高二年理科数学期末复习试题(数列)
- 格式:doc
- 大小:600.00 KB
- 文档页数:27
2020-2021学年吉林省延边朝鲜族自治州延吉市高二(下)期末数学试卷(理科)一、选择题(共12小题).1.若&为离散型随机变量,且&〜B(5, §),则其方差。
(0 =()OA.—B. —C. 1D.39 32.下面几种推理过程是演绎推理的是()A.某中学高二有10个班,一班有51人,二班有52人,由此得高二所有班人数都超过50人B.根据等差数列的性质,可以推测等比数列的性质C.由6=3+3, 8 = 3+5, 10=3+7,…,得出结论:一个偶数(大于4)可以写成两个素数的和D.平行四边形对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分3.若函数f(.r)=e x+ax - 1的图象经过点(1, e),则曲线y=f(.r)在点(2, f(2))处的切线的斜率4=(')A. . eB. e+1C. e-D. e2+l4.在一次数学测验后,甲、乙、丙三人对成绩进行预测甲:我的成绩比丙高.乙:我的成绩比丙高.丙:甲的成绩比我和乙的都高.成绩公布后,三人成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序为()A.甲、乙、丙B.乙、丙、甲C.丙、乙、甲D.甲、丙、乙5.六辆汽车排成一纵队,要求甲车和乙车均不排队头或队尾,且正好间隔两辆车,则排法有()A. 48B. 72C. 90D. 1206.某射手射击所得环数X的分布列如表,已知X的数学期望E(X) =8.9,则y的值为()A.0.8B. 0.4C. 0.6D. 0.27.2019年1月28日至2月3日(腊月廿三至腊月廿九)我国迎来春运节前客流高峰,据统计,某区火车站在此期间每日接送旅客人数X (单位:万)近似服从正态分布N (10, 0.82),则估计在此期间,至少有5天该车站日接送旅客超过10万人次的概率为( )A.竺B.二C. 39D.业128 64 64 1288.蟋蟀鸣叫可以说是大自然优美、和谐的音乐,殊不知蟋蟀鸣叫的频率x (每分钟鸣叫的次数)与气温y (单位:°C)存在着较强的线性相关关系.某地观测人员根据如表的观测数据,建立了v关于x的线性回归方程=0.25x+k,A. 33°CB. 34°CC. 35°CD. 35.5°C9.若把单词“error”的字母顺序写错了,则可能出现的错误写法的种数为(A. 17B. 18C. 19D. 2010.设a=lnV2> b旦馨~,5c=ln5,则a, b, c的大小关系为( )A. a>b>cB. a>c>bC. b>a>cD. b>c>a11.用数学的眼光看世界就能发现很多数学之“美” .现代建筑讲究线条感,曲线之美让人称奇.衡量曲线弯曲程度的重要指标是曲率,曲线的曲率定义如下:若/ (x)是f (x) 的导函数,f (-r)是f (x)的导函数,则曲线y=f (.r)在点(x, f (x))处的曲率|f" (x) | _K=A-若曲线f (x) =lnx+x与g (x)=石在(1, 1)处的曲率分别(x)]2)2Ki为Ki, K2,——=( )K2A. —B. —C. 4D. 24 212.设函数/ (x)是奇函数f (x) (x£R)的导函数,当x>0时,(x) < - -f (x),X 且/ (1) <0,则使得(寸-9) f (x) <0成立的工的取值范围( )A. ( -3, 0) U (3, +8)B. ( - oo, - 3)U (3, +8)C. ( - 3, 0) U (0, 3)D. ( - 8, -3)U (0, 3)二. 填空题(共4小题,每小题4分,共16分,请将答案写在答题纸上), 4i ,一一—13.已知复数z= °为虚数单位),z表示z的共貌复数,则z=.14.已知(3x2+3.r - 2) (x-1) 5 = ao+flix+- ■ +OJX1,则«2+«4+«6=.15.从6名男生和4名女生中选出4人去参加一项创新大赛,则下列说法正确的序号是•①如果4人中男生女生各有2人,那么有30种不同的选法;②如果男生中的甲和女生中的乙必须在内,那么有28种不同的选法;③如果男生中的甲和女生中的乙至少要有1人在内,那么有140种不同的选法;④如果4人中必须既有男生又有女生,那么有184种不同的选法.16.已知函数f (x) =lQa2 - 2a[x+3ln (3x) ]+x2+Zn2 (3x),若存在xo使得f (xo)忍*■成立,则实数a的值为 .三、解答题(共6小题,17、18题10分,19、20、21题各12分,22题附加题20分,请写出必要的解答过程)17.已知必七)11二项展开式中,第4项的二项式系数与第3项的二项式系数的比为8:3.(1)求〃的值;(2)求展开式中/项的系数.18.已知函数f (x) =*+〃,曲线y=f (x)在点(1, £)处的切线方程为3x-3y+l=0.(1)求实数m, n的值;(2)令g (x) =f (x) +破2 - 3。
数列求和一、选择题1.若数列{a n}的通项公式是a n=(-1)n(3n-2),则a1+a2+…+a10=( )A. 15B. 12C. -12D. -15【答案】A【解析】∵a n=(-1)n(3n-2),∴a1+a2+…+a10=-1+4-7+10-…-25+28=(-1+4)+(-7+10)+…+(-25+28)=3×5=15.选A.2.(2017·南昌三模)若数列{a n}的通项公式为a n=2n+1,令b n=121na a a+++,则数列{b n}的前n 项和为( )A.12(2)nn++B.32342(1)(2)nn n+-++C.12nn-+D.3234(1)(2)nn n+-++【答案】B 【解析】a1+a2+…+a n=(321)2n n++=n(n+2),所以b n=1111() (2)22n n n n=-++,故T n=1111(1)2212n n+--++=()()323412nn n+-++.选B.3.已知等比数列{a n}中,a2·a8=4a5,等差数列{b n}中,b4+b6=a5,则数列{b n}的前9项和S9等于( )A. 9B. 18C. 36D. 72【答案】B【解析】∵a 2·a 8=4a 5,即25a =4a 5,∴a 5=4, ∵a 5=b 4+b 6=2b 5=4,∴b 5=2. ∴S 9=9b 5=18,故选B.4. 已知{a-n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以Sn 表示{a-n}的前n 项和,则使得Sn 达到最大值的n 是 ( ) A. 21 B. 20C. 19D. 18【答案】B 【解析】试题分析:设{}n a 的公差为d ,由题意得1351136105,235a a a a d a d ++=+=⇒+=①,246113999,333a a a a d a d ++=+=⇒+=②,由①②联立得139,2a d ==-,()()()22139240204002n n n S n n n n -∴=+⨯-=-+=--+,故当20n =时,n S 达到最大值,故选B .考点:等差数列的前n 项和5.各项均为正数的等比数列的前n 项和为S n ,若S n =2,S 30=14,则S 40等于A. 80B. 30C. 26D. 16【答案】C 【解析】设公比为q ,则由条件知01,q q >≠且根据S n =2,S 3n =14得:311(1)(1)2(1),14(2)11n n a q a q q q--=⋅⋅⋅=⋅⋅⋅--;(2)(1)得:32217,1+7,601nn n n n nq q q q q q-=+=+-=-即;解得2,3n n q q ==-(舍去) 故选B6.已知数列2 015,2 016,1,-2 015,-2 016,…,这个数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前2 016项和S 2 016等于( ) A. 2 008 B. 2 010 C. 1 D. 0【答案】D 【解析】由已知得a n =a n -1+a n +1(n ≥2),∴a n +1=a n -a n -1,故数列的前8项依次为2 015,2 016,1,-2 015,-2 016,-1,2 015,2 016.由此可知数列为周期数列,且周期为6,S 6=0.∵2 016=6×336,∴S 2 016=0.选D.7.在等比数列{a n }中,a 1+a 2+…+a n =2n -1(n ∈N *),则21a +22a +…+2n a 等于( ) A. (2n -1)2 B.13(2n-1)2 C. 4n -1D.13(4n-1) 【答案】D 【解析】因为在等比数列{a n }中,a 1+a 2+…+a n =2n -1(n ∈N *),则可知原数列的公比为2,首项为1,那么所求的数列的公比为4,首项为1,因此21a +22a +…+2n a 等于13(4n-1),选D8.(2017·太原三模)已知等比数列{a n }的各项均为不等于1的正数,数列{b n }满足b n =lg a n ,b 3=18,b 6=12,则数列{b n }的前n 项和的最大值为( ) A. 126 B. 130C. 132D. 134【答案】C 【解析】设等比数列{a n }的公比为q (q >0),由题意可知,lg a 3=b 3,lg a 6=b 6.又b 3=18,b 6=12,由a 1q 2=1018,a 1q 5=1012,∴q 3=10-6,即q =10-2,∴a 1=1022.又{a n }为正项等比数列,∴{b n }为等差数列,且公差d =-2,b 1=22,故b n =22+(n -1)×(-2)=-2n +24. ∴数列{b n }的前n 项和S n =22n +(1)2n n -×(-2)=-n 2+23n =-23()2n -2+5294.又n ∈N *,故n =11或12时,(S n )max =132. 选C.点睛:数列是特殊的函数,求等差数列前n 项和最值,可利用二次函数的性质,即对称轴与定义区间位置关系进行确定,只不过要注意数列定义域为正整数集.二、填空题9.设数列{a n }满足a 1=1,且a n+1﹣a n =n+1(n ∈N *),则数列{1na }的前10项的和为__. 【答案】2011【解析】试题分析:∵数列满足,且,∴当时,.当时,上式也成立,∴.∴.∴数列的前项的和11111212231n S n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-++- ⎪ ⎪ ⎪⎢⎥+⎝⎭⎝⎭⎝⎭⎣⎦122111n n n ⎛⎫=-=⎪++⎝⎭.∴数列的前项的和为.故答案为:.考点:(1)数列递推式;(2)数列求和. 【此处有视频,请去附件查看】10.已知{}n a 为等差数列,n S 为其前n 项和,若16a =,350a a +=,则6=S _______. 【答案】6 【解析】试题分析:因为{}n a 等差数列,所以35420a a a +==,即40a =,又4136a a d -==-,所以2d =-,所以616156615(2)6S a d =+=⨯+⨯-=.故答案6.【考点】等差数列的基本性质 【名师点睛】在等差数列五个基本量,,,,中,已知其中三个量,可以根据已知条件,结合等差数列的通项公式、前项和公式列出关于基本量的方程(组)来求余下的两个量,计算时须注意整体代换思想及方程思想的应用. 【此处有视频,请去附件查看】11.已知数列{a n }的前n 项和是S n ,且S n =1-12a n ,b n =-log 324na ,数列11{}n n b b +的前n 项和为T n ,则T n =________.【答案】4(1)nn +【解析】 因为S n =1-12a n ,S n -1=1-12a n -1(n ≥2),所以a n =S n -S n -1=12a n -1-12a n ,所以a n =13a n -1,当n =1时,S 1=1-12a 1,a 1=23,所以a n =23·1()3n -1,b n =-log 324na =-log 33-2n =2n ,所以11n n b b +=11111()4(1)41n n n n ⋅=-++, 所以T n =11111111(1)(1)42231414(1)nn n n n -+-++-=-=+++ 点睛:裂项相消法是指将数列的通项分成两个式子的代数和的形式,然后通过累加抵消中间若干项的方法,裂项相消法适用于形如1n n c a a +⎧⎫⎨⎬⎩⎭(其中{}n a 是各项均不为零的等差数列,c 为常数)的数列. 裂项相消法求和,常见的有相邻两项的裂项求和(如本例),还有一类隔一项的裂项求和,如1(1)(3)n n ++或1(2)n n +.三、解答题12.已知数列{a n }的首项a 1=1,a n +1=42nn a a + (n ∈N *). (1)证明:数列11{}2n a -是等比数列; (2)设b n =nna ,求数列{b n }的前n 项和S n .【答案】(1)见解析(2)2(1)224n n n n ++-+ 【解析】试题分析:(1)根据等比数列定义,代入条件化简即得111211122n n a a +-=- (2)先求出1n a ,再利用分组求和以及错位相减法得数列{b n }的前n 项和S n .试题解析:解:(1)证明:∵a n +1=,∴==+.∴-=.又∵a 1=1,∴-=,∴数列是以为首项,为公比的等比数列.(2)解:由(1)知-=·n -1=,即=+,∴b n ==+. 设T n =+++…+,① 则T n =++…++,②①-②,得T n =++…+-=1--,∴T n =2--.又∵ (1+2+3+…+n )=,∴数列{b n }的前n 项和S n =2-+.点睛:用错位相减法求和应注意的问题(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“n S ”与“n qS ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“n n S qS -”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.。
高二(上)期末数学试卷(理科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题“∀n∈N*,f(n)∉N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.且f(n0)>n0D.或f(n0)>n02.(5分)若复数=2﹣i其中a,b是实数,则复数a+bi在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限3.(5分)已知a,b,c均为实数,则“b2=ac”是“a,b,c构成等比数列”的()A.必要不充分条件 B.充分不必要条件C.充要条件D.既不充分也不必要条件4.(5分)抛物线x2=y的准线方程是()A.y=1 B.y=﹣1 C.y=D.y=﹣5.(5分)在等差数列{a n}中,a1=1,a3+a4+a5+a6=20,则a8=()A.7 B.8 C.9 D.106.(5分)已知△ABC的两个顶点A(5,0),B(﹣5,0),周长为22,则顶点C 的轨迹方程是()A.B.C.D.7.(5分)函数,则()A.x=e为函数f(x)的极大值点B.x=e为函数f(x)的极小值点C.为函数f(x)的极大值点D.为函数f(x)的极小值点8.(5分)如图所示,在正方体ABCD﹣A1B1C1D1中,已知M,N分别是BD和AD 的中点,则B1M与D1N所成角的余弦值为()A.B.C.D.9.(5分)已知数列{a n},a1=1,,则a10的值为()A.5 B.C.D.10.(5分)若函数y=x3+x2+mx+1是R上的单调函数,则实数m的取值范围是()A.(,+∞)B.(﹣∞,]C.[,+∞)D.(﹣∞,)11.(5分)已知x,y∈(0,+∞),且满足,那么x+4y的最小值为()A.B.C.D.12.(5分)如图,F1,F2是双曲线C:﹣=1(a>0,b>0)的左、右两个焦点.若直线y=x与双曲线C交于P、Q两点,且四边形PF1QF2为矩形,则双曲线的离心率为()A.2+B.2+C.D.二、填空题(本大题共4小题,每小题5分,满分20分,将答案填在答题纸上)13.(5分)若,则=.14.(5分)=.15.(5分)椭圆C的中心在坐标原点,左、右焦点F1,F2在x轴上,已知A,B 分别是椭圆的上顶点和右顶点,P是椭圆上一点,且PF1⊥x轴,PF2∥AB,则此椭圆的离心率为.16.(5分)已知f(x,y)=ax+by,若1≤f(1,1)≤2且﹣1≤f(1,﹣1)≤1,则f(2,1)的取值范围为.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)设数列{a n}满足a1=1,a n+1=3a n,n∈N+.(Ⅰ)求{a n}的通项公式及前n项和S n;(Ⅱ)已知{b n}是等差数列,且满足b1=a2,b3=a1+a2+a3,求数列{b n}的通项公式.18.(12分)已知抛物线y2=2px(p>0),焦点对准线的距离为4,过点P(1,﹣1)的直线交抛物线于A,B两点.(1)求抛物线的方程;(2)如果点P恰是线段AB的中点,求直线AB的方程.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=2,AB=2.(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)求锐二面角D﹣A1C﹣E的余弦值.20.(12分)在圆x2+y2=4上任取一点P,点P在x轴的正射影为点Q,当点P 在圆上运动时,动点M满足,动点M形成的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)点A(2,0)在曲线C上,过点(1,0)的直线l交曲线C于B,D两点,设直线AB斜率为k1,直线AD斜率为k2,求证:k1k2为定值.21.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,AB=2AD=2,,PD⊥AD,PD⊥DC.(Ⅰ)证明:平面PBC⊥平面PBD;(Ⅱ)若二面角P﹣BC﹣D为,求AP与平面PBC所成角的正弦值.22.(12分)设函数f(x)=x2e x.(1)求曲线f(x)在点(1,e)处的切线方程;(2)若f(x)<ax对x∈(﹣∞,0)恒成立,求a的取值范围;(3)求整数n的值,使函数F(x)=f(x)﹣在区间(n,n+1)上有零点.2017-2018学年江西省赣州市高二(上)期末数学试卷(理科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)命题“∀n∈N*,f(n)∉N*且f(n)≤n”的否定形式是()A.∀n∈N*,f(n)∉N*且f(n)>nB.∀n∈N*,f(n)∉N*或f(n)>nC.且f(n0)>n0D.或f(n0)>n0【解答】解:因为全称命题的否定是特称命题,所以,命题“∀n∈N*,f(n)∉N*且f(n)≤n”的否定形式是:或f(n0)>n0.故选:D.2.(5分)若复数=2﹣i其中a,b是实数,则复数a+bi在复平面内所对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:复数=2﹣i,其中a,b是实数,∴a+i=(2﹣i)(b﹣i)=2b﹣1﹣(2+b)i,∴,解得b=﹣3,a=﹣7.则复数a+bi在复平面内所对应的点(﹣7,﹣3)位于第三象限.故选:C.3.(5分)已知a,b,c均为实数,则“b2=ac”是“a,b,c构成等比数列”的()A.必要不充分条件 B.充分不必要条件C.充要条件D.既不充分也不必要条件【解答】解:由“b2=ac”推不出“a,b,c构成等比数列,比如a=b=c=0,反之成立,故选:A.4.(5分)抛物线x2=y的准线方程是()A.y=1 B.y=﹣1 C.y=D.y=﹣【解答】解:因为抛物线的标准方程为:x2=y,焦点在y轴上;所以:2p=,即p=,所以:=,所以准线方程y=﹣.故选:D.5.(5分)在等差数列{a n}中,a1=1,a3+a4+a5+a6=20,则a8=()A.7 B.8 C.9 D.10【解答】解:设公差为d,则1+2d+1+3d+1+4d+1+5d=20,∴d=,∴a8=1+7d=9,故选C.6.(5分)已知△ABC的两个顶点A(5,0),B(﹣5,0),周长为22,则顶点C 的轨迹方程是()A.B.C.D.【解答】解:△ABC的两个顶点A(5,0),B(﹣5,0),周长为22,则顶点C 的轨迹是椭圆,可知c=5,2a=12,解得a=6,c=.则顶点C的轨迹方程是:.故选:B.7.(5分)函数,则()A.x=e为函数f(x)的极大值点B.x=e为函数f(x)的极小值点C.为函数f(x)的极大值点D.为函数f(x)的极小值点【解答】解:的定义域(0,+∞),求导f′(x)=,令f′(x)=>0,解得:0<x<e,令f′(x)=<0,解得:x>e,∴函数在(0,e)上递增,在(e,+∞)上递减,∴当x=e时,函数有极大值,故选A.8.(5分)如图所示,在正方体ABCD﹣A1B1C1D1中,已知M,N分别是BD和AD 的中点,则B1M与D1N所成角的余弦值为()A.B.C.D.【解答】解:建立如图所示的坐标系,设正方体的棱长为2,则B1(2,2,2),M(1,1,0),D1(0,0,2),N(1,0,0),∴=(﹣1,﹣1,﹣2),=(1,0,﹣2),∴B1M与D1N所成角的余弦值为||=,故选:A.9.(5分)已知数列{a n},a1=1,,则a10的值为()A.5 B.C.D.【解答】解:∵数列{a n},a1=1,,∴=,=,=,由此猜想a n=.下面利用数学归纳法进行证明:①,成立;②假设a k=,则==,成立,∴,∴a10=.故选:D.10.(5分)若函数y=x3+x2+mx+1是R上的单调函数,则实数m的取值范围是()A.(,+∞)B.(﹣∞,]C.[,+∞)D.(﹣∞,)【解答】解:若函数y=x3+x2+mx+1是R上的单调函数,只需y′=3x2+2x+m≥0恒成立,即△=4﹣12m≤0,∴m≥.故选C.11.(5分)已知x,y∈(0,+∞),且满足,那么x+4y的最小值为()A.B.C.D.【解答】解:∵x,y∈(0,+∞),且满足,那么x+4y=(x+4y)=≥==+,当且仅当x=2=时取等号.故选:C.12.(5分)如图,F1,F2是双曲线C:﹣=1(a>0,b>0)的左、右两个焦点.若直线y=x与双曲线C交于P、Q两点,且四边形PF1QF2为矩形,则双曲线的离心率为()A.2+B.2+C.D.【解答】解:由题意,矩形的对角线长相等,y=x代入﹣=1,可得x=±,∴•=c,∴2a2b2=(b2﹣a2)c2,∴2a2(c2﹣a2)=(c2﹣2a2)c2,∴2(e2﹣1)=e4﹣2e2,∴e4﹣4e2+2=0,∵e>1,∴e2=2+,∴e=.故选:C.二、填空题(本大题共4小题,每小题5分,满分20分,将答案填在答题纸上)13.(5分)若,则=﹣7.【解答】解:,则=(﹣2,﹣1,5)•(7,﹣2,1)=﹣14+2+5=﹣7;故答案为:﹣7.14.(5分)=1.【解答】解:∫1e dx=lnx|1e=lne﹣ln1=1,故答案为115.(5分)椭圆C的中心在坐标原点,左、右焦点F1,F2在x轴上,已知A,B 分别是椭圆的上顶点和右顶点,P是椭圆上一点,且PF1⊥x轴,PF2∥AB,则此椭圆的离心率为.【解答】解:如图所示,把x=﹣c代入椭圆标准方程:+=1(a>b>0).则=1,解得y=±.取P,又A(0,b),B(a,0),F2(c,0),∴k AB=﹣,==﹣.∵PF2∥AB,∴﹣=﹣,化为:b=2c.∴4c2=b2=a2﹣c2,即a2=5c2,解得a=c,∴e==.故答案为:.16.(5分)已知f(x,y)=ax+by,若1≤f(1,1)≤2且﹣1≤f(1,﹣1)≤1,则f(2,1)的取值范围为.【解答】解:f(x,y)=ax+by,若1≤f(1,1)≤2且﹣1≤f(1,﹣1)≤1,可得,画出不等式组的可行域如图:则f(2,1)=2a+b,当直线z=2a+b经过A时取得最小值,经过B时取得最大值,由可得B(,),f(2,1)=2a+b的最小值为:!,最大值为:.故答案为:.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(10分)设数列{a n}满足a1=1,a n+1=3a n,n∈N+.(Ⅰ)求{a n}的通项公式及前n项和S n;(Ⅱ)已知{b n}是等差数列,且满足b1=a2,b3=a1+a2+a3,求数列{b n}的通项公式.【解答】解:(Ⅰ)由题设可知{a n}是首项为1,公比为3的等比数列,…(2分)所以,…(4分)…(6分)(Ⅱ)设数列{b n}的公差为d∵b1=a2=3,b3=a1+a2+a3=S3=13,∴b3﹣b1=10=2d,∴d=5,…(8分)∴b n=5n﹣2…(10分)18.(12分)已知抛物线y2=2px(p>0),焦点对准线的距离为4,过点P(1,﹣1)的直线交抛物线于A,B两点.(1)求抛物线的方程;(2)如果点P恰是线段AB的中点,求直线AB的方程.【解答】解:(1)由题设焦点对准线的距离为4,可知p=4,所以抛物线方程为y2=8x;(2)方法一:设A(x1,y1),B(x2,y2),则x1+x2=2,y1+y2=﹣2,又,相减整理得,所以直线AB的方程是y=﹣4(x﹣1)﹣1,即4x+y﹣3=0.方法二:由题设可知直线AB的斜率存在,设直线AB的方程为y=k(x﹣1)﹣1,A(x1,y1),B(x2,y2),由,消去x,得ky2﹣8y﹣8k﹣8=0,易知,又y1+y2=﹣2所以,所以直线AB的方程是y=﹣4(x﹣1)﹣1,即4x+y﹣3=0.19.(12分)如图,直三棱柱ABC﹣A1B1C1中,D,E分别是AB,BB1的中点,AA1=AC=CB=2,AB=2.(Ⅰ)证明:BC1∥平面A1CD;(Ⅱ)求锐二面角D﹣A1C﹣E的余弦值.【解答】解:(Ⅰ)连结AC1,交A1C于点O,连结DO,则O为AC1的中点,因为D为AB的中点,所以OD∥BC1,又因为OD⊂平面A1CD,BC1⊄平面A1CD,∴BC1∥平面A1CD…(4分)(Ⅱ)由,可知AC⊥BC,以C为坐标原点,方向为x 轴正方向,方向为y轴正方向,方向为z轴正方向,建立空间直角坐标系Cxyz,则D(1,1,0),E(0,2,1),A1(2,0,2),,,设是平面A1CD的法向量,则即可取.…(6分)同理,设是平面A1CE的法向量,则,可取.…(8分)从而…(10分)所以锐二面角D﹣A1C﹣E的余弦值为…(12分)20.(12分)在圆x2+y2=4上任取一点P,点P在x轴的正射影为点Q,当点P 在圆上运动时,动点M满足,动点M形成的轨迹为曲线C.(Ⅰ)求曲线C的方程;(Ⅱ)点A(2,0)在曲线C上,过点(1,0)的直线l交曲线C于B,D两点,设直线AB斜率为k1,直线AD斜率为k2,求证:k1k2为定值.【解答】解:(Ⅰ)设点M的坐标为(x,y),则由题意知点P的坐标为(x,2y)因为P在圆O:x2+y2=4,所以x2+4y2=4故所求动点M的轨迹方程为.…(4分)(Ⅱ)方法一:由题意知直线l斜率不为0,设直线l方程为x=my+1,B(x1,y1),D(x2,y2)由消去x,得(m2+4)y2+2my﹣3=0,易知△=16m2+48>0,得…(8分)=.所以为定值…(12分)方法二:(ⅰ)当直线l斜率不存在时,所以…(6分)(ⅱ)当直线l斜率存在时,设直线l方程为y=k(x﹣1),B(x1,y1),D(x2,y2)由消去y,得(1+4k2)x2﹣8k2x+4k2﹣4=0,易知△=48k2+16>0,…(8分)=.所以为定值…(12分)21.(12分)如图,四棱锥P﹣ABCD中,底面ABCD为平行四边形,AB=2AD=2,,PD⊥AD,PD⊥DC.(Ⅰ)证明:平面PBC⊥平面PBD;(Ⅱ)若二面角P﹣BC﹣D为,求AP与平面PBC所成角的正弦值.【解答】证明:(Ⅰ)∵PD⊥AD,PD⊥CDAD∩CD=D,AD⊂平面ABCDCD⊂平面ABCD∴PD⊥平面ABCD,BC⊂平面ABCD∴PD⊥BC…(2分)又∴又∴,∠ADB=90°,AD⊥BD,又AD∥BC∴BC⊥BD…(4分)又∵PD∩BD=D,BD⊂平面PBD,PD⊂平面PBD∴BC⊥平面PBD而BC⊂平面PBC,∴平面PBC⊥平面PBD…(6分)解:(Ⅱ)由(Ⅰ)所证,BC⊥平面PBD∴∠PBD即为二面角P﹣BC﹣D的平面角,即∠PBD=而,所以PD=1…(8分)分别以DA、DB、DP为x轴、y轴、z轴建立空间直角坐标系.则A(1,0,0),,,P(0,0,1)∴,=(﹣1,0,0),,设平面PBC的法向量为,则,即,取y=1,得…(10分)∴AP与平面PBC所成角的正弦值为:.…(12分)22.(12分)设函数f(x)=x2e x.(1)求曲线f(x)在点(1,e)处的切线方程;(2)若f(x)<ax对x∈(﹣∞,0)恒成立,求a的取值范围;(3)求整数n的值,使函数F(x)=f(x)﹣在区间(n,n+1)上有零点.【解答】解:(1)f'(x)=(x2+2x)e x,∴f'(1)=3e,∴所求切线方程为y﹣e=3e(x﹣1),即y=3ex﹣2e;(2)∵f(x)<ax,对x∈(﹣∞,0)恒成立,∴,设g(x)=xe x,g'(x)=(x+1)e x,令g'(x)>0,得x>﹣1,令g'(x)<0得x<﹣1,∴g(x)在(﹣∞,﹣1)上递减,在(﹣1,0)上递增,∴,∴;(3)令F(x)=0,得,当x<0时,,∴F(x)的零点在(0,+∞)上,令f'(x)>0,得x>0或x<﹣2,∴f(x)在(0,+∞)上递增,又在(0,+∞)上递减,∴方程仅有一解x0,且x0∈(n,n+1),n∈Z,∵,∴由零点存在的条件可得,则n=0.。
高二数学(理)期末测试(一)命题人: 审核: 时间:2013-6-6第Ⅰ卷(选择题 共60分)一.选择题(本大题共12个小题,每小题5分,共60分.在每个小题的四个选项中,只有一项是符合题目要求的.) 1.复数13)31(2-+i i 的值是 ( )A .2B .21C .21-D .2- 2.)('0x f =0是可导函数)(x f 在点0x x =处取极值的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.如果复数Z ai Z =+-<322满足条件||,那么实数a 的取值范围是 ( )A .)22,22(-B .(,)-22C .(,)-11D .(,)-334.已知(p x x-22)6的展开式中,不含x 的项是2720,那么正数p 的值是 ( )A . 1B .2C .3D .45.如果654321,,,,,a a a a a a 的方差为3,那么2)3(1-a .2)3(2-a . 2)3(3-a .2)3(4-a .2)3(5-a .2)3(6-a 的方差是( )A .0B .3C .6D .126.在实验室进行的一项物理实验中,要先后实施6个程序,其中程序A 只能出现在第一或最后一步, 程序B 和C 在实施时必须相邻,则实验顺序的编排方法共有( ) A . 34种 B .48种 C .96种 D .144种 7.函数22()()x a y x a b+=++的图象如右图所示,则 ( )A .(0,1),(0,1)a b ∈∈B .(0,1),(1,)a b ∈∈+∞C .(1,0),(1,)a b ∈-∈+∞D .(1,0),(0,1)a b ∈-∈8.有一排7只发光二级管,每只二级管点亮时可发出红光或绿光,若每次恰有3只二级管点亮,但相邻的两只二级管不能同时点亮,根据这三只点亮的二级管的不同位置或不同颜色来表示不同的信息,则这排二级管能表示的信息种数共有 ( )A .10B .48C .60D .809.设随机变量~(0,1)N ξ,记)()(x P x <=Φξ,则(11)P ξ-<<等于 ( )A .2(1)1Φ-B .2(1)1Φ--C .(1)(1)2Φ+Φ-D .(1)(1)Φ+Φ-10.把语文、数学、物理、历史、外语这五门课程安排在一天的五节课里,如果数学必须比历史先上,则不同的排法有 ( ) A .48 B .24 C .60 D .120 11. 口袋里放有大小相同的2个红球和1个白球,有 放回的每次模取一个球,定义数列{}n a :⎩⎨⎧-=次摸取白球第次摸取红球第n n a n 11 如果n S 为数列{}n a 的前n 项之和,那么37=S 的概率为( )A .729224 B .72928C .238735D .7528 12.直线42+=x y 与抛物线12+=x y 所围成封闭图形的面积是A .310 B .316 C .332 D .335第Ⅱ卷(非选择题满分90)二、填空题:(本题共4小题,每小题4分,共16分)13.设命题p :|4x -3|≤1; q :2(21)(1)x a x a a -+++≤0.若﹁ p 是﹁ q 的必要而不充分的条件,则实数a 的取值范围是 .14.已知奇函数)(x f 满足)()2(x f x f -=+,且当)1,0(∈x 时,x x f 2)(=,则)27(f 的值为______.15.如图,把数列{}2n 中的所有项按照从小到大,从左到右的顺序写成如图所示的数表,且第k 行有12k -个数.若第k 行从左边起的第s 个数记为(,)k s ,则2010这个数可记为 .16.已知函数)0(1)1(3)(223>+-+-=k k x k kx x f ,若)(x f 的单调减区间是 (0,4),则在曲线)(x f y =的切线中,斜率最小的切线方程是________________.高二数学(理)期末测试(一)班级:________________ 姓名:________________ 得分:________________13、____________14、____________15、___________16、____________ 三、解答题17.(12分)已知二次函数2()f x ax x =+,若对任意12,x x R ∈,恒有12122()()()2x x f f x f x +≤+成立,不等式()0f x <的解集为A (Ⅰ)求集合A ; (Ⅱ)设集合{}4,B x x a =+<,若集合B 是集合A 的子集,求a 的取值范围18.(12分)已知(41x +3x 2)n展开式中的倒数第三项的系数为45,求:(1)含x 3的项; (2)系数最大的项.19.(本小题满分12分) 某大学开设甲、乙、丙三门选修课,学生是否选修哪门课互不影响. 已知某学生只选修甲的概率为0.08,只选修甲和乙的概率是0.12,至少选修一门的概率是0.88,用ξ表示该学生选修的课程门数和没有选修的课程门数的乘积.(Ⅰ)记“函数x x x f ξ+=2)(为R 上的偶函数”为事件A ,求事件A 的概率; (Ⅱ)求ξ的分布列和数学期望.20.(12分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花园AMPN ,要求B 在AM 上,D 在AN 上,且对角线MN 过C 点,|AB |=3米,|AD |=2米, (I )要使矩形AMPN 的面积大于32平方米,则AN 的长应在什么范围内?(II ) 若AN 的长度不少于6米,则当AM 、AN 的长度 是多少时,矩形AMPN 的面积最小?并求出最小面积.A B CD M NP21. (12分).已知()1)f n n N *=++∈L ,()1)()g n n N *=∈. (1)当n=1,2,3时,分别比较()f n 与()g n 的大小(直接给出结论); (2)由(1)猜想()f n 与()g n 的大小关系,并证明你的结论. .22.(14分)设函数2132()x f x x e ax bx -=++,已知2x =-和1x =为()f x 的极值点.(Ⅰ)求a 和b 的值; (Ⅱ)讨论()f x 的单调性; (Ⅲ)设322()3g x x x =-,试比较()f x 与()g x 的大小.参考答案一、选择题 ABDCD C D DAC BC 二、填空题13.[0,12] 14.2- 15.(10,494) 16.1280x y +-= 三、解答题17.解:(Ⅰ)对任意12,x x R ∈,有1212()()2()2x x f x f x f ++-2121()02a x x =-≥……………………3分 要使上式恒成立,所以0a ≥由2()f x ax x =+是二次函数知0a ≠故0a >……………………4分由21()()0f x ax x ax x a=+=+<所以不等式()0f x <的解集为1(,0)A a=-……………………6分(Ⅱ)解得(4,4)B a a =---,……………………8分 B A ⊆ 4014a a a -≤⎧⎪∴⎨--≥-⎪⎩………………………………………………10分解得02a <≤-2分18.解:(1)由题设知2245,45,10.n n n C C n -==∴=即21113010363341211010710433101130()(),3,6,12210.r r rrr r r T C x x C xr x T C xC x x ---+-=⋅======令得含的项为 (2)系数最大的项为中间项,即55302551212610252.T C xx -==19.解:设该学生选修甲、乙、丙的概率分别为x 、y 、z依题意得⎪⎩⎪⎨⎧===⎪⎩⎪⎨⎧=----=-=--5.06.04.0,88.0)1)(1)(1(1,12.0)1(,08.0)1)(1(z y x z y x z xy z y x 解得(I )若函数x x x f ξ+=2)(为R 上的偶函数,则ξ=0当ξ=0时,表示该学生选修三门功课或三门功课都没选.)1)(1)(1()0()(z y x xyz P A P ---+===∴ξ=0.4×0.5×0.6+(1-0.4)(1-0.5)(1-0.6)=0.24 ∴事件A 的概率为0.24(II )依题意知ξ=0.2则ξ的分布列为∴ξ的数学期望为E ξ=0×0.24+2×0.76=1.5220.解:设AN 的长为x 米(x >2) ∵||||||||DN DC AN AM =,∴|AM |=232x x - ∴S AMPN =|AN |•|AM |=232x x -(I )由S AMPN > 32 得 232x x - > 32 ,∵x >2,∴2332640x x -+>,即(3x -8)(x -8)> 0 ∴8283x x <<> 或即AN 长的取值范围是8(2)(8)3∞ ,,+(II ) 令y =232xx -,则y ′=2226(2)334)(2)(2)x x x x x x x ---=--(∴当x > 4,y ′> 0,即函数y =232x x -在(4,+∞)上单调递增,∴函数y =232xx -在[6,+∞]上也单调递增。
B . 3 2.在正项等比数列{a }中,已知 a 4 = 2 , a = ,则 a 5 的值为( 8= 2 , a = ,可得 8 q 4 = 8 = ,又因为 q > 0 ,所以 q = 1 2 2127B .35063C .28051D . 3502第 7 单元 数列(基础篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知等差数列{a n }的前 n 项和为 S n ,若 a 1=12,S 5=90,则等差数列{a n }公差 d =()A .2【答案】C2 C .3D .4【解析】∵a =12,S =90,∴ 5 ⨯12 + 1 5 5 ⨯ 4 2d = 90 ,解得 d=3,故选 C .n 8 1 )1 1 A . B . - C . -1 D .14 4【答案】D【解析】由题意,正项等比数列{a }中,且 a n 48 1 a 1 a 16 41,则 a = a ⋅ q = 2 ⨯ = 1 ,故选 D .5 43.在等差数列{a n}中, a 5+ a = 40 ,则 a + a + a = ( ) 13 8 9 10A .72B .60C .48D .36【答案】B【解析】根据等差数列的性质可知: a 5 + a 13 = 40 ⇒ 2a 9 = 40 ⇒ a 9 = 20 ,a + a + a = 2a + a = 3a = 60 ,故本题选 B .8 9109994.中国古代数学名著《张丘建算经》中记载:“今有马行转迟,次日减半,疾七日,行七百里”.其大意:现有一匹马行走的速度逐渐变慢,每天走的里程数是前一天的一半,连续走了7 天,共走了 700 里,则这匹马第 7 天所走的路程等于()A .700里里 里【答案】A127里【解析】设马每天所走的路程是 a 1, a 2 ,.....a 7 ,是公比为1的等比数列,a 1 - ( )7 ⎪a = a q 6= 7005.已知等差数列{a n } 的前 n 项和 S n 有最大值,且 a=10(a +a )2= 5(a + a ) = 5(a + a ) > 0 , S =2 = 11a < 0 , (a + 2d - 1)2 = (a + d - 1)(a + 4d - 1) ⎩ d = 2这些项的和为 700, S = 7 ⎛ 1 ⎫ 1 ⎝ 2 ⎭1 - 12 = 700 ⇒ a =1 64 ⨯ 700 127 ,7 1 127 ,故答案为 A .a 5< -1 ,则满足 S 6n> 0 的最大正整数 n 的值为()A .6B .7C .10D .12【答案】C【解析】设等差数列{a n } 的公差为 d ,因为等差数列{a n } 的前 n 项和 S n 有最大值,所以 d < 0 ,a又 a 5 < -1 ,所以 a 5 > 0 , a 6 < 0 ,且 a 5 + a 6 > 0 ,6 所以 S1 101 10 5 6 11 所以满足 S n > 0 的最大正整数 n 的值为 10.11(a + a )1 1166.已知等差数列{a n}的公差不为零, Sn为其前 n 项和, S 3 = 9 ,且 a 2 - 1 , a 3 - 1, a 5 - 1构成等比数列,则 S 5 = ( )A .15B . -15C .30D .25【答案】D【解析】设等差数列{a n}的公差为 d (d ≠ 0),⎧⎪3a + 3d = 9⎧a = 1 由题意 ⎨ 1 ,解得 ⎨ 1 ⎪⎩ 1 1 1.∴ S = 5 ⨯1 +5 5 ⨯ 4 ⨯ 22 = 25 .故选 D .7.在等差数列{a n } 中, a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,则数列{a n } 的前 11 项和等于(A .66B .132C . -66D . -132【答案】D)S = 11⨯ (a + a ) 2 2 2 = 15 ,解得 n = 5 ,( )nC . a = 3n -1D . a =3n【解析】因为 a 3 , a 9 是方程 x 2 + 24 x + 12 = 0 的两根,所以 a 3 + a 9 = -24 ,又 a 3 + a 9 = -24 = 2a 6 ,所以 a 6 = -12 ,11⨯ 2a1 11 = 6 = -132 ,故选 D . 118.我国南宋数学家杨辉 1261 年所著的《详解九章算法》一书里出现了如图所示的表,即杨辉三角,这是数学史上的一个伟大成就,在“杨辉三角”中,第n 行的所有数字之和为 2n -1 ,若去除所有为 1 的项,依次构成数列 2,3,3,4,6,4,5,10,10,5,…,则此数列的前 15 项和为()A .110B .114C .124D .125【答案】B【解析】由题意, n 次二项式系数对应的杨辉三角形的第 n +1行, 令 x = 1 ,可得二项展开式的二项式系数的和 2n ,其中第 1 行为 2 0 ,第 2 行为 21 ,第 3 行为 22 ,L L 以此类推,即每一行的数字之和构成首项为 1,公比为 2 的对边数列,则杨辉三角形中前 n 行的数字之和为 S = n 1- 2n1- 2 = 2n - 1,若除去所有为 1 的项,则剩下的每一行的数字的个数为1,2,3, 4,L ,可以看成构成一个首项为 1,公差为 2 的等差数列,则T =n n (n + 1)2 ,令 n (n + 1)所以前 15 项的和表示前 7 行的数列之和,减去所有的 1,即 27 - 1 - 13 = 114 ,即前 15 项的数字之和为 114,故选 B .9.已知数列{a }的前 n 项和为 S nn,满足 2S n =3a n -1 ,则通项公式 a n 等于()A . a = 2n- 1n【答案】CB . a= 2nn n: , + , + + , + + + , ,那么数列 {b }= ⎧⎨ 1 ⎩ a an n +1 ⎭n + 1 ⎭C . 4 ⨯ ⎝ 2 n + 1 ⎭D .⎝ 1 + 2 + ⋅⋅⋅ + n n2 a an (n + 1) ⎝ n n + 1 ⎭ = = = 4 ⨯ - ⎪ , ∴ S = 4 ⨯ 1 - + - + - + ⋅⋅⋅ + - = 4 ⨯ 1 - ⎪ 2 2 3 3 4 n n + 1 ⎭ ⎝ ⎝⎪ , 1 1 ⎫【解析】当 n = 1 时, 2S 1 = 3a 1 -1 ,∴ a 1 = 1 ,当 n ≥ 2 且 n ∈ N * 时, 2S n -1 = 3a n -1 - 1 ,则 2S n - 2Sn -1 = 2a n = 3a n - 1 - 3a n -1 + 1 = 3a n - 3a n -1 ,即 a n = 3an -1,∴ 数列 {a }是以1 为首项, 3 为公比的等比数列∴ a nn= 3n -1 ,本题正确选项 C . 10.已知数列 满足,且 ,则( )A .B .C .D .【答案】B【解析】利用排除法,因为,当当当当时,时,时,时, ,排除 A ;,B 符合题意;,排除 C ;,排除 D ,故选 B .11.已知数列为()1 12 1 23 1 2 34 2 3 3 4 4 45 5 5 5⋯ n ⎫ ⎬ 前 项和A .1 - 1 ⎛ n + 1B . 4 ⨯ 1 - 1 ⎫ ⎛ 1 ⎪ - 1 ⎫⎪1 1-2 n + 1【答案】B【解析】由题意可知: a =nn (n + 1)= = , n + 1 n + 1 2∴ b = 1n n n +11 4 ⎛ 1 1 ⎫ n n + 1 ⋅2 2⎛ 1 1 1 1 1 ⎛ n本题正确选项 B .1 ⎫n + 1 ⎭12.已知数列{a }满足递推关系: a , a = ,则 a 2017= (12016B . 12018D . 1=a 2 -= 1 . ⎩ a∴ 1=1}满足 a 2 q ,可设三数为 , a , aq ,可得 ⎪⎨ a⎪ q 求出 ⎨ ,公比 q 的值为 1.=3an n +1 = a 1 n a + 12 n)A .12017C .12019【答案】C【解析】∵ ana + 1 n1, a = ,∴ 1 1 1 a a n +1 n⎧ 1 ⎫∴数列 ⎨ ⎬ 是等差数列,首项为 2,公差为 1.n ⎭a2017= 2 + 2016 = 2018 ,则 a2018 .故选 C .第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知等比数列{a n 1 = 12 ,且 a 2a 4 = 4(a3 - 1) ,则 a 5 = _______.【答案】8【解析】∵ a 2a 4 = 4(a 3 - 1) ,∴ a 3 = 4(a 3 -1) ,则 a 3 = 2 ,∴ a = 5 a 2 3 = a122 1 2= 8 ,故答案为 8.14.若三数成等比数列,其积为 8,首末两数之和为 4,则公比 q 的值为_______.【答案】1【解析】三数成等比数列,设公比为⎧a = 2⎩ q = 1⎧ a3 = 8 a q + aq =4 ⎩,15.在数列 {an}中,a 1= 1 , an 3 + a n(n ∈ N *)猜想数列的通项公式为________.=3a4 3 + a 53 + a 6 3a 3a 32 数列的通项公式为 a = 3n + 2 n + 2+ = (m + n) + ⎪ = 10 + + ⎪ ≥ 10 + 2 ⋅ ⎪⎪ = 2 , n m ⎭ 8 ⎝ n m ⎭【答案】3n + 2【解析】由 an 3 + a n, a = 1 ,可得 a = 1 2 3a 1 3 + a 13 3 3= , a = = , a == ,……,∴ 猜想 3 4 2 33,本题正确结果 .n16.已知正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,若存在两项 a m , a n ,使得 8 a m a n = a 1 ,则9 1+ 的最小值 mn为__________.【答案】2【解析】Q 正项等比数列{a n } 满足 2a 5 + a 4 = a 3 ,∴ 2a 1q 4 +a 1q 3 =a 1q 2 ,整理得 2q 2 +q - 1 = 0 ,又 q > 0 ,解得 q = 12,Q 存在两项 a , a 使得 8 a ⋅ a = a ,∴ 64a 2 q m +n -2 = a 2 ,整理得 m + n = 8 ,m nmn111∴则 9 1 1 ⎛ 9 1 ⎫ 1 ⎛ m 9n ⎫ 1 ⎛ m 9n ⎫ m n 8 ⎝ m n ⎭ 8 ⎝9 1 m 9n+ 的最小值为 2,当且仅当 = 取等号,但此时 m , n ∉ N * .m n n m又 m + n = 8 ,所以只有当 m = 6 , n = 2 时,取得最小值是 2.故答案为 2.三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.(10 分)已知等差数列{a n(1)求 {a}的通项公式;n}的公差不为 0, a 1= 3 ,且 a , a , a 成等比数列.2 4 7(2)求 a 2 + a 4 + a 6 + L + a 2n .【答案】(1) a n = n + 2 ;(2) n 2 + 3n .【解析】(1)Q a 2 , a 4 , a 7成等比数列,∴a42= a a ,2 7即 (a 1 + 3d )2 = (a 1 + d )(a 1 + 6d ) ,化简得 (a 1 - 3d )d = 0 ,∵公差 d ≠ 0 ,∴ a 1 = 3d ,6=n (a +a ) (2)若b= 4 { ⎪ 12 由题意得 ⎨,则 ⎨ , ⎩ 7 ⎪(a + 6d )2 = (a + d )(a + 21d )⎩ 1化简得 ⎨⎧a + 2d = 7(2)证明: b = 42n (2n + 4) n (n + 2) 2 ⎝ n n + 2 ⎭ - + - + - + L +⎪1 + - - = - ⎪ < . ⎪Q a = 3 ,∴ d = 1,∴ a = a + (n - 1)d = n + 2 .1 n1(2)由(1)知 a 2n = 2n + 2 ,故{a 2n } 是首项为 4、公差为 2 的等差数列,所以 a + a + a + L + a2 4 6 n (4 + 2n + 2)2 2n = = n 2 + 3n . 2 218.(12 分)已知公差不为零的等差数列{a n } 满足 S 5 = 35 ,且 a 2 , a 7 , a 22 成等比数列.(1)求数列{a n } 的通项公式;n nn(a - 1)(a + 3) ,且数列 b n }的前 n 项和为 T n ,求证: T < 3n 4.【答案】(1) a n = 2n + 1;(2)见详解.【解析】(1)设等差数列{a n } 的公差为 d ( d ≠ 0 ),⎧ 5 ⨯ 4⎧S = 355a + d = 35 5a 2 = a a2 221 11 ⎩2a 1 = 3d ⎧a = 3 ,解得 ⎨ 1⎩d = 2,所以 a = 3 + 2 (n -1) = 2n +1. nn nn(a -1)(a + 3) =4 11⎛1 1 ⎫ = = - ⎪ ,所以 T = n 1 ⎛ 1 1 1 1 1 1 1 1 1 1 ⎫- + - 2 ⎝ 1 3 2 4 3 5 n - 1 n + 1 n n + 2 ⎭= 1 ⎛ 1 1 1 ⎫ 3 1 ⎛ 1 1 ⎫ 3 + 2 ⎝ 2 n + 1 n + 2 ⎭ 4 2 ⎝ n + 1 n + 2 ⎭ 419.(12 分)已知数列{a n}的前 n 项和为 Sn且 S = 2a - 1 (n ∈ N * ) .n n(1)求数列{a n}的通项公式;(2)求数列{na n}的前 n 项和 T n.【答案】(1) a = 2n- 1 ;(2) T = n ⋅ 2n - 2n + 1 .nn【解析】(1)因为 S = 2a - 1 ,当 n ≥ 2 时, S = 2a - 1 ,7= 2a + 1 , n ∈ N * .+1),数列 ⎨ 15 ≤ T n < ; 即 a ∴ 数列 {a }的通项公式为 a = 2n - 1 n ∈ N * .(2n + 1)(2n + 3) 2⎝ 2n + 1 2n + 3⎪⎭ , - ⎪ + - ⎪ +⋅⋅⋅+⎪⎥ 2 ⎢⎣⎝ 3 5 ⎭ ⎝ 5 7 ⎭ ⎝ 2n + 2n + 3 ⎭⎦ 6 4n + 6整理可得 a n = 2a n -1 ,Q a = S = 2a - 1 ,解得 a = 1 ,1 111所以数列 {a n}为首项为1 ,公比为 2 的等比数列,∴a = 2n -1 .n(2)由题意可得:T = 1⨯ 20 + 2 ⨯ 21 + ⋅⋅⋅ + n ⋅ 2n ,n所以 2T = 1⨯ 21 + 2 ⨯ 22 + ⋅⋅⋅ + (n - 1)2n -1 + n ⋅ 2n ,n两式相减可得 -T = 1 + 21 + 22 + ⋅⋅⋅+ 2n -1 - n ⋅ 2n = n∴ T = n ⋅ 2n - 2n + 1 .n1 - 2n 1 - 2- n ⋅ 2n = 2n - 1 - n ⋅ 2n ,20.(12 分)已知数列{a n}满足 a 1= 1 , an +1n(1)求证数列{a n +1}是等比数列,并求数列{a n } 的通项公式;(2)设 b = log (a n 2 2n +1 ⎧ 1 ⎫ 1 1b b ⎬ 的前 n 项和 T n ,求证:6 ⎩ n n +1 ⎭.【答案】(1)证明见解析, a = 2n - 1(n ∈ N * )(2)见解析. n【解析】(1)由 an +1 = 2a n + 1 ,得 a n +1 + 1 = 2 (a + 1),n+ 1n +1 a + 1n= 2 ,且 a + 1 = 2 ,1∴ 数列 {a +1}是以 2 为首项, 2 为公比的等比数列,n∴ a + 1 = 2 ⨯ 2n -1 = 2n ,n( )nn(2)由(1)得: b = logn2(a2n +1+ 1) = log (22n +1- 1 + 1)= 2n + 1 ,2∴1b bn n +11 1 ⎛ 1 1 ⎫ = = -∴T = n1 ⎡⎛ 1 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫⎤ 1 1 - = - (n ∈ N * ),8又 0 < 1即 1n (2)设数列满足 b = a sin a π2的前 项和 .⎪⎩n,2 3 L 2 3 L 2 (a + 4) = S + S 2a = d + 4 d = 2 ⎪ ⎩= asin n π + ⎪ = a cos (n π ) , 2 ⎭ ⎝n +1,2n -1,⎪⎩n, 2 3 L 2 3 L a ⋅ a1 1 1 1 1 1 1≤ ,∴- ≤- < 0 ,∴ ≤ - < ,4n + 6 10 10 4n + 6 15 6 4n + 6 61≤ T < .15 621.(12 分)已知等差数列的前 项和为 ,且 是 与 的等差中项.(1)求的通项公式;n ,求n n【答案】(1)⎧⎪- (n + 2), ;(2) T = ⎨n n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .⎧a = 7⎧a + 2d = 7 ⎧a = 3 【解析】(1)由条件,得 ⎨ 3 ,即 ⎨ 1 , ⎨ 1⎪715⎩1⎩,所以{a n }的通项公式是(2)由(1)知, b = a sinnn.(2n + 1)π 2n n⎛ π ⎫(1)当 n = 2k -1 (k =1,2,3,…)即 n 为奇数时, b = -a , b nnn +1= aT = -a + a - a + L + a n 1 2 3 n -1 - a = -a + (-2) n - 1= -n - 2 ;n 1(2)当 n = 2k (k =1,2,3,…):即 n 为偶数时, b = a , bnnn -1= -aT = -a + a - a +⋯- a n 1 2 3 n -1+ a = 2 ⋅ n n 2= n ,⎧⎪- (n + 2), 综上所述, T = ⎨n22.(12 分)设正项数列n = 2k - 1(k = 1,,, ) n = 2k (k = 1,,, ) .的前 n 项和为 ,已知 .(1)求证:数列 是等差数列,并求其通项公式;(2)设数列的前 n 项和为 ,且 b = 4n nn +1,若对任意 都成立,求实数 的取值范围.9(2)由(1)可得 b = 1 n (n + 1) n n + 1∴ T = 1 - ⎪ + - ⎪ + L + - ⎛ 1 ⎫ ⎛ 1 1 ⎫ ⎛ 1 1 ⎫1 n = 1 -= , ⎪ 2 ⎭ ⎝ 2 3 ⎭⎝ n n + 1 ⎭n + 1 n + 1⎝,即 nλ < n + (-1)n ⋅ 2 对任意⎢⎣ ⎥⎦n 恒成立,令 f (n ) = (n + 2)(n + 1)Q f (n + 1)- f (n ) = n (n + 1)- 2②当 为奇数时, λ < (n - 2)(n + 1)又 (n - 2)(n + 1)= n - - 1 ,易知:f (n ) = n - 在【答案】(1)见证明,【解析】(1)证明:∵;(2),且.,当当即时,时,有,解得 .,即.,于是,即.∵ ,∴为常数,∴数列是 为首项, 为公差的等差数列,∴.1 1= - ,nnn + 1都成立⎡ n (n + 1)+ (-1)n ⋅ 2 (n + 1)⎤⇔ λ <⎢⎥ nmin(n ∈ N *),①当 为偶数时, λ < (n + 2)(n + 1) = n + 2+ 3 ,n nn (n + 1) > 0 ,在 上为增函数,;n 恒成立,2 2 n n n为增函数,,102⨯ 4 ⨯ 3 = 0 ⎧a = -3 ⎪S 4 = 4a 1 + ⎪⎩a = a + 4d = 516 4⎩q3 (a + a + a ) = 120 ∴由①②可知:,综上所述 的取值范围为.第 7 单元 数列(提高篇)第Ⅰ卷一、选择题:本大题共12 小题,每小题 5 分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.记 S 为等差数列{a } 的前 n 项和.已知 S = 0 , a = 5 ,则()n n45A . a n = 2n - 5B . a n = 3n - 10C . S = 2n 2 - 8nD . S = 1n nn 2 - 2n【答案】A2.已知等比数列{a }中, a n 3 ⋅ a = 20 , a = 4 ,则 a 的值是( )13 6 10A .16B .14C .6D .5【答案】D【解析】由等比数列性质可知 a ⋅ a = a 2 = 20 ,3138由 a 6 = 4 ,得 q 4= a 2 8 = a 2620 5= ,∴ a = a q 4 = 5 ,本题正确选项 D .10 63.等比数列{a } 中, a + a + a = 30 , a + a + a = 120 ,则 a + a + a = ( )n123456789A .240B .±240C .480D .±480【答案】C【解析】设等比数列{a } 中的公比为 q ,由 a + a + a = 30 , a + a + a = 120 ,n 1 2 3 4 5 6⎧ 得 ⎨a + a + a = 301 2 31 2 3,解得 q 3 = 4 ,∴ a + a + a = q 3 (a + a + a ) = 480.7 8 9 4 5 6112 , N = 4.我国古代的《洛书》中记载着世界上最古老的一个幻方:如图,将1,2,…,9 填入3 ⨯ 3 的方格内,使三行,三列和两条对角线上的三个数字之和都等于 15.一般地,将连续的正整数1,2,3,L , n 2 填入 n ⨯ n 个方格中,使得每行,每列和两条对角线上的数字之和都相等,这个正方形叫做n 阶幻方.记 n 阶幻方的对角线上的数字之和为 N n ,如图三阶幻方的 N 3 = 15 ,那么 N 9 的值为()A .369B .321C .45D .41【答案】A【解析】根据题意可知,幻方对角线上的数成等差数列,根据等差数列的性质可知对角线的两个数相加正好等于1 + n 2,根据等差数列的求和公式 S = n (1+ n 2 ) 9 9 ⨯ (1+ 92 ) 2 = 369 ,故选 A .5.已知 1, a 1 , a 2 ,9 四个实数成等差数列,1, b 1 , b 2 , b 3 ,9 五个数成等比数列,则b 2 (a 2 - a 1 ) = ( A .8 B .-8 C .±8 D .98【答案】A)【解析】由 1, a 1 , a 2 ,9 成等差数列,得公差 d = a 2 - a 1 = 9 - 1 84 - 1 = 3 ,由 1, b , b , b ,9 成等比数列,得 b 2 = 1⨯ 9 ,∴ b = ±3 ,12322当 b = -3 时,1, b , -3 成等比数列,此时 b 2 = 1⨯ (-3) 无解,2 11所以 b = 3 ,∴ b (a - a 2 2 2 1 ) = 3 ⨯ 8= 8 .故选 A .36.已知数列{a n }是公比不为 1 的等比数列, S n为其前 n 项和,满足 a = 2 ,且16a , 9a , 2a2 1 4 7成等差数列,则 S = ()3A . 5B .6C .7D .9【答案】C【解析】数列{a n } 是公比 q 不为 l 的等比数列,满足 a 2 = 2 ,即 a 1q = 2 ,122 ⨯ 2 + 3)⨯ 2 ; 2 ⨯ 2 + 4 )⨯3 ;22- 5 =,且 A n =7n + 45a7= (10B .172C . 143A . 93【解析】因为 7 = 7 = a + a a 2a A = 13 = 7 ⨯13 + 45 = 17 1 13 2 且16a , 9a , 2a 成等差数列,得18a = 16a + 2a ,即 9a q 3 = 8a + a q 6 ,1 47417111解得 q = 2,a = 1 ,则 S = 1 3 1 - 23 1 - 2= 7 .故选 C .7.将石子摆成如图的梯形形状,称数列 5,9,14,20,L ,为“梯形数”.根据图形的构成,此数列的第 2016 项与 5 的差,即 a 2016- 5 = ()A . 2018⨯ 2014B . 2018⨯ 201C .1011⨯ 2015D .1010⨯ 2012【答案】C【解析】由已知的图形我们可以得出图形的编号与图中石子的个数之间的关系为:n =1 时, a = 2 + 3 = 11(n =2 时, a = 2 + 3 + 4 = 2…,由此我们可以推断:1 (a = 2 + 3 + L + (n + 2 ) = 1n⎡⎣2 + (n + 2)⎤⎦ ⨯ (n + 1),∴ a 1⨯ ⎡⎣2 + (2016 + 2)⎤⎦ ⨯ (2016 + 1)- 5 = 1011⨯ 2015 .故选 C .20168.已知两个等差数列{a }和 {b }的前 n 项和分别为 A 和 BnnnnB n + 3 b n 7)17D .15【答案】B771131313(a + a )1 131 13= 2 b 2b b + b 13(b + b ) B 13 + 3 2,故答案选 B .9.已知数列{ }的前 n 项和为 , , ( ),则 ( )A.32B.64C.128D.25613,∴ S B .C . 1a - 1 a - 1,n⎧B . 2019 ) =+ = + = + =2 ,1 1 + 1 + a 2a 2【答案】B【解析】由,得,又,∴- 1 n +1 S - 1n= 2 ,即数列{则∴10.数列1}是以 1 为首项,以 2 为公比的等比数列,,则 ..故选 B .满足: ,若数列 是等比数列,则 的值是()A .1 【答案】B2 D .【解析】数列为等比数列 ⇒ a- 1λa - 2上式恒成立,可知 ⎨λ =q⎩-2 = -q⇒ λ = 2 ,本题正确选项 B .11.已知函数 f (x ) =2( 1 + x 2x ∈ R ),若等比数列满足 a a1 2019= 1 ,则A .2019【答案】A ( )2 C .2D . 1 2【解析】∴ f (a )+ f (a12019,1 + a2 1 + a 2 1 + a 2 1 + a 21 2019 1 1 1为等比数列,则,14b b3B . 16 C . 115D . 2b b= = - ⎭ 数列 的前 项和 T = - + - ⎪ ⎪ , 2 ⎝ 3 5 5 72n + 1 2n + 3 ⎭ 2 ⎝ 3 2n + 3 ⎭可得 λ ≤ 12,即12.已知是公比不为 1 的等比数列,数列.满足: , , 成等比数列,c =1n2n 2n +2,若数列的前 项和对任意的恒成立,则 的最大值为( )A .115【答案】C【解析】由 , ,成等比数列得 a 2 =a a ,2 2nb n又是公比不为 1 的等比数列,设公比为 q ,则 a 2 q2b n-2 = a 2 q 2n ,整理得 b = n + 1,c =111n n2n 2n +21 1 ⎛ 1 1 ⎫ (2n + 1)(2n + 3)2 ⎝ 2n + 1 2n +3 ⎪ ,1 ⎛ 1 1 1 11 1 ⎫ 1 ⎛ 1 1 ⎫+ ⋅⋅⋅ +- = - n数列 是单调递增数列,则当 n =1 时取到最小值为1151 ,即 的最大值为,故选 C .1515,第Ⅱ卷二、填空题:本大题共4 小题,每小题5 分.13.已知{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 ,则 S 9 = _________.【答案】36【解析】{a n } 是等差数列, a 2 + a 4 + a 6 + a 8 = 16 , a 2 + a 8 = a 4 + a 6 = 2a 5 ,得出 a 5 = 4 ,又由 S = 9 ⋅ (a 1 + a 9 )9 = 9a = 36 .514.在数列 {a }中, a n 1= 1,an +1- a = 2n + 1 ,则数列的通项 a = ________.n n15x【答案】 n 2【解析】当 n ≥ 2 时,a = (a - a ) + (ann n -1n -1- a n -2) + (an -2- a n -3) + L + (a - a ) + (a - a ) + a ,3 2 2 1 1⇒ a = (2n - 1) + (2n - 3) + (2 n - 5) + L + 5 + 3 + 1 = n当 n = 1 , a 也适用,所以 a = n 2 .1nn (2n - 1 + 1) 2= n 2 ,15.设数列{a n } 的前 n 项和为 S n ,且 ∀n ∈ N *, a n +1a = ________.n【答案】 n - 6(n ∈ N * ) (答案不唯一)> a , S ≥ S .请写出一个满足条件的数列{a } 的通项公式n n 6 n【解析】 ∀n ∈ N * , a n +1> a ,则数列{a } 是递增的, ∀n ∈ N * , S ≥ S ,即 S 最小,n n n 6 6只要前 6 项均为负数,或前 5 项为负数,第 6 项为 0,即可,所以,满足条件的数列{a n } 的一个通项公式 a n = n - 6(n ∈ N * ) (答案不唯一).16.已知函数 f ( x ) = x 2 cosπx2,数列 {a }中, a = f (n )+ f (n + 1)(n ∈ N * ) ,则数列{a }的n n n前 40 项之和 S 40 = __________.【答案】1680【解析】函数 f (x ) = x 2 cos π 2且数列 {a }中, a = f (n )+ f (n +1),n n可得 a = f (1)+ f (2) = 0 - 4 = -4 ; a = f (2)+ f (3) = -4 + 0 = -4 ;12a = f (3)+ f (4) = 0 +16 = 16 ; a = f (4)+ f (5) = 16 ;3 4a = f (5)+ f (6) = 0 - 36 = -36 ; a = f (6)+ f (7) = -36 ;…,5 6可得数列 {a n 即有数列 {a n}为 -4 , -4 , 16 ,16 , -36 , -36 , 64 , 64 , -100 , -100 ,…, }的前 40 项之和:S = (-4 - 4 +16 +16)+ (-36 - 36 + 64 + 64)+ (-100 -100 +144 +144)+ 40⋅⋅⋅+ (-1444 -1444 +1600 +1600) = 24 + 56 + 88 +⋅⋅⋅+ 31216= ⨯10 ⨯ (24 + 312 ) = 1680 , ( a b a 1 - 22n 2 + n (n ∈ N * ).2 2 222212本题正确结果1680 .三、解答题:本大题共6 个大题,共 70 分,解答应写出文字说明、证明过程或演算步骤.17.10 分)已知数列{a n}是等比数列,数列 {b }是等差数列,且满足: n 1= b = 1 , + b = 4a , - 3b = -5 .1 2 3 2 3 2(1)求数列{a n }和 {b }的通项公式;n(2)设 c n = a n + b n ,求数列 {c n}的前 n 项和 S n .【答案】(1) a = 2n -1 , n ∈ N * , b = 2n - 1,n ∈ N * ;(2) S = 2n + n 2 - 1 .nn n【解析】(1)设 {an}的公比为 q , {b }的公差为 d ,由题意 q > 0 ,n⎧(1+ d ) + (1+ 2d ) = 4q ⎧-4q + 3d = -2由已知,有 ⎨ ,即 ⎨⎩q 2 - 3(1+ d ) = -5 ⎩ q 2 - 3d = -2⇒ q 2 - 4q + 4 = 0 ⇒ d = q = 2 ,所以 {a n }的通项公式为 an= 2n -1 , n ∈ N * , {b }的通项公式为 b = 2n - 1,n ∈ N * .n n(2) c = a + b = 2n -1 + 2n - 1 ,分组求和,分别根据等比数列求和公式与等差数列求和公式得到nnn1 - 2nn (1+ 2n - 1)S =+= 2n + n 2 - 1 .n18.(12 分)己知数列{a }的前 n 项和为 S n(1)求 {a}的通项公式;nn且 S = n 1 12 2(2)设 b n =1a an n +1,求数列 {b n}的前 100 项和.【答案】(1) a n = n ;(2) T100 =100 101.【解析】(1)当 n ≥ 2 时, S =n两式相减得 a n = S n - S n -1 = n , n 2 + n , S = (n - 1)2 + (n - 1)= n 2 + n- n ,17当 n =1时, a = S = + = 1,满足 a = n ,\ a = n . 2 2骣 1 骣 1 骣1 1 1 1 1001 - + - +L + - +2 = - , n +1 =2 n∈ N * ). ⎧⎬(2)若数列{b }满足: ba + 1 3n4 4 == 3 +n⎩ a n +1⎭a + 1 = 3n ,所以 a =1 - 1 . 3n ( )⇒ S = 2n - 144(2)令 b = 2n + 1,求数列 {b }的前 n 项和 T 及 T 的最小值.a + 2 nn1 11 1 n n(2)由(1)可知 b n =1 1 1= - ,n (n + 1) n n + 1所以数列 {b n}的前 100 项和 T100= b +b +?1 2b100= 琪 琪 琪 琪 - = 1 - = .桫 2桫 3 ? 99 100100 101 101 10119.(12 分)已知数列{a }满足: a n 1 3a -2a n - 3 ( 3a + 4 n(1)证明数列 ⎨ 1 ⎫ 为等差数列,并求数列{a n }的通项公式;⎩ a n + 1⎭nn =3n (n ∈ N * ),求 {b }的前 n 项和 S . nn n【答案】(1)证明见解析, a = n1 2n - 1 9- 1;(2) S = ⨯ 3n +2 + .n【解析】(1)因为 an +1+ 1 = -2a - 3 a + 1 1 3a + 4 1 n + 1 = n ,所以 , 3a + 4 3a + 4 a + 1 a a + 1 n n n +1 n +1 n⎧ 1 ⎫所以 ⎨ ⎬ 是首项为 3,公差为 3 的等差数列,所以n1 n(2)由(1)可知: a =n 1 3n- 1,所以由 b = n 3n a + 1 nn ∈ N * ⇒ b = n ⋅ 3n +1 , nS = 1 ⨯ 32 + 2 ⨯ 33 + L + (n - 1) ⨯ 3n + n ⨯ 3n +1 ①;n3S = 1 ⨯ 33 + 2 ⨯ 34 + L + (n - 1) ⨯ 3n +1 + n ⨯ 3n +2 ②,n①-②得 -2S = 32 + 33 + L + 3n +1 - n ⨯ 3n +2 = n 32 (3n - 1)3 - 1 - n ⨯ 3n +2n9⨯ 3n +2+ .20.(12 分)已知数列{a n}的前 n 项和为 Sn,且 S n = 2a n - 2n -1 .(1)求数列{a n}的通项公式;n nn185 ⨯ 2n -1 (2)Q b = 2n + 1 1 1 1 ⎛ 3 5 7 2n + 1 ⎫ ,则 T n = ⎪ , a + 2 52n -1 5 ⎝ 20 21 22 2n -1 ⎭ T = ⎪ 两式作差得 1 - T = ⨯ ⎢3 + ⎛ 1 ⎫ 1 ⎡ ⎛ 2 2 2 ⎫ 2n + 1⎤ 2n + 5 + +⋅⋅⋅+ - = 1 -2n ⎥⎦ ⎝ 2 ⎭ n 5 ⎣21 22 2n -1 ⎭ 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⨯ 2n -1 5 ⨯ 2n 5 ⎧( ⎧ n - 1)2n + , n 是奇数 3 - 3n ⎪b n = 2 2 , n 是奇数2 , b = ⎨ ;(2) T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数 n -2 ⎪b = 2 2 , n 是偶数n n【答案】(1)a = 5 ⨯ 2n -1- 2 (n ∈ N *);(2) T = 2 - 2n +5 3,最小值 . 5【解析】(1)当 n =1 时, a 1 = S 1 = 2a 1 - 2 - 1 ,解得 a 1 = 3 ,当 n ≥ 2 时, a n = S n - S n -1 = 2a n - 2a n -1 - 2 ,解得 a n = 2 a n -1 + 2 .则 a + 2 = 2 (an n -1+ 2),故 {a n + 2}是首项为 a 1 + 2 = 5 ,公比为 2 的等比数列,∴ a = 5 ⨯ 2n -1 - 2 (n ∈ N * ). n = ⨯ (2n + 1)⨯ + + + ⋅⋅⋅ +nn1 1 ⎛2 n 5 ⎝3 5 7 2n - 1 2n + 1 ⎫+ + + ⋅⋅⋅ + +21 22 23 2n -1 2n ⎭⎪ ⎪⎝,所以 T = 2 - n 2n + 5 5 ⨯ 2n -1,2n + 5 2n + 7 2n + 5 -2n - 3令 c = ,有 c - c =- = < 0 ,对 n ∈ N * 恒成立, n n +1 n则数列{c n }是递减数列,故{T n } 为递增数列,则 (T n )min 3= T = . 121.(12 分)已知正项数列且.的前 项和为 ,且 , ,数列 满足 ,(1)求数列(2)令【答案】(1), 的通项公式;,求数列 的前 项和 .n +1 ⎪⎪ n n⎩ n ⎪⎩ 2【解析】(1)当时, ,即 ,,19⎧⎪S + S = a 2 由 ⎨ ,可得= a 2 (n ≥ 2) ,⎪⎩ n由 ⎨ 两式相除,得 n +1 = 2 (n ≥ 2 ),⎧b b = 2n b⎪⎩b n -1b n = 2n -1 (n ≥ 2)综上:b = ⎨ n ⎪b = 2 n -22 , n 是偶数 ⎩ ⎧ 3n ⎪⎪ 2 , 的前 项和为 B ,∴ B = ⎨ , -3n + 1 ⎪ , n 是奇数 ⎧(n - 1)2n + , n 是奇数 ⎪⎪ 2综上: T = ⎨ .3n ⎪(n - 1)2n + 1 + , n 是偶数n +1 n n +1 S + S n -1 n即,又是公差为 ,首项为 的等差数列,,由题意得:,n n +1 b n -1是奇数时,是公比是 ,首项 的等比数列,∴ b = 2nn +1 2 ,同理 是偶数时是公比是 ,首项的等比数列,∴ b = 2nn -2 2 ,n ⎧ n +1⎪b = 2 2 , n 是奇数n.(2)令,即 ,⎧⎪ A = 1⋅ 20 + 2 ⋅ 21 + 3 ⋅ 22 + ⋅⋅⋅ + n ⋅ 2n -1的前 项和为 ,则 ⎨ n⎪⎩2 A n = 1⋅ 21 + 2 ⋅ 22 + 3 ⋅ 23 + ⋅⋅⋅ + n ⋅ 2n,两式相减得 - A = 20 + 21 + 22 + 2n -1 - n ⋅ 2n = n,1 - 2n 1 - 2- n ⋅ 2n ,令n n⎪⎩ 2n 是偶数3 - 3nn⎪⎩ 220ln 22 ln 32 ln n 2 (n - 1)(2n + 1) (当 x ≥ a 时, f '( x ) = 1 - = ,此时要考虑 a 与 1 的大小.(2)由(1)可知当 a = 1 , x > 1 时, x -1 - ln x > 0 ,即 ln x > 1 - x ,所以 ln x = n - 1 - = n - 1 - - ⎪ < n - 1 - + + L + ⎝ 2 n 2 ⎭ ⎝ 2 ⨯ 3 3 ⨯ 4 n(n + 1) ⎭ 1 ⎫ n - 1 = (n - 1) - n + 1 ⎭ 2(n + 1) ⎛ 122.(12 分)已知函数 f ( x ) =| x - a | - ln x(a > 0) .(1)讨论 f ( x ) 的单调性;(2)比较 + +⋯+ 与 的大小 n ∈ N * 且 n > 2) ,并证明你的结论.22 32 n 2 2(n + 1)【答案】(1)见解析;(2)见解析.⎧ x - ln x - a, 【解析】(1)函数 f ( x ) 可化为 f ( x ) = ⎨⎩a - x - ln x,x ≥ a0 < x < a ,当 0 < x < a 时, f '( x ) = -1 - 1 x< 0 ,从而 f ( x ) 在 (0, a) 上总是递减的,1 x - 1x x①若 a ≥ 1 ,则 f '( x ) ≥ 0 ,故 f ( x ) 在 [a, +∞ ) 上递增;②若 0 < a < 1 ,则当 a ≤ x < 1 时, f '( x ) < 0 ;当 x > 1 时, f '( x ) > 0 ,故 f ( x ) 在 [a,1) 上递减,在 (1, +∞) 上递增,而 f ( x ) 在 x = a 处连续,所以当 a ≥ 1 时, f ( x ) 在 (0, a) 上递减,在[a, +∞ ) 上递增;当 0 < a < 1 时, f ( x ) 在 (0,1) 上递减,在[1, +∞ ) 上递增.1< 1 - .x x所以 ln 22 ln 32 ln n 2 1 1 1+ + L + < 1 - + 1 - + L 1 -22 32 n 2 22 32 n 2⎛ 1 1 + ⎝ 22 32 + L + 1 ⎫ 1 1 ⎫ ⎛ 1 ⎪ ⎪2n 2 - 2 - n + 1 (n - 1)(2n + 1) = = .2(n + 1) 2(n + 1)21。
2014-2015年高二理科数学期末复习专项训练五复习内容:排列组合与二项式定理含解析高二理科数学组命制一.选择题(共25小题)1.(2014•汕头)某同学有同样的画册2本,同样的集邮册3本,从中取出4本赠送给4位2.(2014•武汉模拟)设m为正整数,(x+y)2m展开式的二项式系数的最大值为a,(x+y)2m+13.(2014•青岛)在航天员进行的一项太空实验中,要先后实施6个程序,其中程序A只能出现在第一步或最后一步,程序B和C实施时必须相邻,请问实验顺序的编排方法共有4.(2014•临沂)在高校自主招生中,某学校获得5个推荐名额,其中清华大学2名,北京大学2名,复旦大学1名.并且北京大学和清华大学都要求必须有男生参加.学校通过选拔5.(2014•江西)某高校的8名属“老乡”关系的同学准备拼车回家,其中大一、大二、大三、大四每个年级各两名,分乘甲、乙两辆汽车,每车限坐4名同学(乘同一辆车的4名同学不考虑位置),其中大一的孪生姐妹需乘同一辆车,则乘坐甲车的4名同学恰有2名来自于同6.(2014•四川模拟)我国第一艘航母“辽宁舰”在某次舰载机起降飞行训练中,有5架歼﹣15飞机准备着舰.如果甲、乙两机必须相邻着舰,而丙、丁两机不能相邻着舰,那么不同7.(2014•黄冈模拟)用5,6,7,8,9组成没有重复数字的五位数,其中有且仅有一个偶8.(2014•河南)在二项式的展开式中,前三项的系数成等差数列,把展9.(2014•宝鸡)若的展开式中第四项为常数项,则n=()10.(2014•重庆)二项式展开式中的常数项为()11.(2014•南宁)设的展开式的各项系数之和为M,二项式系数之和为N,312.(2014•甘肃)若展开式中的所有二项式系数和为512,则该展开式中的13.(2014•凉州区)若(2x﹣3)5=a0+a1x+a2x2+a3x3+a4x4+a5x5,则a1+2a2+3a3+4a4+5a5等14.(2013•陕西)设函数f(x)=,则当x>0时,f[f(x)]表达式的15.(2013•河池模拟)从6名男生和2名女生中选出3名志愿者,其中至少有1名女生的选16.(2013•自贡)某班班会准备从甲、乙等7名学生中选派4名学生发言,要求甲、乙两名同学至少有一人参加,且若甲乙同时参加,则他们发言时不能相邻.那么不同的发言顺序种17.(2013•内江)某单位有7个连在一起的车位,现有3辆不同型号的车需停放,如果要求18.(2013•辽宁)如图,用4种不同的颜色对图中5个区域涂色(4种颜色全部使用),要求每个区域涂一种颜色,相邻的区域不能涂相同的颜色,则不同的涂色种数有()19.(2013•西城区)从甲、乙等5名志愿者中选出4名,分别从事A,B,C,D四项不同20.(2013•深圳)我们把各位数字之和为6的四位数称为“六合数”(如2013是“六合数”),21.(2013•江西)若展开式中含x的项的系数为280,则a=()22.(2013•广元)在(1﹣x)n=a0+a1x+a2x2+a3x3+…+a n x n中,若2a2+a n﹣5=0,则自然数n的23.(2012•辽宁)一排9个座位坐了3个三口之家.若每家人坐在一起,则不同的坐法种数24.(2012•陕西)两人进行乒乓球比赛,先赢三局者获胜,决出胜负为止,则所有可能出现25.(2012•孝感模拟)如图,在A、B间有四个焊接点,若焊接点脱落,而可能导致电路不通,如今发现A、B之间线路不通,则焊接点脱落的不同情况有()参考答案与试题解析1.解:由题意知本题是一个分类计数问题一是3本集邮册一本画册,让一个人拿本画册就行了4种;另一种情况是2本画册2本集邮册,只要选两个人拿画册C42=6种,根据分类计数原理知共10种,故选B.2. 解:∵m为正整数,由(x+y)2m展开式的二项式系数的最大值为a,以及二项式系数的性质可得a=,同理,由(x+y)2m+1展开式的二项式系数的最大值为b,可得b==.再由13a=7b,可得13=7,即13×=7×,即13=7×,即13(m+1)=7(2m+1),解得m=6,故选:B.3.解:本题是一个分步计数问题,∵由题意知程序A只能出现在第一步或最后一步,∴从第一个位置和最后一个位置选一个位置把A排列,有A21=2种结果∵程序B和C实施时必须相邻,∴把B和C看做一个元素,同除A外的3个元素排列,注意B和C之间还有一个排列,共有A44A22=48种结果,根据分步计数原理知共有2×48=96种结果,故选C.4.解:根据题意,分2种情况讨论:①、第一类三个男生每个大学各推荐一人,两名女生分别推荐北京大学和清华大学,共有=12种推荐方法;②、将三个男生分成两组分别推荐北京大学和清华大学,其余2个女生从剩下的2个大学中选,共有=12种推荐方法;故共有12+12=24种推荐方法;故选:C.5. 解:由题意,第一类,大一的孪生姐妹在甲车上,甲车上剩下两个要来自不同的年级,从三个年级中选两个为,然后分别从选择的年级中再选择一个学生,为,故有=3×2×2=12种.第二类,大一的孪生姐妹不在甲车上,则从剩下的3个年级中选择一个年级的两名同学在甲车上,为,然后再从剩下的两个年级中分别选择一人(同第一类情况),这时共有=3×2×2=12种,因此共有24种不同的乘车方式,故选B.6. 解:把甲、乙看作1个元素和戊全排列,调整甲、乙,共有种方法,再把丙、丁插入到刚才“两个”元素排列产生的3个空位种,有种方法,由分步计算原理可得总的方法种数为:=24 故选C7解:由题意知本题是一个分类计数问题,以5开头符合要求的数:56798 56978 57698 57896 58796 58976 59678 59876 以6开头符合要求的数:65879,65897,65789,65987,67859,67895,67589,67985,69857,69875,69587,69785,共12种情形;以7开头符合要求的数:75698 75896 76598 76958 78596 78956 79658 79856 以8开头符合要求的数:85679 85697 85769 85967 87659 8769589657 89675 87569 87965 89567 89765 共12种情形;以9开头符合要求的数:95678 95876 96578 96758 97658 97856 98756 98576 用5,6,7,8,9组成没有重复数字的五位数,其中有且仅有一个偶数夹在两个奇数之间的五位数的个数为48个,故选B.8. 解:展开式的通项为∴展开式的前三项系数分别为∵前三项的系数成等差数列∴解得n=8所以展开式共有9项,所以展开式的通项为=当x的指数为整数时,为有理项所以当r=0,4,8时x的指数为整数即第1,5,9项为有理项共有3个有理项,所以有理项不相邻的概率P=.故选D9解:依题意,T4=••∵其展开式中第四项为常数项,∴﹣1=0,∴n=5.故选B.10. 解:二项式展开式的通项公式为T r+1=••(﹣2)r•x﹣r=•,令=0,可得r=2,故展开式中的常数项为4=60,故选B.11. 解:中,令x=1得展开式的各项系数之和M=4n根据二项式系数和公式得二项式系数之和N=2n,∵M﹣N=240∴4n﹣2n=240解得n=4∴的展开式的通项为=令4﹣=3得r=2故展开式中x3的系数为52C42=150故选项为B12.解:展开式中所有二项式系数和为512,即2n=512,则n=9,T r+1=(﹣1)r C9r x18﹣3r令18﹣3r=0,则r=6,所以该展开式中的常数项为84.故选:B.13解:对等式两边求导数得10(2x﹣3)4=a1+2a2x+3a3x2+4a4x3+5a5x4令x=1得10=a1+2a2+3a3+4a4+5a5故选D14解:当x>0时,f[f(x)==的展开式中,常数项为:=﹣20.故选A15解:从6名男生和2名女生中选出3名志愿者,共有C83种结果,其中包括不合题意的没有女生的选法,其中没有女生的选法有C63∴至少有1名女生的选法有C83﹣C63=56﹣20=36 故选B.16解:根据题意,分2种情况讨论,若只有甲乙其中一人参加,有C21•C53•A44=480种情况;若甲乙两人都参加,有C22•C52•A44=240种情况,其中甲乙相邻的有C22•C52•A33•A22=120种情况;则不同的发言顺序种数480+240﹣120=600种,故选C.17解:由题意知本题是一个分类计数问题,首先安排三辆车的位置,假设车位是从左到右一共7个,当三辆车都在最左边时,有车之间的一个排列A33,当左边两辆,最右边一辆时,有车之间的一个排列A33,当左边一辆,最右边两辆时,有车之间的一个排列A33,当最右边三辆时,有车之间的一个排列A33,总上可知共有不同的排列法4×A33=24种结果,故选C.18解:由题意知本题是一个分步计数问题,第一步:涂区域1,有4种方法;第二步:涂区域2,有3种方法;第三步:涂区域4,有2种方法(此前三步已经用去三种颜色);第四步:涂区域3,分两类:第一类,3与1同色,则区域5涂第四种颜色;第二类,区域3与1不同色,则涂第四种颜色,此时区域5就可以涂区域1或区域2或区域3中的任意一种颜色,有3种方法.所以,不同的涂色种数有4×3×2×(1×1+1×3)=96种.故选B.19解:根据题意,分两种情况讨论:①、甲、乙中只有1人被选中,需要从甲、乙中选出1人,担任后三项工作中的1种,由其他三人担任剩余的三项工作,有C21•C31•A33=36种选派方案.②、甲、乙两人都被选中,则在后三项工作中选出2项,由甲、乙担任,从其他三人中选出2人,担任剩余的两项工作,有C32•A22•C32•A22=36种选派方案,综上可得,共有36+36=72中不同的选派方案,故选B.20解:设满足题意的“六合数”为,则a+b+c=4,于是满足条件的a,b,c可分以下四种情形:(1)一个为4,两个为0,共有3种;(2)一个为3,一个为1,一个为0,共有A=6种;(3)两个为2,一个为0,共有3种;(4)一个为2,两个为1,共有3种.则“六合数”中首位为2的“六合数”共有15种.故选B.21解:由于展开式的通项公式为T r+1=•x7﹣r•(﹣1)r•(ax)﹣r=(﹣1)r ••a﹣r•x7﹣2r.令7﹣2r=1,r=3,故展开式中含x的项的系数为(﹣1)3••a﹣3=280,∴a=﹣,故选C.22解:由题意得,该二项展开式的通项公式T r+1=•(﹣1)r x r,∴其二项式系数a n=(﹣1)2+(﹣1)n﹣5=0,即2+(﹣1)n﹣5=0,r •,∵2a2+a n﹣5=0,∴2(﹣1)∴n﹣5为奇数,∴2==,∴2×=,∴(n﹣2)(n﹣3)(n﹣4)=120.∴n=8.故答案为:8.23解:第一步,分别将三口之家“捆绑”起来,共有3!×3!×3!种排法;第二步,将三个整体排列顺序,共有3!种排法故不同的作法种数为3!×3!×3!×3!=3!4故选C24解:第一类:三局为止,共有2种情形;第二类:四局为止,共有2×=6种情形;第三类:五局为止,共有2×=12种情形;故所有可能出现的情形共有2+6+12=20种情形故选C25解:根据题意,在A、B间有四个焊接点,每个焊点脱落与否有2种情况,则A、B间的4个焊接点,共有2×2×2×2=16种情况,其中A、B之间线路通畅时,有1、2、3、4全部没有脱落,只有2脱落,只有3脱落,共3种情况,则A、B之间线路不通,则焊接点脱落的不同情况有16﹣3=13种情况;故选C.。
滁州市定远县育才学校2021-2022学年度第一学期期末考试高二普通班理科数学试卷一、选择题(共12小题,每小题5分,共60分)1.已知空间向量()()1,,2,2,1,2a n b ==-,若2a b -与b 垂直,则a 等于()2.已知直线2x +my -1=0与直线3x -2y +n =0垂直,垂足为(2,p ),则p +m +n 的值为() A.-6B.6C.4D.103.已知在数列{a n }中,a 1=3,a 2=6,且a n +2=a n +1-a n ,则a 2020=(). A.3B.-3C.6D.-64.已知点O (0,0),A (0,2),点M 是圆(x -3)2+(y +1)2=4上的动点,则△OAM 面积的最小值为() A.1B.2C.3D.45.若等差数列{}n a 的前7项和为48,前14项和为72,则它的前21项和为() A.96B.72C.60D.486.如图,已知F 是椭圆22221x y a b+=(a >b >0)的左焦点,P 是椭圆上的一点,PF ⊥x 轴,OP ∥AB (O 为原点),则该椭圆的离心率是()A.2 B.4 C.12D.27.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆C 的中心为原点,焦点F 1,F 2均在x 轴上,C 的面积为,过点F 1的直线交C 于点A ,B ,且△ABF 2的周长为8.则C 的标准方程为()A.2214x y += B.22134x y +=C.22143x y +=D.2241163x y += 8.已知双曲线22221x y a b-=(a >0,b >0)的两个顶点分别为A ,B ,点P 为双曲线上除A ,B外任意一点,且点P 与点A ,B 连线的斜率分别为k 1,k 2,若k 1k 2=3,则双曲线的渐近线方程为()A.y x =±B.y =C.y =D.2y x =±9.已知双曲线22122:1(0,0)x y C a b a b-=>>的离心率为2.抛物线C 2:x 2=2py (p >0)的焦点到双曲线C 1的渐近线的距离为2,则抛物线C 2的方程为()A.2x y =B.2x y =C.28x y =D.216x y =10.朱载堉(1536~1611),是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制成了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”,即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个音的频率的2倍.设前三个音的频率总和为A 1,前六个音的频率总和为A 2,则21A A =() A.1+142B.1+132C.1-162D.1-112211.如图所示,F 1,F 2是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过F 1的直线与C的左、右两支分别交于A ,B 两点.若|AB |∶|BF 2|∶|AF 2|=3∶4∶5,则双曲线的离心率为()A.212.已知A (0,3),若点P 是抛物线x 2=8y 上任意一点,点Q 是圆x 2+(y -2)2=1上任意一点,则2||||PA PQ 的最小值为()A.1B.1C.2D.4二、填空题(共4小题,每小题5分,共20分)13.过点(1,2)可作圆x 2+y 2+2x -4y +k -2=0的两条切线,则实数k 的取值范围是________. 14.已知S n 为等比数列{a n }的前n 项和,且S 3=8,S 6=7,则a 4+a 5+…+a 9=___________.15.若直线y =kx +2与双曲线x 2-y 2=6的左支交于不同的两点,则k 的取值范围为________. 16.过抛物线x 2=2py (p >0)的焦点作斜率为1的直线与该抛物线交于A ,B 两点,A ,B 在x 轴上的正射影分别为D ,C.若梯形ABCD 的面积为,则p =________.三、解答题(共6小题,共70分)17.(10分)已知直线m :(a +2)x +(1-2a )y +4-3a =0. (1)求证:直线m 过定点M ;(2)过点M 作直线n 使直线与两负半轴围成的三角形AOB 的面积等于4,求直线n 的方程. 18.(12分)已知抛物线y 2=4x 截直线y =2x +m 所得弦长|AB(1)求m 的值;(2)设P 是x 轴上的点,且△ABP 的面积为9,求点P 的坐标.19.(12分)已知函数f (x )=x 2+2x ,数列{a n }的前n 项和为S n ,点(n ,S n )(n ∈N *)在曲线y =f (x )的图象上. (1)求数列{a n }的通项公式;(2)数列{b n }是首项b 1=1,公比q =3的等比数列,试求数列{a n b n }的前n 项和T n .20.(12分)已知点A (0,-2),椭圆E :22221x y a b +=(a >b >0F 是椭圆的右焦点,直线AFO 为坐标原点. (1)求椭圆E 的方程;(2)设过点A 的直线l 与椭圆E 交于P ,Q 两点,当△OPQ 的面积最大时,求直线l 的方程.21.(12分)如下图,已知平行四边形ABCD 和平行四边形ACEF 所在的平面相交于直线AC ,EC ⊥平面ABCD ,AB =1,AD =2,∠ADC =60°,AF(1)求证:AC ⊥BF ;(2)求二面角F -BD -A 的余弦值.22.(12分)已知数列{a n }满足a 1=1,a n +1>a n ,(a n -a n -1)2=2(a n +a n -1)-1,n ≥2. (1)求证:{a n +1-a n }是等差数列;(2)记b n =121n n n a a ++,求数列{b n }的前n 项和. 答案解析1.【答案】B【解析】因为()()1,,2,2,1,2a n b ==-, 所以()24,21,2a b n -=-. 因为2a b -与b 垂直, 所以()20a b b -⋅=, 所以82140n -+-+=, 解得52n =,所以51,,22a ⎛⎫= ⎪⎝⎭,所以212a =+=. 2.【答案】A【解析】因为直线2x +my -1=0与直线3x -2y +n =0垂直,所以2×3+(-2)m =0,解得m =3, 又垂足为(2,p ),代入两条直线方程可得4310620p p n +-=⎧⎨-+=⎩解得18p n =-⎧⎨=-⎩ 则p +m +n =-1+3+(-8)=-6. 3.【答案】B【解析】由题意知a 3=a 2-a 1=3,a 4=a 3-a 2=-3, a 5=a 4-a 3=-6,a 6=a 5-a 4=-3, a 7=a 6-a 5=3,a 8=a 7-a 6=6, a 9=a 8-a 7=3,a 10=a 9-a 8=-3, …易知{a n }是周期为6的数列, ∴a 2020=a 4=-3. 4.【答案】A【解析】根据题意,得圆(x -3)2+(y +1)2=4的圆心为(3,-1),半径r =2,O (0,0),A (0,2),OA 所在的直线是y 轴, 当M 到直线AO 的距离最小时,△OAM 的面积最小, 则M 到直线AO 的距离的最小值d =3-2=1, 则△OAM 的面积最小值S =12×|OA |×d =1. 5.【答案】B【解析】解法一:由71141767482141314722S a d S a d ⨯⎧=+=⎪⎪⎨⨯⎪=+=⎪⎩解得1408492449a d ⎧=⎪⎪⎨⎪=-⎪⎩所以21408212024217249249S ⨯⎛⎫=⨯+⨯-= ⎪⎝⎭;解法二:7127S a a a =++⋅⋅⋅+,1478914777S S a a a S d -=++⋅⋅⋅+=+⨯,21141516217714S S a a a S d -=++⋅⋅⋅+=+⨯,所以7S ,147S S -,2114S S -成等差数列,公差为49d ,由等差中项定义得()147721142S S S S S -=+-,即()21272484872S ⨯-=+-,解得2172S =.故选:B6.【答案】A【解析】因为PF ⊥x 轴, 所以P . 又OP ∥AB ,所以2b b a a=,即b =c .于是b 2=c 2,即a 2=2c 2.所以2c e a ==. 7.【答案】C【解析】因为△ABF 2的周长为8,所以|AB |+|AF 2|+|BF 2|=8⇒|AF 1|+|BF 1|+|AF 2|+|BF 2|=8⇒(|AF 1|+|AF 2|)+(|BF 1|+|BF 2|)=8, 由椭圆的定义可知,|AF 1|+|AF 2|=2a ,|BF 1|+|BF 2|=2a , 所以2a +2a =8⇒a =2,由题意可得ab π=,解得b =因为椭圆的焦点在x 轴上,所以C 的标准方程为22143x y +=.8.【答案】C【解析】设点(),P x y ,由题意知222122222223y y y y b k k a y x a x a x a ab ⋅=⋅====-+-,所以其渐近线方程为y =,故选C. 9.【答案】D【解析】由22214b e a=+=得b a =则双曲线的渐近线方程为y =,0y ±=,抛物线2C 的焦点坐标为0,2p ⎛⎫ ⎪⎝⎭, 则有22p=,解得8p =, 故抛物线C 2的方程为x 2=16y . 10.【答案】A11.【答案】C【解析】∵|AB |∶|BF 2|∶|AF 2|=3∶4∶5, 不妨令|AB |=3,|BF 2|=4,|AF 2|=5, ∵|AB |2+|BF 2|2=|AF 2|2, ∴∠ABF 2=90°,又由双曲线的定义得|BF 1|-|BF 2|=2a ,|AF 2|-|AF 1|=2a , ∴|AF 1|+3-4=5-|AF 1|,∴|AF 1|=3,∴2a =|AF 2|-|AF 1|=2, ∴a =1,|BF 1|=6.在Rt △BF 1F 2中,|F 1F 2|2=|BF 1|2+|BF 2|2=36+16=52, 又|F 1F 2|2=4c 2,∴4c 2=52,c e ∴=∴=12.【答案】D【解析】设点P (x 0,y 0),由于点P 是抛物线x 2=8y 上任意一点, 则x =8y 0(y 0≥0),∵点A (0,3),则|P A |2=x +(y 0-3)2=8y 0+(y 0-3)2=y +2y 0+9, 由于点Q 是圆x 2+(y -2)2=1上任意一点,∴要使2||PA PQ的值最小,则PQ 的值要最大,即点P 到圆心的距离加上圆的半径为PQ 的最大值, 则max 0||113PQ y ===+,()()()222000000003431229||1234333y y y y PA y PQ y y y +-++++∴≥==++-+++.()001233y y ++≥=+2||PA PQ∴的最小值为4.13.【答案】(3,7)【解析】把圆的方程化为标准方程得(x +1)2+(y -2)2=7-k , ∴圆心坐标为(-1,2),半径r 则点(1,2)到圆心的距离d =2. 由题意,可知点(1,2)在圆外,∴d >r ,且7-k >0,解得3<k <7,则实数k 的取值范围是(3,7). 14.【答案】-78【解析】本题考查等比数列前n 项和的性质.由题意知S 3,S 6-S 3,S 9-S 6成等比数列,即8,7-8,S 9-7成等比数列,所以(-1)2=8(S 9-7),解得S 9=718.所以a 4+a 5+…+a 9=S 9-S 3=718-8=-78. 15.【答案】⎛ ⎝⎭【解析】联立方程2226y kx x y =+⎧⎨-=⎩得(1-k 2)x 2-4kx -10=0,① 若直线y =kx +2与双曲线x 2-y 2=6的左支交于不同的两点,则方程①有两个不等的负根.所以()22122122Δ1640101001401k k x x k k x x k ⎧=+->⎪⎪-⎪=>⎨-⎪⎪+=<⎪-⎩解得1k <<16.【答案】2【解析】如图,抛物线焦点为0,2p ⎛⎫ ⎪⎝⎭,设A (x 1,y 1),B (x 2,y 2),直线AB :y -2p =x ,即y =x +2p. 联立2,22,p y x x py ⎧=+⎪⎨⎪=⎩消去y 得x 2-2px -p 2=0,∴x 1=()p ,x 2=(p .∴|AD |+|BC |=y 1+y 2=x 1+2p +x 2+2p=2p +p =3p ,|CD |=|x 1-x 2.由S 梯形ABCD =12(|AD |+|BC |)·|CD |=12·3p ·pp 2=4,∴p =±2. ∵p >0,∴p =2.17.【答案】(1)方程m :(a +2)x +(1-2a )y +4-3a =0可化为a (x -2y -3)+(2x +y +4)=0,要使a 有无穷多个解,必须有230,240,x y x y --=⎧⎨++=⎩解得1,2.x y =-⎧⎨=-⎩ 无论a 取何值,(-1,-2)都满足方程,故直线m 过定点M (-1,-2).(2)设直线n :1x ya b+=, 则121,14,2a bab --⎧+=⎪⎪⎨⎪=⎪⎩解得2,4,a b =-⎧⎨=-⎩ 故直线n :124x y+=--,即2x +y +4=0. 所以当直线n 为2x +y +4=0时,三角形的面积为4.18.【答案】(1)设A (x 1,y 1),B (x 2,y 2),由22,4,y x m y x =+⎧⎨=⎩得4x 2+4(m -1)x +m 2=0,由根与系数的关系,得x 1+x 2=1-m ,x 1·x 2=24m ,∴|ABx 1-x 2,∵|AB |=3m =-4. (2)设P (a ,0),P 到直线AB 的距离为d ,则d,又S △ABP =12|AB |·d ,则d =2ABP S AB ⋅,,∴|a -2|=3,∴a =5或a =-1,故点P 的坐标为(5,0)或(-1,0). 19.【解析】(1)由题意得S n =n 2+2n ,当n >1时,a n =S n -S n -1=(n 2+2n )-[(n -1)2+2(n -1)]=2n +1; 当n =1时,a 1=S 1=3,满足上式, 所以a n =2n +1(n ∈N *).(2)由题意得b n =3n -1,又由(1)可知a n =2n +1,故a n b n =(2n +1)3n -1, 所以T n =3×30+5×31+7×32+…+(2n +1)×3n -1, 3T n =3×31+5×32+7×33+…+(2n +1)×3n ,两式相减,得-2T n =3+2(31+32+33+…+3n -1)-(2n +1)×3n=3+2×-13(1-3)1-3n -(2n +1)×3n ,=-2n ·3n 所以T n =n ·3n . 20.【答案】解(1)设点F (c ,0), 因为直线AFA (0,-2),所以23c =,c =又因为c a =b 2=a 2-c 2, 解得a =2,b =1,所以椭圆E 的方程为2214x y +=.(2)设P (x 1,y 1),Q (x 2,y 2), 由题意可知直线l 的斜率存在, 设直线l 的方程为y =kx -2,联立221,42,x y y kx ⎧+=⎪⎨⎪=-⎩消去y 得()221416120k x kx +-+=,当()2Δ16430k =->,即234k >时,1212221612,1414k x x x x k k +==++. 所以PQ ===又点O 到直线l 的距离d =,所以21214DPQSd PQ k ==+ 0t =>,则2243k t =+.2441,44DPQt St t t==≤=++当且仅当2t =2=,即2k =±时取等号,满足234k >,所以OPQ 的面积最大时,直线l的方程为2y =-或2y x =-,即240y --=240y ++=21.【答案】(1)证明∵CD =AB =1,AD =2,∠ADC =60°, ∴AC∴CD 2+CA 2=AD 2,∴CD ⊥CA ,又EC ⊥平面ABCD ,故以CD 为x 轴,CA 为y 轴,CE 为z 轴建立空间直角坐标系,其中C (0,0,0),D (1,0,0),A (00),F (0,3,B (-1,3,0), ∴CA =(0,0),BF =(1,0,DF =(-1,DB =(-2,0),∴CA·BF =0,∴AC ⊥BF .(2)解平面ABD 的一个法向量n =(0,0,1),设平面FBD 的法向量m =(x ,y ,z ),由·0,·0,m DB m DF ⎧=⎪⎨=⎪⎩得20,0,x x ⎧-+=⎪⎨-++=⎪⎩∴,2,x y y z ⎧=⎪⎨⎪=-⎩令z =1,得m =(-2,1), ∴cos<m ,n .故所求二面角F -BD -A 22.【答案】解:(1)令c n =a n +1-a n ,c n >0,则2-1n c =2(a n +a n -1)-1,2n c =2(a n +1+a n )-1,两式相减得,22-1n n c c -=2[(a n +1-a n )+(a n -a n -1)]=2(c n +c n -1),得c n -c n -1=2(n ≥2).故{a n +1-a n }是等差数列.(2)因为(a 2-a 1)2=2(a 2+a 1)-1,a 1=1,且a 2>a 1,所以a 2=4,故c 1=a 2-a 1=3, 所以c n =c 1+(n -1)×2=2n +1,n ∈N *,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=(2n -1)+(2n -3)+…+3+1=n 2. 故b n =222211(1)n n n n +=+-21(1)n +,11 b 1+b 2+…+b n =222211111223-+-+…+21n -221(2)(1)(1)n n n n +=++.。
福建省泉州市2020-2021学年高二上学期期末数学(理科)试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.双曲线22164x y -=的焦点坐标是( ). A.(B.(0,C.( D.(0,2.命题:p x ∀∈R ,1222xx ⎛⎫+ ⎪⎭≥⎝,则p ⌝为( ).A .x ∃∈R ,1222xx +≥ B .x ∃∈R ,1222xx +< C .x ∀∈R ,1222xx +<D .x ∃∈R ,1222xx +≤3.设x ,y 满足约束条件0220x y x y x -≤⎧⎪-≥-⎨⎪≥⎩,则2z x y =+的最大值是( ).A .1B .6C .7D .84.在平行六面体1111ABCD A B C D -中,点M 为AC 与的BD 的交点,AB a =,AD b =,1A A c =,则下列向量中与1B M 相等的是( )A .1122a b c -++ B .1122a b c ++ C .1122a b c -+D .1122a b c --+5.已知a ,b ,c 分别为ABC ∆内角A ,B ,C的对边,若3c =,b =30B =︒,则a =( ).A .3B.CD .3或6.等比数列{}n a 的各项数列均为正数,且34258a a a a +=,则212226log log log a a a +++=…( ).A .5B .6C .8D .22log 3+7.已知抛物线C 的顶点在原点,焦点在x 轴上,C 与直线:1l y x =-相交于A ,B 两点.若线段AB 中点的横坐标为3,则C 的标准方程为( ).A .22x y =B .22x y =C .22y x =D .24y x =8.已知函数22()x x af x x-+=,若[2,)x ∈+∞,()0f x >,则实数a 的取值范围是( ). A .(,0)-∞B .(0,)+∞C .[0,)+∞D .(1,)+∞9.下列说法正确的是( ).A .若数列{}n a 为等差数列,则数列{}1n n a a ++为等差数列B .若14m ≤-,则函数2()lg lg f x x x m =+-无零点C .在ABC ∆中,若sin A <,则04A π<<D .直线m ⊄平面α,直线n ⊂平面α,则“//m n ”是“//m α”的充要条件10.过点(2,2)P 作两条互相垂直的直线1l 和2l ,1l 与x 轴正半轴交于点A ,2l 与y 轴正半轴交于点B ,若(,)M x y 为线段AB 的中点,则14x y+的最小值为( ).A .72B .4C .92D .511.我国古代《易经》中有关于远古时期“结绳计数”的记载,即通过在绳子上打结来记录数量.某部落采用“满五进一结绳计数”方法,即在从右到左依次排列的绳子上打结,当某条绳子的打结数量达到5个时,则松开该绳上的所有结,并往左边相邻的绳子上打个结.例如,若打猎记录如图1,则表示打猎数量累计为8.如果该部落某年的打猎记录如图2,那么可以表明该部落该年的打猎数量累计为( ).A .3906B .7812C .19530D .3906012.已知1F 为椭圆2222:1(0)x y C a b a b+=>>左焦点,直线l 过椭圆的中心且与椭圆交于A ,B 两点.若以AB 为直径的圆过1F ,且1124F AB ππ≤∠≤,则椭圆C 的离心率的取值范围是( ).A .2⎣⎦B .2⎫⎪⎪⎣⎭C .20,3⎛⎤ ⎥⎝⎦D .12,23⎡⎤⎢⎥⎣⎦二、填空题13.已知向量(1,2,3)a =-,(3,,)b x y =,若a 与b 共线,则x y +=__________. 14.若“24x <”是“11m x m -≤≤+”的必要不充分条件,则m 的取值范围是__________.15.已知1F ,2F 为双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过1F 作直线l 与C的左右支分别交于P ,Q 两点,若260QPF ∠=︒,且2||PQ PF =,则双曲线的渐近线的方程为__________.16.已知a ,b ,c 分别为锐角ABC 的三个内角A ,B ,C 的对边,若2a =,且2sin sin (sin sin )B A A C =+,则ABC 的周长的取值范围为__________.三、解答题17.已知n S 为等差数列{}n a 的前n 项和,32418S a a =+=. (1)求数列{}n a 的通项公式; (2)设1n nb S =,求数列{}n b 的前n 项和. 18.已知抛物线22(0)y px p =>经过点(3,6). (1)求此抛物线方程及焦点坐标;(2)过点(3,0)的直线与抛物线相交于A ,B 两点,若AB 中点M 到直线20x +=的距离为7,求||AB .19.在平面四边形ABCD 中,4=AD ,2CD =,AB BC =,90B ∠=︒. (1)若3D π∠=,求DAC ∠;(2)求四边形ABCD 面积S 的最大值.20.如图,已知四边形ABDE 的正方形,AD 与BE 相交于点O ,BCD 为等边三角形.现将EAD 沿AD 折起到E AD '的位置,将CBD 沿BD 折起到C BD'的位置,使得折后E D '⊥平面C BO '.(1)求证:OB ⊥平面'AE D ; (2)求二面角A OC B -'-的大小.21.在观察物体时,从物体上、下沿引出的光线在人眼处所成的夹角叫视角.研究表明,视角在[26,30]︒︒范围内视觉效果最佳.某大广场竖立的大屏幕,屏幕高为20米,屏幕底部距离地面11.5米.站在大屏幕正前方,距离屏幕所在平面x 米处的某人,眼睛位置距离地面高度为1.5米,观察屏幕的视角为θ(情景示意图如图所示).(1)为探究视觉效果,请从sin θ,cos θ,tan θ中选择一个作为y ,并求()y f x =的表达式;(2)根据(1)的选择探究θ是否有达到最佳视角效果的可能.22.点P 在椭圆22:142x y C +=上,过P 作x 轴的垂线,垂足为Q .(1)若点R 满足22RQ PQ =,试求点R 的轨迹2C 的方程; (2)直线l 与1C 相交于A ,B 两点,且与(1)中的2C 相切,线段AB 的垂直平分线与y 轴相交于点(0,)K n ,求n 的取值范围.参考答案1.A 【分析】求得双曲线的a ,b ,c ,可得所求焦点坐标. 【详解】解:双曲线22164x y -=的a =2b =,c =可得双曲线的焦点为(. 故选:A . 【点睛】本题考查了双曲线的焦点坐标.在求解时,应确定两方面,一是焦点所在的轴,二是c 的值.对于双曲线221(0)x y AB A B+=<,2c A B =+.若0A >,则焦点在x 轴上; 若0B >,则焦点在x轴上. 2.B 【分析】全称命题:x A ∀∈,()P x 的否定,是特称命题:x A ∃∈,()P x ⌝,结合已知中原命题x ∀∈R ,1222x x+≥,易得到答案. 【详解】 解:原命题x ∀∈R ,1222xx+≥ ∴ 命题x ∀∈R ,1222xx +≥的否定是: x ∃∈R ,1222xx+<. 故选:B . 【点睛】本题考查了命题的否定. x A ∀∈,()P x 的否定为x A ∃∈,()P x ⌝ ; x A ∃∈,()P x 的否定是x A ∀∈,()P x ⌝.求否定的易错点是和否命题进行混淆. 3.B 【分析】作出约束条件对应的平面区域,将目标函数变形成2y x z =-+,画出2y x =- 并在平面区域内进行平移,即可找到最优解,进而可求最大值. 【详解】解:作出可行域,如图所示的阴影部分由2z x y =+可得2y x z =-+,则z 为直线2y x z =-+的纵截距 结合图象可知,当直线2y x z =-+过(2,2)B 时,z 取得最大值6 故选:B . 【点睛】本题考查了线性规划求最值.对于这种题目,作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求最值即可. 4.A 【详解】因为利用向量的运算法则:三角形法则、平行四边形法则表示出11111()222B M B BM c c a B b B AD A =+=+-=-+,选A5.C 【分析】由已知利用余弦定理可得260a -+=,解方程可求a 的值. 【详解】解:3c =,b =30B =︒ ∴由余弦定理可得:2222cos b a c ac B =+-可得223323a a =+-⨯⨯,整理得260a -+=∴解得a =故选:C . 【点睛】本题考查了余弦定理.在解三角形时,若已知两边及一边的对角,一般情况下用正弦定理解三角形,有时也可用余弦定理求另一边.若已知两边及其夹角,则利用余弦定理解三角形.易错点在于忽略大边对大角. 6.B 【分析】结合等比数列的性质可求出344a a =,结合对数的运算性质可知所求即为2126log (...)a a a ,再次利用等比数列的性质即可求出. 【详解】解: 因为{}n a 为等比数列,则由等比数列的性质可知5342a a a a = 又因为34258a a a a +=,所以34254a a a a ==则()32122262126234log log log log log ()a a a a a a a a +++== (3)2log 46==.故选:B . 【点睛】本题考查了等比数列的性质,考查了对数的运算性质.在等比数列中,若p q m n +=+,则p q m n a a a a =;等差数列有一个类似的性质,即若p q m n +=+,则p q m n a a a a +=+.对于该的应用,易错点是和等差数列性质混淆. 7.D 【分析】设出抛物线方程22y px =,与直线方程联立,利用韦达定理得1222x x p +=+,由中点横坐标为3,可求p ,进而可求解抛物线方程. 【详解】解:抛物线C 的顶点在原点,焦点在x 轴上,抛物线方程设为22y px =联立221y px y x ⎧=⎨=-⎩,可得2(22)10x p x -++=C 与直线:1l y x =-相交于A ,B 两点.设()()1122,,,A x y B x y则1222x x p +=+,121=x x .由已知可得:1222322x x p ++==,解得2p =.所求抛物线方程为:24y x =. 故选:D . 【点睛】本题考查了抛物线方程的求解,考查了直线与抛物线的位置关系.当涉及到直线与抛物线的问题时,常联立直线与抛物线的方程,消元后,根据韦达定理,得到两个交点坐标的关系.再根据具体地条件进行列方程求解. 8.B 【分析】结合已知不等式可转化为即22a x x >-+,结合二次函数的性质求22x x -+ 在[2,)+∞ 上的最大值,即可求解. 【详解】 解:[2,)x ∈+∞,22()0x x a f x x-+=> [2,)x ∴∈+∞,220x x a -+>即22a x x >-+在[2,)x ∈+∞上恒成立.结合二次函数的性质可知 当2x =时,22x x -+取得最大值为0.即0a >. 故选:B . 【点睛】本题考查了由不等式恒成立问题求参数的范围.对于关于()f x 的不等式在x 的某段区间上恒成立问题,一般情况下进行参变分离,若()a h x > 在区间上恒成立,只需求出()h x 的最大值,令max ()a h x > 即可; 若()a h x < 在区间上恒成立,只需求出()h x 的最小值,令min ()a h x < 即可.9.A 【分析】A:利用等差数列的定义进行判断;B:令lg t x =,则2()f t t t m =+-,结合二次函数的零点存在问题,进行判断;C:结合正弦函数,可解不等式,进而可判断A 的取值范围;D:判断由“//m n ”是否能推出“//m α”,再判断由“//m α”是否能推出“//m n ”. 【详解】解:数列{}n a 为等差数列,不妨设数列{}n a 通项公式为n a pn q =+,则1(1)n a p n q pn p q +++=++=.122n n n b a a pn p q +∴=+=++则1232n b pn p q +=++.12n n b b p +∴-=与n 无关. 故数列{}1n n a a ++为等差数列,A 正确.令lg t x =,则2()f t t t m =+-,当14m =-时, 21()04f t t t =++=此时12t =-,即x =,函数函数2()lg lg f x x x m =+-有零点,B 错误.由正弦函数图像可知,若sin A <则04A π<<或34A ππ<<,C 错误. 当“//m α”时,直线n ⊂平面α,不一定有“//m n ”,所以D 项错误. 故选:A . 【点睛】本题考查了等差数列的定义,考查了函数的零点与方程的根,考查了三角函数不等式,考查了充分必要条件的判断.判断一个数列是否为等差数列,可利用等差数列的定义,即判断后一项与前一项的差是否为一个常数;求解三角函数不等式时,常常结合三角函数的图像进行求解;判断两个命题的关系时,通常分为两步,判断由p 是否能推出q ,以及判断由q 是否能推出p . 10.C 【分析】设O 为坐标原点,由题意可得,ABOP 四点共圆,且圆心为M ,结合圆的性质及两点间的距离公式化简可得M 的方程,然后结合基本不等式即可求解. 【详解】解:设O 为坐标原点,由题意可得,ABOP 四点共圆,且圆心为M所以||||MP MO =,=化简可得,2x y +=,且0x >,0y >,则141141419()5(54)2222y x x y x y x y x y ⎛⎫⎛⎫+=++=++≥+= ⎪ ⎪⎝⎭⎝⎭, 当且仅当4y x x y =即23x =,43y =时取等号,此时取得最小值92. 故选:C . 【点睛】本题考查了轨迹方程的求法,考查了基本不等式.对于求轨迹方程的问题,根据题意,找到等量关系,列出方程.有些特殊轨迹,如圆,椭圆,双曲线,抛物线,根据定义也能进行求解.利用基本不等式求最值时,常见的题型是”1”的代换. 11.B 【分析】由题意可得该部落一年的打猎数量为252252525+⨯+⨯++⨯…,由等比数列的求和公式计算可得所求和. 【详解】解:由图2可得该部落一年的打猎数量为:()625515225252521552781215-+⨯+⨯++⨯=⨯+++=⨯=-…….故选:B . 【点睛】本题考查了等比数列求和,考查了进制数的转换.对于数()n abcdef 为n 进制的数,将其转换为十进制时,只需代入公式5432a nb nc nd ne nf ⨯+⨯+⨯+⨯+⨯+ 进行求解.本题的难点在于不能由图2写出正确的五进制数. 12.A 【分析】设1F AB θ∠=,由以AB 为直径的圆过1F ,可得1|||||AO BO OF c ===,即|2AB c =,运用直径所对的圆周角为直角,以及锐角三角函数的定义,以及辅助角公式,结合离心率公式可得所求范围. 【详解】解:设1F AB θ∠=,则124ππθ≤≤由以AB 为直径的圆过1F ,可得1|||||AO BO OF c ===,即||2AB c = 在直角三角形1F AB 中,12cos AF c θ=,12sin BF c θ=由椭圆的对称性可得1122cos 2sin 24AF BF a c c c πθθθ⎛⎫+==+=+⎪⎝⎭即有14c e aπθ==⎛⎫+ ⎪⎝⎭. 由124ππθ≤≤42πθ⎛⎫+∈ ⎪⎝⎭⎣,则,23e ∈⎣⎦. 故选:A . 【点睛】本题考查了椭圆的定义性质,考查了三角函数的值域.本题难点是不能由性质得到,a c 的方程,若采用设直线方程、交点坐标找关于,a c 的方程,计算量很大.对于12sin(),[,]y A x x x x ωϕ=+∈ 求值域时,常用换元法,令t x ωϕ=+ ,结合正弦函数图像即可求出函数值域. 13.3 【分析】若a 与b 共线,则存在唯一实数λ使得a b λ=,1323x y λλλ=⎧⎪-=⎨⎪=⎩,解得λ,x ,y 进而得出答案.【详解】解:若a 与b 共线,则存在唯一实数λ,使得a b λ=所以(1,2,3)(3,,)x y λ-=,即1323x y λλλ=⎧⎪-=⎨⎪=⎩,解得1369x y λ⎧=⎪⎪=-⎨⎪=⎪⎩所以693x y +=-+= 故答案为:3.【点睛】本题考查空间向量的共线.若向量()()111222,,,,,x y z x y z ==a b 共线,则存在唯一实数λ使得a b λ= 或得到111222222(0)x y z x y z x y z ==≠,进而进行求解. 14.(1,1)- 【分析】先解出不等式,根据题中给的充要性,判断集合的包含关系,解出参数. 【详解】解:由题意知:设24x <对应的集合为(2,2)A =- 设11m x m -≤≤+对应的集合为[1,1]B m m =-+,24x <是11m x m -≤≤+的必要不充分条件 B ∴ A 2112m m -<-⎧∴⎨+<⎩,解之得:11m -<<.故答案为:(1,1)-. 【点睛】本题考查了由充分必要条件求参数的取值范围,考查了二次不等式得解法.对于已知两命题的充分必要关系时,首先对两命题进行化简,一般解不等式,得到两命题对应的集合,A B 即可;再根据命题关系,得到参数的取值范围.若已知p 是q 的充分不必要条件,则A B ;若已知p 是q 的必要不充分条件,则B A .15.y = 【分析】由题意画出图形,由双曲线定义结合已知可得12PF a =,24PF a =.再由余弦定理可得a 与c 的关系,进而得到226ba=即求得双曲线的渐近线的方程.【详解】解:由双曲线的定义知,1212QF QF PF a -==,212PFPF a -=24PF a ∴=,260QPF ∠=︒,12120F PF ∴∠=︒在12F PF △中,由余弦定理:2221212122cos120F F PF PF PF PF =+-⋅︒得2221244328c a PF PF a =+⋅=,即227c a=226b a∴=,即双曲线的渐近线方程为y =.故答案为:y =.【点睛】本题考查了双曲线定义及性质,考查了余弦定理.一般地,在圆锥曲线的问题中,若已知过两焦点角的大小,常结合余弦定理进行求解.本题的难点在于,根据已知条件,能够结合双曲线的定义及性质,用,,a b c 将1212,,PF PF F F 表示出来.对于求椭圆和双曲线离心率的题目,关键在于列出,,a b c 的方程,结合定义进行化简.16.(4++ 【分析】由正弦定理、余弦定理、三角函数恒等变换的应用化简已知等式可得2sin 2sin()A B A =-,进而可得2B A =.由正弦定理可得4cos b A =.根据已知可求范围64A ππ<<,利用余弦函数的性质可求范围b <<2a =,即242b c =+,可求ABC ∆的周长为212a b c b b ++=+,由二次函数性质即可求得ABC ∆的周长的取值范围.【详解】解:因为2sin sin (sin sin )B A A C =+,所以22b a ac =+由余弦定理可得2222cos 222c b a c ac c aA bc bc b+-++===同理可得:cos 2c aB b -=,即2cos 2cos c a b A c a a B+=⎧⎨-=⎩.消去c , 可得22cos 2cos a b A a B =-∴2sin 2sin cos 2sin cos A B A A B =- 即2sin 2sin()A B A =-,可得2B A = 由正弦定理sin sin a b A B=,可得2sin sin 2bA A =,即4cos b A = 因为ABC ∆为锐角三角形,且ABC π++=,所以022A π<<即64A ππ<<,所以cos 22A <<,即b << 又因为2a =,即242b c =+所以ABC ∆的周长为2241222b a bc b b b -++=++=+由二次函数性质可得, ABC ∆的周长的取值范围为:(4++. 故答案为:(4++. 【点睛】本题考查了正弦定理,考查了余弦定理,考查了二次函数求最值.在解三角形的问题中,若已知的一个等式中,既有边又有角,则常常进行边角互化,即2sin 2sin 2sin a R Ab R Bc R C =⎧⎪=⎨⎪=⎩或者222222222222cos cos cos b c a A a a c b B b b a c C c ⎧+-=⎪⎪⎪+-=⎨⎪⎪+-=⎪⎩统一形式,进而进行求解. 17.(1) 3n a n =;(2)23(1)n nT n =+.【分析】(1)设等差数列的公差为d ,运用等差数列的通项公式和求和公式,解方程可得首项和公差,进而得到所求通项公式;(2)运用等差数列的求和公式,可得1212113(1)31n n b S n n n n ⎛⎫==⋅=- ⎪++⎝⎭,再由数列的裂项相消求和,计算可得所求和. 【详解】解:(1)等差数列{}n a 的公差设为d ,由32418S a a =+=可得1133182418a d a d +=⎧⎨+=⎩ ,解得13a d ==.则33(1)3n a n n =+-=. (2)13(33)(1)22n S n n n n =+=+,设1212113(1)31n nb S n n n n ⎛⎫==⋅=- ⎪++⎝⎭ 则数列{}n b 的前n 项和2111112121132231313(1)n nT n n n n ⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪+++⎝⎭⎝⎭…. 【点睛】本题考查了等差数列通项公式,考查了等差数列的前n 项和.求等差数列的通项公式时,可用基本量表示出已知条件,列出方程组,求得基本量,即可求解通项公式.数列的求和问题,常见的思路有分组求和,错位相减,裂项相消等.18.(1)方程为:212y x =,焦点坐标为(3,0);(2)16. 【分析】(1)利用已知条件求出p ,然后求解抛物线方程以及焦点坐标.(2)求出抛物线的准线方程,结合已知条件利用抛物线的定义以及梯形的中位线的性质求解即可. 【详解】解:(1)由题意可得266p =,所以6p,所以抛物线方程为212y x =所以抛物线的焦点坐标为(3,0).(2)抛物线的焦点坐标为(3,0),准线方程为3x =-因为AB 中点M 到直线20x +=的距离为7,即M 到直线30x +=的距离为8d =由抛物线的定义以及梯形中位线性质可得:||22816AB d ==⨯=. 【点睛】本题考查了抛物线方程,考查了抛物线的焦点弦问题.求抛物线的方程时,一般首先设出抛物线的方程,由已知条件列出关于p 的方程,进行求解即可.关于抛物的焦点弦,一般并不采用设直线与抛物线方程联立,由韦达定理进行求解的方法,而是结合抛物线的焦点弦公式求解12AB x x p =++.19.(1)6DAC;(2)5+【分析】(1)由已知利用余弦定理可求AC 的值,由正弦定理可得1sin 2DAC ∠=,进而可求DAC ∠的值.(2)设D θ∠=,由余弦定理可得AC =利用三角形的面积公式可求54cos ABC S θ=-△,4sin ADC S θ=△,可求54ABCD S πθ⎛⎫=-+ ⎪⎝⎭,结合范围(0,)θπ∈,利用正弦函数的性质可求其最大值.【详解】解:(1)由余弦定理可得:2222cos AC AD CD AC CD D =+-⋅⋅即AC ==由正弦定理可得:sin sin AC CD DACθ=∠,即sin 213sin 2CD DAC AC π⋅∠=== 又因为CD AC <,所以6DAC(2)设D θ∠=,由余弦定理可得AC ==所以21122ABC S AC =⨯△1(2016cos )4θ=-54cos θ=- 又因为124sin 4sin 2ADC S θθ=⨯⨯⨯=△所以4sin 54cos 54ABCD S πθθθ⎛⎫=+-=-+ ⎪⎝⎭因为(0,)θπ∈,所以42ππθ-=,即当34πθ=时, ABCD S最大值为5+ 【点睛】本题考查了正弦定理,考查了余弦定理,考查了三角函数求最值.已知三角形中两边及其一边的对角时,常采用正弦定理求解,有时也采用余弦定理;当已知三角形的两边及其夹角时,或已知三角形的三边时,采用余弦定理解三角形.在解三角形时,注意运用大边对大角进行排除答案.20.(1)见解析;(2)3π. 【分析】(1)推导出E D OB '⊥,OB AD ⊥,由此能证明OB ⊥平面AE D '.(2)以O 为原点,OA ,OB ,OE '为x ,y ,z 轴,建立空间直角坐标系,利用向量法能求出二面角A OC B -'-的大小. 【详解】 (1)证明:E D '⊥平面C BO ',OB ⊂平面C BO ',∴E D OB '⊥,∵在正方形ABDE 中,O 为AD 与BE 的交点,OB AD ∴⊥E D AD D '⋂=,OB ∴⊥平面AE D '.(2)解:AE E D '=',O 为AD 中点,E O AD ∴'⊥以O 为原点,OA ,OB ,OE '为x ,y ,z 轴,建立空间直角坐标系A,B,(D,E ',E D '⊥平面C BO ',∴平面C BO '的一个法向量为(3,0,n E D ='= E D '⊥平面C BO ',∴E D OC '⊥'设(,,)C xy z ',则(,)DC x yz '=+,(,)BC x y z '=-1E D OC '⊥,||||6DC BC'='=,066+=∴==,解得x y z ⎧=⎪⎪=⎨⎪=⎪⎩或33x y z ⎧=-⎪⎪⎪⎪=⎨⎪⎪=⎪⎪⎩(舍).(C ∴'设平面AOC '的法向量(,,)n x y z =则OA 3x 0OC 3x 0n n '⎧⋅==⎪⎨⋅=-+=⎪⎩,取1y =,得(0,1,1)n =-设二面角A OC B -'-为θ,则|||31cos ||||22n m n m θ⋅-===⋅⋅由图知3πθ=,∴ 二面角A OC B -'-的大小为3π. 【点睛】本题考查了线面垂直的判定,考查了二面角的求法.在证明线面垂直时,关键是在平面内找到两条直线与已知直线垂直,常运用勾股定理、矩形的临边、正方形的对角线、等腰三角形三线合一、线面垂直的性质等来证明线线垂直.求二面角的大小时,建立空间直角坐标系,求出两个平面的法向量,进而可求. 21.(1)sin θ=;(2)视角30达到最佳.【分析】(1)过点A 作AF CE ⊥于F ,则 1.5EF AB ==,10DF DE EF =-=,30CF =,设CAF α∠=,DAF β∠=,sin sin()sin cos cos sin θαβαβαβ=-=-,化简即可得出答案.(2)由基本不等式可得1sin 2θ=≤=,即可得出答案. 【详解】解:过点A 作AF CE ⊥于F ,则 1.5EF AB ==10DF DE EF =-=,30CF =,设CAF α∠=,DAF β∠=(1)sin sin()θαβ=-sin cos cos sin αβαβ=-=-=(2)1sin 2θ=≤=,当且仅当2290000x x =,即x =,sin θ取到最大值12 因为sin θ在(0,90)︒上单调递增,所以观察屏幕视角最大值为[]3026,30︒∈︒︒ 即此时视角达到最佳.【点睛】本题考查了解三角形的应用,考查了基本不等式,考查了三角恒等变换.求最值时,我们常用的思路有:根据函数图像求最值,根据函数单调性求最值,结合导数求最值,运用基本不等式求最值,换元法求最值等.在运用基本不等式求最值时,易错点在于忽略一正二定三相等.22.(1)2214x y +=;(2)(1,0)(0,1)-.【分析】(1)设R ,P ,Q 的坐标由向量间的关系,求出R 与P 的坐标之间的关系,再由相关点法求出R 的轨迹方程.(2)设直线l ,联立与两个切线的方程,由题意得n 与直线参数的关系,由参数的范围求出n 的取值范围. 【详解】解:(1)设()00,P x y ,则()0,0Q x ,(,)R x y ,()0,RQ x x y =--,0(0,)PQ y =-由22RQ PQ =,所以0002x x y x -=⎧⎪⎨-=⎪⎩,解得:0x x=,0y =由P 在椭圆上,所以动点R 的轨迹2C 的方程:2214x y +=.(2)当直线l 的斜率不存在时:2l x =,不符合题意,舍去; 当直线的斜率存在时,设直线l 的方程为:y kx m =+ 联立与椭圆2C 的方程,整理得:()222148440k xkmx m +++-=则()()222264414440k m km∆=-+-=,化简得:2241k m =-①因为直线l 与椭圆1C 交于A ,B ,设(,)A x y ,(),B x y '',AB 的中点M 联立直线l 与椭圆1C 的方程整理得:()222124240kxkmx m +++-=∴ 2412km x x k -+'=+,222412m xx k-'=+,()22212m y y k x x m k +'=+'+=+ 则222,1212kmm M k k -⎛⎫⎪++⎝⎭,所以AB 的中垂线方程:22121212m km y x k k k ⎛⎫-=-+ ⎪++⎝⎭ 令0x =,得212m y k -=+,所以212m n k -=+②,由①②得2||12n k=+ 令2121t k =+>,则|||(1,0)(0,1)n ==-⋃.所以n 的取值范围:(1,0)(0,1)-.【点睛】本题考查了轨迹方程,考查了直线与椭圆的位置关系,考查了函数值域.涉及到直线与椭圆问题,一般情况下,将直线方程与椭圆方程进行联立,若直线方程未知,则可先设出直线方程.联立整理后,根据韦达定理得到交点的坐标关系,再接下来则根据题意进行求解.此类题计算量往往比较大,应注意计算的准确性.。
连云港外国语学校2012~2013学年度 高二年级数学理科期末复习卷(七)命题人:刘希团 2013年6月一、填空题:本大题共14小题,每小题5分,共70分.请把答案直接填写在相应位置. 1.若复数1218,34z i z i =+=+,其中i 是虚数单位,则复数12()z z i -的虚部为 .2. 设i 是虚数单位,若ai iz ++=11是实数,则实数=a . 3. 在正方体1111ABCD A B C D -中,1,,AB i AD j AA k === ,设点E 满足113D E EC = ,则向量AE =(用,,i j k 表示).4.在52()x x-的二项展开式中,3x 的系数是 .5. 某班某天要安排语文、数学、政治、英语、体育、艺术6节课,要求数学课排在前3节,体育课不排在第1节,则不同的排法种数为 .(以数字作答).6.某篮球运动员在三分线投篮的命中率是12,他投篮10次,恰好投进3个球的概率 .(用数值作答)7.甲、乙、丙3人站到共有7级的台阶上,若每级台阶最多站2人,同一级台阶上的人不区分站的位置,则不同的站法种数是_______. 8.若423401234(21)x a a x a x a x a x +=++++,则01234a a a a a -+-+=______. 9. 将曲线21x y +=绕原点逆时针旋转45︒后,得到的曲线C 方程为 . 10. 随机变量ξ的分布列如下:ξ1- 0 1Pabc其中a b c ,,成等差数列,若期望()13E ξ=,则方差()V ξ的值是 . 11.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量ξ,则P (ξ≤7)= .12.古希腊毕达哥拉斯学派把3,6,10,15,…这列数叫做三角形数,因为这列数对应的点可以排成如图所示的三角形, 则第n 个三角形数为 .13. 已知,,a b c Z ∈,若222a b c +=,则下列说法正确的序号是 . ①,,a b c 可能都是偶数; ②,,a b c 不可能都是偶数; ③,,a b c 可能都是奇数; ④,,a b c 不可能都是奇数. 14.数列{}n a 是正项等差数列,若12323123nn a a a na b n++++=++++ ,则数列{}n b 也为等差数列,类比上述结论,数列{}n c 是正项等比数列,若n d = ,则数列{}n d 也为等比数列.二、解答题:本大题共6小题,共90分.解答时应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)已知矩阵⎥⎦⎤⎢⎣⎡=0110M ,⎥⎦⎤⎢⎣⎡-=0110N 。
高考数学复习各地数列模拟测试题及解析一、有关通项问题1、利用11(1)(2)n nn S n a S S n -=⎧=⎨-≥⎩求通项.(北师大版第23页习题5)数列{}n a 的前n 项和21n S n =+.(1)试写出数列的前5项;(2)数列{}n a 是等差数列吗?(3)你能写出数列{}n a 的通项公式吗?变式题1、(2005湖北卷)设数列}{n a 的前n 项和为S n =2n 2,求数列}{n a 的通项公式; 解:(1):当;2,111===S a n 时,24)1(22,2221-=--=-=≥-n n n S S a n n n n 时当故{a n }的通项公式为4,2}{,241==-=d a a n a n n 公差是即的等差数列. 变式题2、(2005北京卷)数列{a n }的前n 项和为S n ,且a 1=1,113n n a S +=,n =1,2,3,……,求a 2,a 3,a 4的值及数列{a n }的通项公式.解:(I )由a 1=1,113n n a S +=,n=1,2,3,……,得 211111333a S a ===,3212114()339a S a a ==+=,431231116()3327a S a a a ==++=, 由1111()33n n n n n a a S S a +--=-=(n ≥2),得143n n a a +=(n ≥2),又a 2=31,所以a n =214()33n -(n ≥2),∴ 数列{a n }的通项公式为21114()233n n n a n -=⎧⎪=⎨⎪⎩≥变式题3、(2005山东卷)已知数列{}n a 的首项15,a =前n 项和为n S ,且*15()n n S S n n N +=++∈,证明数列{}1n a +是等比数列.解:由已知*15()n n S S n n N +=++∈可得12,24n n n S S n -≥=++两式相减得()1121n n n n S S S S +--=-+即121n n a a +=+从而()1121n n a a ++=+当1n =时21215S S =++所以21126a a a +=+又15a =所以211a =从而()21121a a +=+ 故总有112(1)n n a a ++=+,*n N ∈又115,10a a =+≠从而1121n n a a ++=+即数列{}1n a +是等比数列;2、解方程求通项:(北师大版第19页习题3)在等差数列{}n a 中,(1)已知812148,168,S S a d ==求和;(2)已知658810,5,a S a S ==求和;(3)已知3151740,a a S +=求.变式题1、{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于(A )667 (B )668 (C )669 (D )670 分析:本题考查等差数列的通项公式,运用公式直接求出. 解:1(1)13(1)2005n a a n d n =+-=+-=,解得669n =,选C点评:等差等比数列的通项公式和前n 项和的公式是数列中的基础知识,必须牢固掌握.而这些公式也可视作方程,利用方程思想解决问题.3、待定系数求通项:(人教版第38页习题4)写出下列数列{}n a 的前5项:(1)111,41(1).2n n a a a n -==+>变式题1、(2006年福建卷)已知数列{}n a 满足*111,21().n n a a a n N +==+∈ 求数列{}n a 的通项公式; 解:*121(),n n a a n N +=+∈112(1),n n a a +∴+=+{}1n a ∴+是以112a +=为首项,2为公比的等比数列.12.n n a ∴+=即 *21().n n a n N =-∈4、由前几项猜想通项:(北师大版第10页习题1)根据下面的图形及相应的点数,在空格及括号中分别填上适当的图形和数,写出点数的通项公式.(1) (4)(7)( ) ( )变式题1、(深圳理科一模).如下图,第(1)个多边形是由正三角形“扩展“而来,第(2)个多边形是由正方形“扩展”而来,……,如此类推.设由正n 边形“扩展”而来的多边形的边数为n a ,则6a = ;345991111a a a a +++⋅⋅⋅+= .解:由图可得:22(1)n a n n n n n =+-=+,所以642a =;又211111(1)1n a n n n n n n ===-+++ 所以345991111a a a a +++⋅⋅⋅+=1111111197()()()3445991003100300-+-++-=-=变式题2、(北师大版第11页习题2)观察下列各图,并阅读下面的文字,像这样,10条直线相交,交点的个数最多是( ),其通项公式为 . A .40个 B .45个 C .50个 D .55个解:由题意可得:设{}n a 为n 条直线的交点个数,则21a =,1(1),(3)n n a a n n -=+-≥,因为11n n a a n --=-,由累加法可求得:(1)12(1)2n n n a n -=+++-=,所以10109452a ⨯==,选B.2条直线相交,最多有1个交点3条直线相交,最多有3个交点4条直线相交,最多有6个交点二、有关等差、等比数列性质问题1、(北师大版第35页习题3)一个等比数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为( )A .83B .108C .75D .63变式题1、一个等差数列前n 项的和为48,前2n 项的和为60,则前3n 项的和为 。
1 高二年理科数学期末复习试题 必修5 数列 一.选择题 1.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,此后脚痛递减半,六朝才得到其关,要见每朝行里数,请公仔细算相还.”其大意为:“有一个人走378里路,第一天健步行走,从第二天起,因脚痛每天走的路程为前一天的一半,走了6天后到达目的地,求该人每天走的路程”.根据这个描述可知该人第五天走的路程为( ) A.24里 B.12里 C.6里 D.3里 2.在等差数列{an}中,a3+a7﹣a10=﹣1,a11﹣a4=21,则a7=( ) A.7 B.10 C.20 D.30 3.设{an}是等比数列,则下列结论中正确的是( ) A.若a1=1,a5=4,则a3=﹣2 B.若a1+a3>0,则a2+a4>0 C.若a2>a1,则a3>a2 D.若a2>a1>0,则a1+a3>2a2
4.等差数列{an}的首项为1,公差不为0.若a2,a3,a6成等比数列,则{an}前6项的和
为( ) A.﹣24 B.﹣3 C.3 D.8 5.已知数列{}na的前n项为nS,na,n成等差数列,若数列{}na是等比数列,则 的值为( ) A.1 B. 2 C.-1 D. -2
6.已知等比数列{an}公比为q,其前n项和为Sn,若S3、S9、S6成等差数列,则63aa等于( ) A.﹣ B.1 C.﹣或1 D.﹣1或
7.已知等比数列{an}的前n项和,则=( ) A.(2n﹣1)2 B. C.4n﹣1 D.
8.设数列na的前n项和为nS,且233nnS ,39a,则数列na的通项公式为( ) 2
A. 1*3,nnanN B. *3,nnanN C. 1,13,1nnnan D. 13,13,1nnnan 9.等差数列{an}中,,a2+a5=4,设bn=[an],[x]表示不超过x的最大整数,[0.8]=0,[2.1]=2,则数列{bn}前8项和S8=( ) A.12 B.16 C.20 D.24 10.已知等差数列{}na的前n项和为nS,首项19a,公差dZ,且当且仅当5n时,
nS取得最大值,则数列11{}nnaa的前n项和nT为( )
A.29(92)nn B. 9(92)nn C. 1(112)(92)nn D. 9(92)nn 11.设数列{an}前n项和为Sn,已知,则S2018等于( ) A. B. C. D. 12.已知等差数列{an}的前n项和为Sn,且S3=9,a2a4=21,数列{bn}满足,若,则n的最小值为( ) A.6 B.7 C.8 D.9 二.填空题(共4小题) 13.已知数列{an}为等差数列,其前n项和为Sn,2a7﹣a8=5,则S11为_________ 14.已知等比数列{an}的前n项和为Sn.若S3=7,S6=63.则S9= . 15.已知数列{}na满足151a,12nnaan,则nan的最小值为 .
16.已知数列{an}的前n项和为Sn,且满足:a1=1,a2=2,Sn+1=an+2﹣an+1(n∈N*),若不等式λSn>an恒成立,则实数λ的取值范围是 .
三.解答题 17.已知数列{an}是等差数列,前n项和为Sn,若a1=9,S3=21. (Ⅰ)求数列{an}的通项公式; 3
(Ⅱ)若a5,a8,Sk成等比数列,求k的值 18.已知{}na为等差数列,前n项和为()nSnN,{}nb是首项为2的等比数列,且公比大于0,2312bb,3412baa,11411Sb. (Ⅰ)求{}na和{}nb的通项公式;
(Ⅱ)若,,nnnancbn为奇数为偶数,求数列{c}n前2k项和()kN.
19.已知数列{an}的前n项和为Sn,且对任意正整数n,都有an=+2成立.记bn=log2an. (1)求数列{an}和{bn}的通项公式; (2)设cn=,数列{cn}的前n项和为Tn,求证:.
20.已知数列{an}的前n项和为Sn,且满足Sn+n=2an(n∈N*). (1)证明:数列{an+1}为等比数列,并求数列{an}的通项公式; (2)若bn=nan+n,数列{bn}的前n项和为Tn,求满足不等式的n的最小值. 4
21.已知数列{an}是公差为正数的等差数列,其前n项和为Sn,且a2•a3=15,S4=16. (Ⅰ)求数列{an}的通项公式; (Ⅱ)数列{bn}满足b1=a1,.
①求数列{bn}的通项公式; ②是否存在正整数m,n(m≠n),使得b2,bm,bn成等差数列?若存在,求出m,n的值;若不存在,请说明理由.
22.若数列{an}是公差为2的等差数列,数列{bn}满足b1=1,b2=2,且anbn+bn=nbn+1. (Ⅰ)求数列{an}、{bn}的通项公式;
(Ⅱ)设数列{cn}满足cn=,数列{cn}的前n项和为Tn,若不等式(﹣1)nλ<Tn+对一切n∈N*,求实数λ的取值范围.
晋江二中2016级高二年理科数学期末复习试题 参考答案与试题解析
一.选择题(共23小题) 1.已知等比数列{an}公比为q,其前n项和为Sn,若S3、S9、S6成等差数列,则q3等于 5
( ) A.﹣ B.1 C.﹣或1 D.﹣1或 【解答】解:若S3、S9、S6成等差数列, 则S3+S6=2S9, 若公比q=1, 则S3=3a1,S9=9a1,S6=6a1, 即3a1+6a1=18a1,则方程不成立, 即q≠1,
则=, 即1﹣q3+1﹣q6=2﹣2q9, 即q3+q6=2q9, 即1+q3=2q6, 即2(q3)2﹣q3﹣1=0, 解得q3=, 故选:A.
2.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初步健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔仔细算相还”.其大意为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地”.则该人第五天走的路程为( ) A.6里 B.12里 C.24里 D.48里 【解答】解:记每天走的路程里数为{an}, 由题意知{an}是公比的等比数列,
由S6=378,得=378, 解得:a1=192, ∴=12(里).
故选:B. 6
3.设等差数列{an}的前n项和为Sn,且满足S2014>0,S2015<0,对任意正整数n,都有|an|≥|ak|,则k的值为( ) A.1006 B.1007 C.1008 D.1009 【解答】解:由等差数列的求和公式和性质可得S2014
==1007(a1007+a1008)>0,
∴a1007+a1008>0 同理由S2015<0可得2015a1008<0,可得a1008<0, ∴a1007>0,a1008<0,且|a1007|>|a1008| ∵对任意正整数n,都有|an|≥|ak|, ∴k的值为1008 故选:C.
4.设{an}是等比数列,则下列结论中正确的是( ) A.若a1=1,a5=4,则a3=﹣2 B.若a1+a3>0,则a2+a4>0 C.若a2>a1,则a3>a2 D.若a2>a1>0,则a1+a3>2a2
【解答】解:A.由等比数列的性质可得:=a1•a5=4,由于奇数项的符号相同,可得
a3=2,因此不正确. B.a1+a3>0,则a2+a4=q(a1+a3),其正负由q确定,因此不正确; C.若a2>a1,则a1(q﹣1)>0,于是a3﹣a2=a1q(q﹣1),其正负由q确定,因此不正确; D.若a2>a1>0,则a1q>a1>0,可得a1>0,q>1,∴1+q2>2q,则a1(1+q2)>2a1q,即a1+a3>2a2,因此正确. 故选:D.
5.等差数列{an}中,,a2+a5=4,设bn=[an],[x]表示不超过x的最大整数,[0.8]=0,[2.1]=2,则数列{bn}前8项和S8=( ) A.12 B.16 C.20 D.24 【解答】解:由,a2+a5=4, 7
∴, 解得d=,a1=1, ∴an=a1+(n﹣1)d=(2n+3), ∵bn=[an], ∴b1=1,b2=1,b3=1,b4=2,b5=2,b6=3,b7=3,b8=3, ∴S8=1+1+1+2+2+3+3+3=16, 故选:B
6.中国古代数学著作《算法统宗》中有这样一个问题:“三百七十八里关,初行健步不为难,次日脚痛减一半,六朝才得到其关,要见次日行里数,请公仔细算相还.”其意思为:“有一个人走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天后到达目的地,请问第三天走了( ) A.60里 B.48里 C.36里 D.24里 【解答】解:由题意得,每天行走的路程成等比数列{an},且公比为,
∵6天后共走了378里,∴S6=, 解得a1=192, ∴第三天走了a3=a1×=192×=48, 故选B.
7.记Sn为等差数列{an}的前n项和.若a4+a5=24,S6=48,则{an}的公差为( ) A.1 B.2 C.4 D.8 【解答】解:∵Sn为等差数列{an}的前n项和,a4+a5=24,S6=48,
∴, 解得a1=﹣2,d=4,