20 m /s 减速到v 1=4 m/s 时,所需时间为t =Δv a =4-20-5 s =3.2 s ,司机的反应时间为t 1,从司机看到狗到汽车速度减为v 1=4 m/s时间内,汽车所通过的位移为x 1=v t 1+v 21-v 22a =(20×0.5+42-202-2×5) m =48.4 m ,而狗通过的位移为x 2=v ′(t 1+t )=4×(0.5+3.2)m =14.8 m ,x 1>x 2+x 0=47.8 m ,所以狗将被撞,C 正确;汽车从司机看见狗至停止运动的时间段内前进的距离为x 3=⎣⎡⎦⎤(0.5+4.5)×20×12 m =50 m ,D 错误.二、非选择题6.慢车以0.1 m /s 2的加速度从车站启动开出,同时在距车站2 km 处,在与慢车平行的另一轨道上,有一辆以72 km/h 的速度迎面开来的快车开始做匀减速运动,以便到站停下,问: (1)两车何时错车? (2)错车点离车站多远? 答案 (1)100 s (2)500 m解析 (1)a 1=0.1 m /s 2,v =72 km/h =20 m/s ,快车做匀减速直线运动的加速度大小a 2=v 22x =4004 000 m /s 2=0.1 m/s 2,设经过t 时间开始错车,则有:12a 1t 2+v t -12a 2t 2=x ,代入数据解得t =100 s.(2)由位移时间公式可得x ′=12a 1t 2=12×0.1×1002 m =500 m.7.已知A 、B 两列火车,在同一轨道上同向行驶,A 车在前,其速度v 1=10 m /s ,B 车在后,速度v 2=30 m/s ,B 车在距A 车x 0=75 m 时才发现前方有A 车,这时B 车立即刹车,但B 车要经过x =180 m 才能停下来.求: (1)B 车刹车过程的加速度大小;(2)B 车刹车时A 仍按原速率行驶,两车是否会相撞?(3)若相撞,求B 车从开始刹车到两车相撞用多少时间?若不相撞,求两车的最小距离. 答案 (1)2.5 m/s 2 (2)两车会相撞 (3)6 s解析 (1)设B 车加速度大小为a B ,刹车至停下来的过程中,由v 22=2a B x 解得:a B =2.5 m/s 2(2)B 车在开始刹车后t 时刻的速度为v B =v 2-a B t B 车的位移x B =v 2t -12a B t 2A 车的位移x A =v 1t设t 时刻两车速度相等,v B =v 1 解得:t =8 s将t =8 s 代入公式得x B =160 m ,x A =80 m 因x B > x A +x 0=155 m故两车会相撞.(3)设B 车从开始刹车到两车相撞所用时间为t ′,则满足x B =x A +x 0 代入数据解得:t 1′=6 s ,t 2′=10 s(不符合题意) 故B 车从开始刹车到两车相撞用时6 s.8.公交车作为现代城市交通很重要的工具,它具有方便、节约、缓解城市交通压力等许多作用.某日,李老师在上班途中向一公交车站走去,发现一辆公交车正从身旁平直的公路驶过,此时,他的速度是1 m /s ,公交车的速度是15 m/s ,他们距车站的距离为50 m .假设公交车在行驶到距车站25 m 处开始刹车,刚好到车站停下,停车时间10 s .而李老师因年龄、体力等关系最大速度只能达到6 m /s ,最大起跑加速度只能达到2.5 m/s 2. (1)若公交车刹车过程视为匀减速直线运动,其加速度大小是多少? (2)试计算分析,李老师是能赶上这班车,还是等下一班车. 答案 见解析解析 (1)公交车的加速度为:a 1=0-v 212x 1=0-15250m /s 2=-4.5 m/s 2,所以其加速度大小为4.5 m/s 2(2)公交车从与李老师相遇到开始刹车用时为:t 1=x -x 1v 1=50-2515 s =53 s ,公交车刹车过程中用时为:t 2=0-v 1a 1=-15-4.5s =103 s ,李老师以最大加速度达到最大速度用时为:t 3=v 3-v 2a 2=6-12.5 s =2 s ,李老师加速过程中位移为:x 2=v 2+v 32t 3=1+62×2 m =7 m ,以最大速度跑到车站用时为:t 4=x -x 2v 3=436s显然,t 3+t 4<t 1+t 2+10 s ,可以在公交车还停在车站时安全上车.。
相遇与追及问题例题讲解:【例题1】一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。
3.5小时两车相遇。
甲、乙两个城市的路程是多少千米?【解析】本题是简单的相遇问题,根据相遇路程等于速度和乘以相遇时间得到甲乙两地路程为:(46+48)×3.5=94×3.5=329(千米).【巩固1】两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时行40千米。
甲、乙两车相遇时,各行了多少千米?【解析】根据相遇公式知道相遇时间是:255÷(45+40)=255÷85=3(小时),所以甲走的路程为:45×3=135(千米),乙走的路程为:40×3=120(千米).【例题2】大头儿子的家距离学校3000米,小头爸爸从家去学校接大头儿子放学,大头儿子从学校回家,他们同时出发,小头爸爸每分钟比大头儿子多走24米,50分钟后两人相遇,那么大头儿子的速度是每分钟走多少米?【解析】大头儿子和小头爸爸的速度和:3000÷50=60(米/分钟),小头爸爸的速度:(60+24)÷2=42(米/分钟),大头儿子的速度:60-42=18(米/分钟).【巩固2】聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗?【解析】由题意知聪聪的速度是:20+42=60(米/分),两家的距离=明明走过的路程+聪聪走过的路程=20×20+62×20=400+1240=1640(米),聪聪【例题3】A、B两地相距90米,包子从A地到B地需要30秒,菠萝从B地到A地需要15秒,现在包子和菠萝从A、B两地同时相对而行,相遇时包子与B地的距离是多少米?【解析】包子的速度:90÷30=3(米/秒),菠萝的速度:90÷15=6(米/秒),相遇的时间:90÷(3+6)=10(秒),包子距B地的距离:90-3×10=60(米).【巩固3】甲、乙两车分别从相距360千米的A、B两城同时出发,相对而行,已知甲车到达B城需4小时,乙车到达A城需12小时,问:两车出发后多长时间相遇?【解析】要求两车的相遇时间,则必须知道它们各自的速度,甲车的速度是360÷4=90(千米/时),乙车的速度是360÷12=30(千米/时),则相遇时间是360÷(90+30)=3(小时).【例题4】甲、乙两辆汽车分别从A、B两地出发相对而行,甲车先行1小时,甲车每小时行48千米,乙车每小时行50千米,5小时相遇,求A、B两地间的距离.【解析】这题不同的是两车不“同时”.求A、B两地间的路程就是求甲、乙两车所行的路程和.这样可以充分别求出甲车、乙车所行的路程,再把两部分合起来.48×(1+5)=288(千米),50×5=250(千米),288+250=538(千米).【巩固4】甲、乙两列火车从相距770千米的两地相向而行,甲车每小时行45千米,乙车每小时行41千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?【解析】甲、乙两车出发时间有先有后,乙车先出发2小时,这段时间甲车没有行驶,那么乙车这2小时所行的路程不是甲、乙两车同时相对而行的路程,所以要先求出甲、乙两车同时相对而行的路程,再除以速度和,才是甲、乙两车同时相对而行的时间.乙车先行驶路程:41×2=82(千米),甲、乙两车同时相对而行路程:770-82=688(千米),甲、乙两车速度和45+41=86(千米/时),甲车行的时间:688÷86=8(小时).【例题5】甲、乙两列火车从相距144千米的两地相向而行,甲车每小时行28千米,乙车每小时行22千米,乙车先出发2小时后,甲车才出发.甲车行几小时后与乙车相遇?【解析】甲、乙两车出发时间有先有后,乙车先出发2小时,这段时间甲车没有行驶,那么乙车这2小时所行的路程不是甲、乙两车同时相对而行的路程,所以要先求出甲、乙两车同时相对而行的路程,再除以速度和,才是甲、乙两车同时相对而行的时间.乙车先行驶路程:22×2=44(千米),甲、乙两车同时相对而行路:144-44=100(千米),甲、乙两车速度和:28+22=50(千米),与乙车相遇时甲车行的时间为:100÷50=2(小时).【巩固5】妈妈从家出发到学校去接小红,妈妈每分钟走75米.妈妈走了3分钟后,小红从学校出发,小红每分钟走60米.再经过20分钟妈妈和小红相遇.从小红家到学校有多少米?【解析】妈妈先走了3分钟,就是先走了75×3=225(米).20分钟后妈妈和小红相遇,也就是说妈妈和小红共同走了20分钟,这一段的路程为:(75+60)×20=2700(米),这样妈妈先走的那一段路程,加上后来妈妈和小红走的这一段路程,就是小红家到学校的距离.即(75×3)+(75+60)×20=2925(米).【例题6】甲乙两座城市相距530千米,货车和客车从两城同时出发,相向而行.货车每小时行50千米,客车每小时行70千米.客车在行驶中因故耽误1小时,然后继续向前行驶与货车相遇.问相遇时客车、货车各行驶多少千米?【解析】因为客车在行驶中耽误1小时,而货车没有停止继续前行,也就是说,货车比客车多走1小时.如果从总路程中把货车单独行驶1小时的路程减去,然后根据余下的就是客车和货车共同走过的.再求出货车和客车每小时所走的速度和,就可以求出相遇时间.然后根据路程=速度×时间,可以分别求出客车和货车在相遇时各自行驶的路程.相遇时间:(530-50)÷(50+70)=4(小时)相遇时客车行驶的路程:70×4=280(千米)相遇时货车行驶的路程:50×(4+1)=250(千米).【巩固6】甲、乙两列火车从相距366千米的两个城市对面开来,甲列火车每小时行37千米,乙列火车每小时行36千米,甲列火车先开出2小时后,乙列火车才开出,问乙列火车行几小时后与甲列火车相遇?【解析】(366-37×2)÷(37+36)=4(小时)【例题7】甲、乙两辆汽车分别从A、B两地出发相向而行,甲车先行3小时后乙车从B地出发,乙车出发5小时后两车还相距15千米.甲车每小时行48千米,乙车每小时行50千米.求A、B两地间相距多少千米?【解析】题目中写的“还”相距15千米指的就是最简单的情况。
追及相遇问题专题总结一、 解相遇和追及问题的关键 (1)时间关系 :0t t t B A ±=(2)位移关系:0A B x x x =±(3)速度关系:两者速度相等。
它往往是物体间能否追上或(两者)距离最大、最小的临界条件,也是分析判断的切入点。
二、追及问题中常用的临界条件:1、速度小者追速度大者,追上前两个物体速度相等时,有最大距离;2、速度大者减速追赶速度小者,追上前在两个物体速度相等时,有最小距离.即必须在此之前追上,否则就不能追上:(1)当两者速度相等时,若追者仍没有追上被追者,则永远追不上,此时两者之间有最小距离。
(2)若两者速度相等时恰能追上,这是两者避免碰撞的临界条件。
(3)若追者追上被追者时,追者速度仍大于被追者的速度,则被追者还有一次追上追者的机会,即会相遇两次。
二.几种典型的追击、相遇问题在讨论A 、B 两个物体的追击问题时,先定义几个物理量,0x 表示开始追击时两物体之间的距离,x ∆表示开始追及以后,后面的物体因速度大而比前面物体多运动的位移;1v 表示运动方向上前面物体的速度,2v 表示后面物体的速度。
下面分为几种情况:1. 特殊情况:同一地点出发,速度小者(初速度为零,匀加速运动)追击速度大者(匀速运动)。
(1)当12v v =,A 、B 距离最大。
(2)当两者位移相等时,有 122v v =且A 追上B 。
(3)A 追上B 所用的时间等于它们之间达到最大距离时间的两倍,122t t =。
(4)两者运动的速度时间图像2. 速度小者(2v )追击速度大者(1v )的一般情况3. 速度大者(2v )追速度小者(1v )的一般情况追击与相遇问题专项典型例题分析类型图象 说明匀加速追匀速①t =t 0以前,后面物体与前面物体间距离增大②t =t 0时,两物体相距最远为x 0+Δx③t =t 0以后,后面物体与前面物体间距离减小④当两者的位移相同时,能追及且只能相遇一次。
追及与相遇问题学案知识要点:一、相遇是指两物体分别从相距S 的两地相向运动到同一位置,它的特点是:两物体运动的距离之和等于S ,分析时要注意: (1)、两物体是否同时开始运动,两物体运动至相遇时运动时间可建立某种关系; (2)、两物体各做什么形式的运动; (3)、由两者的时间关系,根据两者的运动形式建立S=S 1+S 2方程; 二、追及问题 (1)、追及问题中两者速度大小与两者距离变化的关系。
若甲物体追赶前方的乙物体,若甲的速度大于乙的速度,则两者之间的距离 。
若甲的速度小于乙的速度,则两者之间的距离 。
若一段时间内两者速度相等,则两者之间的距离 。
2、追及问题的特征及处理方法:“追及”主要条件是:两个物体在追赶过程中处在同一位置,常见的情形有三种: ⑴ 速度小者匀加速追速度大者,一定能追上,追上前有最大距离的条件:两物体速度 ,即v v =乙甲。
⑵ 匀速运动的物体甲追赶同向匀加速运动的物体乙,存在一个能否追上的问题。
判断方法是:假定速度相等,从位置关系判断。
①若甲乙速度相等时,甲的位置在乙的后方,则追不上,此时两者之间的距离最小。
②若甲乙速度相等时,甲的位置在乙的前方,则追上。
③若甲乙速度相等时,甲乙处于同一位置,则恰好追上,为临界状态。
解决问题时要注意二者是否同时出发,是否从同一地点出发。
⑶ 速度大者匀减速运动的物体追赶同向的匀速运动的物体时,情形跟⑵类似。
三、分析追及问题的注意点:⑴ 追及物与被追及物的速度恰好相等时临界条件,往往是解决问题的重要条件 ⑵若被追赶的物体做匀减速运动,一定要注意追上前该物体是否已经停止运动。
⑶仔细审题,充分挖掘题目中的隐含条件,同时注意v t -图象的应用。
例题分析:1.一车处于静止状态,车后距车S 0=25m 处有一个人,当车以1m/s 2的加速度开始起动时,人 以6m/s 的速度匀速追车,能否追上?若追不上,人车之间最小距离是多少?2.一辆汽车在十字路口等候绿灯,当绿灯亮时汽车以3m/s2的加速度开始行驶,恰好此时一辆自行车以6m/s速度驶来,从后边超越汽车.试求:①汽车从路口开动后,追上自行车之前经过多长时间两车相距最远?最远距离是多少?②经过多长时间汽车追上自行车,此时汽车的速度是多少?3.公共汽车从车站开出以4m/s的速度沿平直公路行驶,2s后一辆摩托车从同一车站开出匀加速追赶,加速度为2m/s2。
相遇与追及知识框架一、相遇甲从A地到B地,乙从B地到A地,然后两人在途中相遇,实质上是甲和乙一起走了儿8之间这段路程,如果两人同时出发,那么甲乙甲乙・・・・・A 3 A B0时刻唯每出发时向t后相遇相遇路程=甲走的路程+乙走的路程=甲的速度X相遇时间+乙的速度X相遇时间=(甲的速度+乙的速度)X相遇时间=速度和X相遇时间.一般地,相遇问题的关系式为:速度和X相遇时间二路程和,即S和二v n t二、追及有两个人同时行走,一个走得快,一个走得慢,当走得慢的在前,走得快的过了一些时间就能追上他. 这就产生了“追及问题”.实质上,要算走得快的人在某一段时间内,比走得慢的人多走的路程,也就是要计算两人走的路程之差(追及路程).如果设甲走得快,乙走得慢,在相同的时间(追及时间)内:追及路程=甲走的路程-乙走的路程=甲的速度X追及时间-乙的速度X追及时间=(甲的速度-乙的速度)X追及时间=速度差X追及时间.一般地,追击问题有这样的数量关系:追及路程二速度差X追及时间,即S差=Qt例如:假设甲乙两人站在100米的跑道上,甲位于起点(0米)处,乙位于中间5米处,经过时间t后甲乙同时到达终点,甲乙的速度分别为、和y乙,那么我们可以看到经过时间t后,甲比乙多跑了5米,或者可以说,在时间t内甲的路程比乙的路程多5米,甲用了时间1追了乙5米甲甲乙乙«--- •----------------------- » ・・。
米 5米10。
米100三、相遇和追及在研究追及和相遇问题时,一般都隐含以下两种条件:(1)在整个被研究的运动过程中,2个物体所运行的时间相同(2)在整个运行过程中,2个物体所走的是同一路径。
Page 1 of 11例题精讲【例1】一辆客车与一辆货车同时从甲、乙两个城市相对开出,客车每小时行46千米,货车每小时行48千米。
3.5小时两车相遇。
甲、乙两个城市的路程是多少千米?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】本题是简单的相遇问题,根据相遇路程等于速度和乘以相遇时间得到甲乙两地路程为:(46+48)X3.5=94X3.5=329 (千米).【答案】329千米【巩固】聪聪和明明同时从各自的家相对出发,明明每分钟走20米,聪聪骑着脚踏车每分钟比明明快42米,经过20分钟后两人相遇,你知道聪聪家和明明家的距离吗?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】方法一:由题意知聪聪的速度是:20 + 42 = 62 (米/分),两家的距离=明明走过的路程+聪聪走 过的路程=20x 20 + 62x 20 = 400 +1240 = 1640 (米),请教师画图帮助学生理解分析.注意利用乘法分配律的反向应用就可以得到公式:S 和=v 和t .对于刚刚学习奥数的孩子, 注意引导他们认识、理解及应用公式.方法二:直接利用公式:S 和=v 和t =(20 + 62)x 20 = 1640 (米). 【答案】1640米【例2】A 、B 两地相距90米,包子从A 地到B 地需要30秒,菠萝从B 地到A 地需要15秒,现在包子和菠萝从A 、B 两地同时相对而行,相遇时包子与B 地的距离是多少米?【考点】行程问题 【难度】☆☆ 【题型】解答【解析】包子的速度:90 ・ 30 = 3 (米/秒),菠萝的速度:90 ・15 = 6 (米/秒),相遇的时间: 90 + (3 + 6) =10 (秒),包子距B 地的距离:90 — 3x 10 = 60 (米).【答案】包子距B 地的距离是60米【巩固】两地间的路程有255千米,两辆汽车同时从两地相对开出,甲车每小时行45千米,乙车每小时 行40千米。
多次相遇和追及问题知识框架一、多人相遇追及问题多人相遇追及问题,即在同一直线上,3个或3个以上的对象之间的相遇追及问题。
所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,比如我们遇到的两大典型行程题相遇问题和追及问题的本质也是这三个量之间的关系转化.由此还可以得到如下两条关系式:路程和速度和相遇时间;=⨯路程差速度差追及时间;=⨯多人相遇与追及问题虽然较复杂,但只要抓住这两条公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.二、多次相遇追及问题所有行程问题都是围绕“=⨯路程速度时间”这一条基本关系式展开的,多人相遇与追及问题虽然较复杂,但只要抓住这个公式,逐步表征题目中所涉及的数量,问题即可迎刃而解.多次相遇与全程的关系1. 两地相向出发:第1次相遇,共走1个全程;第2次相遇,共走3个全程;第3次相遇,共走5个全程;…………,………………;第N次相遇,共走2N-1个全程;注意:除了第1次,剩下的次与次之间都是2个全程。
即甲第1次如果走了N米,以后每次都走2N 米。
2. 同地同向出发:第1次相遇,共走2个全程;第2次相遇,共走4个全程;第3次相遇,共走6个全程;…………,………………;第N次相遇,共走2N个全程;3、多人多次相遇追及的解题关键多次相遇追及的解题关键几个全程多人相遇追及的解题关键路程差三、解多次相遇问题的工具——柳卡柳卡图,不用基本公式解决,快速的解法是直接画时间-距离图,再画上密密麻麻的交叉线,按要求数交点个数即可完成。
折线示意图往往能够清晰的体现运动过程中“相遇的次数”,“相遇的地点”,以及“由相遇的地点求出全程”,使用折线示意图法一般需要我们知道每个物体走完一个全程时所用的时间是多少。
如果不画图,单凭想象似乎对于像我这样的一般人儿来说不容易。
例题精讲【例 1】A 、B 两地相距203米,甲、乙、丙的速度分别是4米/分、6米/分、5米/分。
如果甲、乙从A ,丙从B 地同时出发相向而行,那么,在__________分钟或________分钟后,丙与乙的距离是丙与甲的距离的2倍。
追及与相遇问题练习(含答案)一、多选题(本大题共5小题,共20.0分)1. 在一个大雾天,一辆小汽车以的速度行驶在平直的公路上,突然发现正前方处有一辆大卡车以的速度同方向匀速行驶,汽车司机立即刹车,忽略司机的反应时间,后卡车也开始刹车,从汽车司机开始刹车时计时,两者的图象如图所示,下列说法正确的是( )A. 小汽车与大卡车一定没有追尾B. 由于在减速时大卡车的加速度大小小于小汽车的加速度大小,导致两车在时追尾C. 两车没有追尾,两车最近距离为D. 两车没有追尾,并且两车都停下时相距2. 两物体均沿轴正方向从静止开始做匀变速直线运动,时刻两物体同时出发,物体的位置随速率平方的变化关系如图甲所示,物体的位置随运动时间的变化关系如图乙所示,则( )A. 物体的加速度大小为B. 时,两物体相距C. 内物体的平均速度大小为D. 两物体相遇时,物体的速度是物体速度的倍3. 甲乙两车在一平直道路上同向运动,其图象如图所示,图中和的面积分别为和,初始时,甲车在乙车前方处( )A. 若,两车不会相遇B. 若,两车相遇次C. 若,两车相遇次D. 若,两车相遇次4. ,两辆汽车从同一地点同时出发沿同一方向做直线运动,它们的速度的平方随位置的变化规律如图所示,下列判断正确的是( )A. 汽车的加速度大小为B. 汽车、在处的速度大小为C. 从开始到汽车停止前,当时、相距最远D. 从开始到汽车停止前,当时、相距最远二、计算题(本大题共5小题,共50.0分)5. 一辆值勤的警车停在公路边,当警员发现从他旁边以的速度匀速直线行驶的货车有违章行为时,决定前去追赶,经过后警车启动,并以的加速度做匀加速直线运动,试问:警车在追赶货车的过程中,两车间的最大距离是多少若警车能达到的最大速度是,达到最大速度后以该速度匀速运动,则警车启动后要多长时间才能追上货车6. 一辆汽车以的速度在平直公路上行驶,制动后要经过才能停下来。
现在该汽车正以的速度在平直公路上行驶,突然发现正前方处停有一辆摩托车,汽车司机经的反应时间后,立即采取制动措施,汽车开始制动的同时摩托车以的加速度加速启动。
求:该汽车制动时的加速度大小;汽车是否会与摩托车相撞?若会相撞,将在汽车制动后何时相撞?若不会相撞,则两车的最近距离是多少?7. 、两车在同一直线上向右匀速运动,车在车前,车的速度大小为,车的速度大小为,如图所示当、两车相距时,车因前方突发情况紧急刹车刹车过程可视为匀减速直线运动,加速度大小为,从此时开始计时,求:车追上车之前,两者相距的最大距离;车追上车所用的时间;8. 如图所示,甲、乙两辆汽车并排沿平直路面向前行驶,两车车顶、两位置都装有蓝牙设备,这两个蓝牙设备在相距以内时能够实现通信,时刻,甲、乙两车刚好位于图示位置,此时甲车的速度为,乙车静止,、的距离为。
从该时刻起乙车以大小为的加速度做匀加速直线运动,当速度达到后保持匀速运动,甲车保持原有速度做匀速直线运动。
求:甲、乙两车第一次通信断开时,乙车的速度大小;甲、乙两车从第一次通信断开到恢复的时间;甲、乙两车能够保持通信的总时间。
9. A、两辆汽车在同一平直公路上同向行驶,在前,速度为。
车在后,速度。
因大雾能见度低,车在距车时,才发现前方的车。
这时车司机立即刹车,但因车辆性能所限需要经过的距离车才能停止。
问:如果需要,最后答案可用分数表示刹车后加速度大小为多少?车若仍按原速前进,请说明两车是否会相撞?若会相撞,将在何时何地相撞?若车司机在刹车的同时发出信号鸣笛和闪灯,车司机在收到信号后立即加速前进忽略信号传播的时间,忽略人、车的反应时间,求车的加速度至少多大,才能避免被追尾。
答案一、多选题(本大题共5小题,共20.0分)1. 在一个大雾天,一辆小汽车以的速度行驶在平直的公路上,突然发现正前方处有一辆大卡车以的速度同方向匀速行驶,汽车司机立即刹车,忽略司机的反应时间,后卡车也开始刹车,从汽车司机开始刹车时计时,两者的图象如图所示,下列说法正确的是( )A. 小汽车与大卡车一定没有追尾B. 由于在减速时大卡车的加速度大小小于小汽车的加速度大小,导致两车在时追尾C. 两车没有追尾,两车最近距离为D. 两车没有追尾,并且两车都停下时相距【答案】AC【解析】【分析】本题考查图象问题及追及相遇问题,图线的斜率表示加速度,图线与坐标轴所围的面积表示位移的大小。
【解答】汽车和大卡车在时若不相遇,以后就不会发生追尾。
汽车在内的位移,大卡车在内位移。
由于,所以小汽车和大卡车一定没有追尾,选项A正确,B错误;C.两车速度相等时,相距最近,为,选项C正确;D.小汽车停下时所走位移,大卡车停下时所走位移,所以两车都停下时相距,选项D错误。
故选AC。
2. 两物体均沿轴正方向从静止开始做匀变速直线运动,时刻两物体同时出发,物体的位置随速率平方的变化关系如图甲所示,物体的位置随运动时间的变化关系如图乙所示,则( )A. 物体的加速度大小为B. 时,两物体相距C. 内物体的平均速度大小为D. 两物体相遇时,物体的速度是物体速度的倍【答案】AD【解析】【分析】由图像,结合匀变速直线运动的位移时间公式和位移速度公式分析可得两物体的初位置和加速度,再结合位移关系、平均速度定义分析即可解答。
【解答】A.对,由,可得,结合图甲有,则物体的加速度大小为有,A正确B.时刻物体的位置坐标为,速度为零,对,由结合图乙知物体的加速度大小为,时刻物体的位置坐标为,速度为零,内,物体的位移大小为,物体的位移大小为,此时两物体相距,B错误;C.时物体的速度为,时物体的速度为,故内物体的平均速度大小为,C错误;D.设两物体相遇的时间为,则有,解得,此时物体的速度大小为,结合选项求出的时的速度可知两物体相遇时,物体的速度是物体速度的倍,D正确。
3. 甲乙两车在一平直道路上同向运动,其图象如图所示,图中和的面积分别为和,初始时,甲车在乙车前方处( )A. 若,两车不会相遇B. 若,两车相遇次C. 若,两车相遇次D. 若,两车相遇次【答案】ABD【解析】【分析】此题是追击与相遇问题,解决此类问题的关键是分析清楚两物体的位移关系.两物体的位移之差等于初始时的距离是两物体相遇的条件。
对于图象问题:、抓住速度图象是速度随时间的变化规律,是物理公式的函数表现形式,分析问题时要做到数学与物理的有机结合,数学为物理所用;、在速度图象中,纵轴截距表示初速度,斜率表示加速度,图象与坐标轴围成的“面积”表示位移,抓住以上特征,灵活分析。
【解答】由图线可知:在时间内,甲车前进了,乙车前进了;A、若,则,则,两车不会相遇,故A正确;B、若,即,在时刻之前,乙车会超过甲车,但甲车速度增加的快,所以甲车还会超过乙车,则两车会相遇次,故B正确;、若,即两车只能相遇一次,故C错误,D正确;故选:。
4. ,两辆汽车从同一地点同时出发沿同一方向做直线运动,它们的速度的平方随位置的变化规律如图所示,下列判断正确的是( )A. 汽车的加速度大小为B. 汽车、在处的速度大小为C. 从开始到汽车停止前,当时、相距最远D. 从开始到汽车停止前,当时、相距最远【答案】BD【解析】解:根据公式可得,根据图象分析,对汽车,有,,则汽车的初速度为,加速度为同理可得,汽车的初速度为,加速度为,故A错误;B、根据公式可得在处的速度大小为,故B正确;、当两者速度相等时,两车的距离最远,即,可得,此时的位移为,故C错误,D正确。
故选:。
先根据公式结合图象的信息求出两汽车的加速度与初速度,结合运动规律进行分析即可正确解答。
本题是数形结合问题,关键是要由图象找出两汽车的加速度与初速度,再结合运动规律分析.二、计算题(本大题共5小题,共50.0分)5. 一辆值勤的警车停在公路边,当警员发现从他旁边以的速度匀速直线行驶的货车有违章行为时,决定前去追赶,经过后警车启动,并以的加速度做匀加速直线运动,试问:警车在追赶货车的过程中,两车间的最大距离是多少若警车能达到的最大速度是,达到最大速度后以该速度匀速运动,则警车启动后要多长时间才能追上货车【答案】解:当时距离最大,解得:此时货车的位移:警车的位移:则两车间的最大距离是:当警车速度达到最大时,经历的时间:这段时间内货车的位移:警车的位移:可知警车还未追上货车,则还需追及时间:则.答:警车在追赶货车的过程中,两车间的最大距离是;警车发动后要才能追上货车.【解析】当两车速度相等时,两车间的距离最大,结合速度时间公式求出速度相等的时间,结合位移公式求出两车间的最大距离;结合位移关系,结合运动学公式求出追及的时间.本题考查运动学中的追及问题,知道速度相等时,两车相距的距离最大;注意警车有最大速度,要判断速度最大时是否追上.6. 一辆汽车以的速度在平直公路上行驶,制动后要经过才能停下来。
现在该汽车正以的速度在平直公路上行驶,突然发现正前方处停有一辆摩托车,汽车司机经的反应时间后,立即采取制动措施,汽车开始制动的同时摩托车以的加速度加速启动。
求:该汽车制动时的加速度大小;汽车是否会与摩托车相撞?若会相撞,将在汽车制动后何时相撞?若不会相撞,则两车的最近距离是多少?【答案】【解答】根据速度位移公式,将题干数据带入可得:,则该汽车制动时的加速度大小为;设经过时间,二者达到共同速度,此时对汽车有:对摩托车有:联立可得:将时间带入可得:根据空间关系可得:故汽车和摩托车不会相撞,最近距离为。
【解析】【分析】本题考查匀变速直线运动中的追击问题,我们在解题时要借助物理草图明确两车的空间关系,其次要抓住速度相等这个关键点。
求解汽车制动的加速度,只需要根据题中条件,由速度位移公式就能得出结果;要判断是否会相撞,要以两车速度相等为节点,汽车经过反应时间内的匀速直线运动和刹车时间内的匀减速直线运动,达到某一共同速度;而摩托车直接做匀加速直线运动达到共同速度,对二者分别用运动学公式求出时间和位移,再结合空间关系求解。
7. 、两车在同一直线上向右匀速运动,车在车前,车的速度大小为,车的速度大小为,如图所示当、两车相距时,车因前方突发情况紧急刹车刹车过程可视为匀减速直线运动,加速度大小为,从此时开始计时,求:车追上车之前,两者相距的最大距离;车追上车所用的时间;【答案】解:当、两车速度相等时,相距最远根据速度关系得:,解得:,根据位移公式得:,,,代入数据解得:;车刹车停止运动所用时间:,所发生位移:,此时:,则:,可见此时车并未追上车,而是在车停止后才追上,之后车运动时间为:,故所求时间为:答:车追上车之前,两者相距的最大距离为;车追上车所用的时间为。
【解析】两车速度相等时相遇前相距最大的临界条件,据此分析求解最大距离即可;根据位移关系分析车追上车所用时间;掌握相遇前两车相距最远的临界条件和相遇的位移关系条件是正确解题的关键。