人教版七年级数学上册第二单元整式的加减法练习题精选39
- 格式:doc
- 大小:155.00 KB
- 文档页数:61
一、解答题1.一种商品每件成本a 元,原来按成本增加22%定出价格.(1)请问每件售价多少元?(2)现在由于库存积压减价,按售价的85%出售,请问每件还能盈利多少元?解析:(1)每件售价1.22a 元;(2)每件盈利0.037a 元.【分析】(1)根据每件成本a 元,原来按成本增加22%定出价格,列出代数式,再进行整理即可; (2)用原价的85%减去成本a 元,列出代数式,即可得出答案.【详解】(1)根据题意,得:(1+22%)a =1.22a (元),答:每件售价1.22a 元;(2)根据题意,得:1.22a ×85%-a =0.037a (元).答:每件盈利0.037a 元.【点睛】本题考查了列代数式,解决问题的关键是读懂题意,找到所求的量的等量关系,注意把列出的式子进行整理.2.若单项式21425m n x y +--与413n m x y +是同类项,求这两个单项式的积 解析:10453x y - 【分析】根据题意,可得到关于m ,n 的二元一次方程组,求出m ,n 的值,即可求得答案.【详解】∵单项式21425m n x y +--与413n m x y +是同类项, ∴21442m n n m +=+⎧⎨-=⎩, 解得21m n =⎧⎨=⎩, ∴21425252441011355533n m m n x y x y x y x y x y ++--⋅-⋅=-= 【点睛】本题主要考查同类项的定义和单项式乘单项式的法则,根据同类项的定义,列出关于m ,n 的二元一次方程组,是解题的关键.3.给定一列分式:3x y ,52x y -,73x y ,94x y-,…(其中0x ≠). (1)把任意一个分式除以前面一个分式,你发现了什么规律?(2)根据你发现的规律,试写出给定的那列分式中的第7个分式和第8个分式.解析:(1)任意一个分式除以前面一个分式,都得2x y -.(2)第7个分式为157x y,第8个分式为178x y-. 【分析】(1)分别算出第二个与第一个,第三个与第二个,第四个与第三个分式的除法结果,即可发现规律;(2)根据题中所给的式子找出分子、分母的指数变化规律、再找出符号的正负交替变化规律,根据规律写出所求的式子.【详解】解:(1)5352223x x x y x y y y x y, 757223235x x x y x y y y x y , 979324347x x x y x y y y x y , …… ∴任意一个分式除以前面一个分式,都得2x y-. (2)∵由式子3579234x x x x y y y y,-,,- …,发现分母上是y 1,y 2,y 3,y 4,……所以第7个式子分母上是y 7,第8个分母上是y 8;分子上是x 3,x 5,x 7,x 9,……所以第7个式子分子上是x 15,第8个分子上是x 17,再观察符号发现,第偶数个为负,第奇数个为正,∴第7个分式为157x y,第8个分式为178x y -. 【点睛】本题考查式子的规律,根据题意分别找出分子和分母及符号的变化规律是解答此题的关键. 4.已知22332A x y xy =+-,2222B xy y x =--.(1)求23A B -.(2)若|23|1x -=,29y =,且||x y y x -=-,求23A B -的值.解析:(1)2212127x y xy +-;(2)114或99.【分析】(1)把22332A x y xy =+-,2222B xy y x =--代入23A B -计算即可;(2)根据|23|1x -=,29y =,且||x y y x -=-求出x 和y 的值,然后代入(1)中化简的结果计算即可.【详解】解:(1)()()2222232332322A B x y xy xy y x -=+----2222664366x y xy xy y x =+--++2212127x y xy =+-;(2)由题意可知:231x -=±,3=±y ,∴2x =或1,3=±y ,由于||x y y x -=-,∴2x =,3y =或1x =,3y =.当2x =,3y =时,23114A B -=.当1x =,3y =时,2399A B -=.所以,23A B -的值为114或99.【点睛】本题考查了整式的加减运算,绝对值的意义,以及分类讨论的数学思想,熟练掌握整式的加减运算法则是解(1)的关键,分类讨论是解(2)的关键.5.某商店出售一种商品,其原价为m 元,现有如下两种调价方案:一种是先提价10%,在此基础上又降价10%;另一种是先降价10%,在此基础上又提价10%.(1)用这两种方案调价的结果是否一样?调价后的结果是不是都恢复了原价?(2)两种调价方案改为:一种是先提价20%,在此基础上又降价20%;另一种是先降价20%,在此基础上又提价20%,这时结果怎样?(3)你能总结出什么规律吗?解析:(1)这两种方案调价的结果一样,都没有恢复原价;(2)这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价..【分析】(1)先提价10%为110m%,再降价10%后价钱为99m%;先降价10%为90m%,再提价10%后价钱为99m%,据此可得答案;(2)先提价20%为120%m ,再降价20%后价钱为96%m ;先降价20%为80%m ,再提价20%后价钱为96%m ,据此可得答案;(3)根据(1)(2)的结果得出规律即可.【详解】解:(1)方案一:先提价10%价钱为()110%110%m m +=,再降价10%后价钱为()110%110%99%m m ⨯-=;方案二:先降价10%价钱为()110%90%m m -=,再提价10%后价钱为()90%110%99%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(2)方案一:先提价20%价钱为()120%120%m m +=,再降价20%后价钱为()120%120%96%m m ⨯-=;方案二:先降价20%价钱为()120%80%m m -=,再提价20%后价钱为()80%120%96%m m ⨯+=,故这两种方案调价的结果一样,都没有恢复原价;(3)在原价基础上,先提价百分之多少,在此基础上再降价同样的百分数,与先降价百分之多少,再提价同样的百分数,最后结果一样,但都没有恢复原价.【点睛】本题考查了列代数式的知识,解题的关键是能够表示出降价或涨价后的量,难度不大. 6.窗户的形状如图所示(图中长度单位:cm ),其中上部是半圆形,下部是边长相同的四个小正方形. 已知下部小正方形的边长是acm.(1)计算窗户的面积(计算结果保留π).(2)计算窗户的外框的总长(计算结果保留π).(3)安装一种普通合金材料的窗户单价是175元/平方米,当a=50cm 时,请你帮助计算这个窗户安装这种材料的费用(π≈3.14,窗户面积精确到0.1).解析:(1)2214a +a 2π;(2)6a a π+;(3)245.【分析】(1)根据图示,窗户的面积等于4个小正方形的面积加上半径是a 的半圆的面积;(2)根据图示,窗户外框的总长就是用3条长度是2acm 的边的长度加上半径是acm 的半圆的长度;(3)根据窗户的总面积,代入求值即可.【详解】 解:(1)窗户的面积为:()()222214a a 422a a a cm ππ⎛⎫⨯+=+ ⎪⎝⎭ (2)窗户的外框的总长为:()()132a 262a a a cm ππ⨯+⨯=+ (3)当a=50cm ,即:a=0.5m 时,窗户的总面积为:()2220.540.5128m ππ⎛⎫⨯+=+ ⎪⎝⎭ 取π≈3.14,原式=1+0.3925≈1.4(m 2)安装窗户的费用为:1.4×175=245(元).【点睛】本题考查的知识点是求组合图形的面积与周长,将已知图形分解为所熟悉的简单图形是解此题的关键.7.有一道化简求值题:“当1a =-,3b =-时,求222(32)2(())44a b ab ab a ab a b ---+-的值.”小明做题时,把“1a =-”错抄成了“1a =”,但他的计算结果却是正确的,小明百思不得其解,请你帮他解释一下原因,并求出这个值.解析:2228a b a +,解释见解析,2.【分析】将原式化简后即可对计算结果进行解释;将a 、b 的值代入化简后的式子计算即得结果.【详解】解:原式22232284a b ab ab a ab a b =--++-2228a b a =+.因为无论1a =-,还是1a =,2a 都等于1,所以代入的结果是一样的.所以当1a =-,3b =-时,原式222(1)(3)8(1)=⨯-⨯-+⨯-682=-+=.【点睛】本题考查了整式的加减运算及代数式求值,属于常考题型,熟练掌握整式加减运算法则是解题关键.8.已知多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同,求m ,n 的值. 解析:m =1,n =4.【分析】根据多项式的次数是多项式中次数最高的单项式的次数,可得m 的值,根据单项式的次数是单项式中所有字母指数和,可得n 的值.【详解】∵多项式﹣x 2y 2m +1+xy ﹣6x 3﹣1是五次四项式,且单项式πx n y 4m ﹣3与多项式的次数相同, ∴2+2m +1=5,n +4m ﹣3=5,解得m =1,n =4.【点睛】本题考查了多项式,利用多项式的次数是多项式中次数最高的单项式的次数,单项式的次数是单项式中所有字母指数和得出m 、n 的值是解题关键.9.化简:(1)()()22224232a b ab ab a b ---;(2)2237(43)2x x x x ⎡⎤----⎣⎦.解析:(1)22105a b ab -;(2)2533x x --【分析】(1)先去括号,再合并同类项即可得到答案;(2)先去括号,再合并同类项即可得到答案.【详解】(1)()()22224232a b ab ab a b ---22224236a b ab ab a b =--+22105a b ab =-.(2)2237(43)2x x x x ⎡⎤----⎣⎦2237(43)2x x x x =-+-+2237432x x x x =-+-+2533x x =--.【点睛】本题主要考查了整式的加减,整式加减的实质就是去括号,合并同类项,一般步骤是:先去括号,然后再合并同类项.10.有理数,,a b c 在数轴上的位置如图所示,化简代数式||||||||a c b b a b a ----++.解析:3a b c --+【分析】首先判断出a c -,b b a b a -+,,的正负,再去掉绝对值符号,然后合并同类项即可.【详解】由题意可知0a c -<,0b >,0b a ->,0b a +<,||||||||a c b b a b a ----++3a c b b a b a a b c =-+--+--=--+.故答案为:3a b c --+.【点睛】本题主要考查了整式的化简求值,数轴,绝对值,熟练掌握运算法则以及数轴上右边的数总比左边的数大是解答本题的关键.11.单项式233x y π-的系数是______,次数是______.佳佳认为此单项式的系数是3-,次数为6,请问佳佳的答案正确吗?如果不正确,请说明错误的理由,并且把正确的答案写出来.解析:23π-,4.佳佳的答案不正确,此题错将π当成是未知数,因而加上了“π的次数”.正确的答案为系数是23π-,次数是4.【分析】根据单项式系数、次数的定义来求解.单项式中数字因数叫做单项式的系数,所有字母的指数和叫做这个单项式的次数.【详解】佳佳的答案不正确,此题错将π当成是未知数,因而加上了“π的次数”.故正确的答案为系数是23π-,次数是4.【点睛】考查了单项式,解答此题关键是构造单项式的系数和次数,把一个单项式分解成数字因数和字母因式的积,是找准单项式的系数和次数的关键.12.已知222242,325A ab b a B b a ab =--=-+,当11.5,2a b ==-时,求34B A -的值. 解析:12【分析】根据题意,先根据整式的混合运算法则化简34B A -,再将a ,b 的值代入即可.【详解】()()2222222234332544296151684B A b a ab ab b a b a ab ab b a -=-+---=-+-++=22172b a ab --,当11.5,2a b ==-时,原式22111931172 1.5 1.517224242⎛⎫⎛⎫=⨯--⨯-⨯-=⨯-+= ⎪ ⎪⎝⎭⎝⎭. 【点睛】本题主要考查了整式的化简求值,熟练掌握整式的混合运算法则以及有理数的运算是解决本题的关键.13.已知,,a b c 在数轴上的位置如图所示,解答下列问题.(1)化简:||||||a b c b b a +--+-;(2)若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,求2()a b c a b c -++-+-的值.解析:(1)2a b c -+;(2)-9【分析】(1)由数轴上的位置,先判断0,0,0+>-<-<a b c b b a ,再根据绝对值的意义进行化简,即可得到答案.(2)由绝对值的意义,倒数的定义,平方根的定义,先求出a 、b 、c 的值,再代入计算,即可得到答案.【详解】解:(1)由数轴可得:0c b a <<<,∴0,0,0+>-<-<a b c b b a ,∴原式2a b c b b a a b c =++--+=-+.(2)由题意,∵若a 的绝对值的相反数是2,b --的倒数是它本身,24c =,∴2,1,2a b c ==-=-,∴2()2a b c a b c a b c a b c -++-+-=-++--+=224149a b c -++=---=-.【点睛】本题考查了数轴的定义,绝对值的意义,倒数的定义,平方根的定义等知识,解题的关键是利用数轴正确判断0c b a <<<,从而进行解题.14.化简与求值:(1)若1a =-,则式子21a -的值为______;(2)若1a b +=,则式子12a b ++的值为______; (3)若534a b +=-,请你仿照以上求式子值的方法求出()()2422a b a b +++-的值. 解析:(1)0;(2)32;(3)-10. 【分析】(1)把a 的值代入计算即可;(2)把a+b 的值代入计算即可;(3)原式去括号转化为含有(5a+3b)的式子,然后代入5a+3b 的值计算即可.【详解】解:(1)()221110a -=--=;(2)1311222a b ++=+=; (3)()()()()24221062253224210a b a b a b a b +++-=+-=+-=⨯--=-.【点睛】本题考查的是整式的化简求值和整体代换的思想.只要原式化简出含有已知的式子,再代入求值即可.15.用代数式表示:(1)比x 的平方的5倍少2的数;(2)x 的相反数与y 的倒数的和;(3)x 与y 的差的平方;(4)某商品的原价是a 元,提价15%后的价格;(5)有一个三位数,个位数字比十位数字少4,百位数字是个位数字的2倍,设x 表示十位上的数字,用代数式表示这个三位数.解析:(1)5x 2-2;(2)-x +1y;(3)(x -y )2;(4)(1+15%)a ;(5)200(x -4)+10x +(x -4). 【分析】(1)明确是x 的平方的5倍与2的差;(2)先求出x 的相反数与y 的倒数,然后相加即可;(3)注意是先做差后平方;(4)注意是提价后的价格而非所提的价格;(5)注意正确表示百位,十位,个位上的数.【详解】(1)5x 2-2;(2)-x +1y; (3)(x -y )2;(4)(1+15%)a ;(5)200(x -4)+10x +(x -4) .【点睛】本题考查了列代数式,能够根据运算顺序正确书写,同时注意数位的意义,注意“多,少,积,差”等关键字的把握.16.在数学活动课上,李老师设计了一个游戏活动,四名同学分别代表一种运算,四名同学可以任意排列,每次排列代表一种运算顺序,剩余同学中,一名学生负责说一个数,其他同学负责运算,运算结果既对又快者获胜,可以得到一个奖品.下面我们用四个卡片代表四名同学(如下):(1)列式,并计算:①3-经过A ,B ,C ,D 的顺序运算后,结果是多少?②5经过B ,C ,A ,D 的顺序运算后,结果是多少?(2)探究:数a 经过D ,C ,A ,B 的顺序运算后,结果是45,a 是多少?解析:(1)①7;②206;(2)256a =或256a =-【分析】(1)把-3和5经过A ,B ,C ,D 的运算顺序计算即可;(2)根据已知条件列列出关于a 的方程计算即可;【详解】(1)①2[(3)2(5)]67-⨯--+=;②2[5(5)]26206--⨯+=;(2)()()226545a +--=,()2620a +=,解得256a =或256a =-.【点睛】本题主要考查了规律型数字变化类,一元二次方程的求解,准确计算是解题的关键. 17.图①是一个三角形,分别连接这个三角形三边的中点得到图②;再分别连接图②中间小三角形三边的中点,得到图③.(1) 图②有 个三角形;图③有 个三角形;(2) 按上面的方法继续下去,第n 个图形中有多少个三角形(用n 的代数式表示结论).解析:(1)5,9 ;(2)43n -【分析】(1)由图形即可数得答案;(2)发现每个图形都比起前一个图形多4个,所以第n 个图形中有14(1)43n n +⨯-=-个三角形.【详解】解:(1)根据图形可得:5,9;(2)发现每个图形都比起前一个图形多 4 个,∴第n 个图形中有14(1)43n n +⨯-=-个三角形.【点睛】本题考查图形的特征,根据图形的特征找出规律,属于一般题型.18.已知多项式234212553x x x x ++-- (1)把这个多项式按x 的降冥重新排列; (2)请指出该多项式的次数,并写出它的二次项和常规项.解析:(1)432215253x x x x -+++-;(2)该多项式的次数为4,二次项是22x ,常数项是13-.【分析】(1)按照x 的指数从大到小的顺序把各项重新排列即可;(2)根据多项式的次数的定义找出次数最高的项即是该多项式的次数,再找出次数是2的项和不含字母的项即可得二次项和常数项.【详解】(1)按的降幂排列为原式432215253x x x x -+++-. (2)∵234212553x x x x ++--中次数最高的项是-5x 4, ∴该多项式的次数为4,它的二次项是22x ,常数项是13-. 【点睛】本题考查多项式的定义,正确掌握多项式次数及各项的判定方法及多项式升幂、降幂排列方法是解题关键.19.让我们规定一种运算a b ad cb c d =-, 如232534245=⨯-⨯=-. 再如14224x x =-. 按照这种运算规定,请解答下列问题,(1)计算60.5142= ;-3-245= ;2-335xx =-(2)当x=-1时,求223212232x x x x -++-+---的值(要求写出计算过程). 解析:(1)1;-7;-x ;(2)-7【分析】(1)根据新运算的定义式,代入数据求出结果即可;(2)根据新运算的定义式将原式化简为-x-8,代入x=-1即可得出结论.【详解】解:(1)60.5160.543211242=⨯-⨯=-=; -3-23524158745=-⨯--⨯=---=-()(); 2-3253310935x x x x x x x=⨯---⨯=---=--()()(). 故答案为:1;-7;-x .(2)原式=(-3x 2+2x+1)×(-2)-(-2x 2+x-2)×(-3),=(6x 2-4x-2)-(6x 2-3x+6),=-x-8,当x=-1时,原式=-x-8=-(-1)-8=-7.∴当x=-1时,223212232x x x x -++-+---的值为-7. 【点睛】本题考查了整式的化简求值以及有理数的混合运算,读懂题意掌握新运算并能用其将整式进行化简是解题的关键.20.数a 、b 、c 在数轴上对应的位置如图所示,化简a c c b a b +-++-.解析:0;【分析】由数轴可得a >0>b >c ,并从数轴上可得出a ,b ,c 绝对值的大小,从而可以得出各项式子的正负,去绝对值可得出答案.【详解】解:由数轴得,c b 0a <<<,且c a b >>,a c cb a b +-++-a c cb a b =--+++-0=.【点睛】本题考查了数轴上数的大小,去绝对值,熟悉掌握定义是解决本题的关键.21.已知有理数a 和b 满足多项式A ,且A=(a ﹣1)x 5+x |b+2|﹣2x 2+bx+b (b≠﹣2)是关于x 的二次三项式,求(a ﹣b )2的值.解析:16或25【解析】试题分析:根据有理数a 和b 满足多项式A .A =(a ﹣1)x 5+x |b +2|﹣2x 2+bx +b 是关于x 的二次三项式,求得a 、b 的值,然后分别代入计算可得.试题解:∵有理数a 和b 满足多项式A .A =(a ﹣1)x 5+x |b +2|﹣2x 2+bx +b 是关于x 的二次三项式,∴a ﹣1=0,解得:a =1.(1)当|b +2|=2时,解得:b =0或b =4.①当b =0时,此时A 不是二次三项式;②当b =﹣4时,此时A 是关于x 的二次三项式.(2)当|b +2|=1时,解得:b =﹣1(舍)或b =﹣3.(3)当|b +2|=0时,解得:b =﹣2(舍)∴a =1,b =﹣4或a =1,b =﹣3.当a =1,b =﹣4时,(a ﹣b )2=25;当a =1,b =﹣3时,(a ﹣b )2=16.点睛:本题考查了多项式的知识,解题的关键是根据题意求得a 、b 的值,题目中重点渗透了分类讨论思想.22.计算:7ab-3a 2b 2+7+8ab 2+3a 2b 2-3-7ab .解析:8ab 2+4.【分析】原式合并同类项即可得到结果.【详解】原式=(7﹣7)ab +(﹣3+3)a 2b 2+8ab 2+(7﹣3)=8ab 2+4.【点睛】本题考查了合并同类项得法则.即系数相加作为系数,字母和字母的指数不变. 23.小丽暑假期间参加社会实践活动,从某批发市场以批发价每个m 元的价格购进100个手机充电宝,然后每个加价n 元到市场出售.(1)求售出100个手机充电宝的总售价为多少元(结果用含m ,n 的式子表示)? (2)由于开学临近,小丽在成功售出60个充电宝后,决定将剩余充电宝按售价8折出售,并很快全部售完.①她的总销售额是多少元?②相比不采取降价销售,她将比实际销售多盈利多少元(结果用含m 、n 的式子表示)? ③若m=2n ,小丽实际销售完这批充电宝的利润率为 (利润率=利润÷进价×100%) 解析:(1)售出100个手机充电宝的总售价为:100(m+n )元;(2)①实际总销售额为:92(m+n )元;②实际盈利为92n ﹣8m 元;③38%.【分析】(1)先求出每个充电宝的售价,再乘以100,即可得出答案;(2)①先算出60个按售价出售的充电宝的销售额,再计算剩下40个按售价8折出售的充电宝的销售额,相加即可得出答案;②计算100个按售价出售的充电宝的销售额,跟①求出来的销售额比较,即可得出答案;③将m=2n 代入实际利润92n-8m 中,再根据利润率=利润÷进价×100%,即可得出答案.【详解】解:(1)∵每个充电宝的售价为:m+n 元,∴售出100个手机充电宝的总售价为:100(m+n )元.(2)①实际总销售额为:60(m+n )+40×0.8(m+n )=92(m+n )元,②实际盈利为92(m+n )﹣100m=92n ﹣8m 元,∵100n ﹣(92n ﹣8m )=8(m+n ),∴相比不采取降价销售,他将比实际销售多盈利8(m+n )元.③当m=2n 时,张明实际销售完这批充电宝的利润为92n ﹣8m=38m 元, 利润率为38100m m×100%=38%. 故答案为38%.【点睛】 本题考查的是列代数式,解题的关键是要看懂题目意思,理清字母之间的数量关系. 24.已知230x y ++-=,求152423x y xy --+的值. 解析:-24.【分析】首先根据绝对值的非负性求出x ,y ,然后代入代数式求值.【详解】解:∵230x y ++-=,∴x+2=0,y-3=0,∴x=-2,y=3, ∴152423x y xy --+()()552342323=-⨯--⨯+⨯-⨯ ()5524=-+-24=-.【点睛】本题考查了代数式求值,利用非负数的和为零得出x 、y 的值是解题关键.25.已知多项式22622452x mxyy xy x 中不含xy 项,求代数式32322125m m m m m m 的值.解析:-14【分析】先合并已知多项式中的同类项,然后根据合并后的式子中不含xy 项即可求出m 的值,再把所求式子合并同类项后代入m 的值计算即可.【详解】解:2222622452=6+42252x mxy y xy x x m xy y x , 由题意,得4-2m =0,所以m =2; 所以32322125m m m m m m =3226m m .当m =2时,原式= 322226 =14-. 【点睛】本题考查了整式的加减,属于基本题型,正确理解题意、熟练掌握合并同类项的法则是解题的关键.26.有一长方体形状的物体,它的长,宽,高分别为a ,b ,c(a>b>c),有三种不同的捆扎方式(如图所示的虚线).哪种方式用绳最少?哪种方式用绳最多?说明理由.解析:方式甲用绳最少,方式丙用绳最多.【解析】试题分析:根据长方形的对称性分别得到三种方式所需要的绳子的长度,然后将这三个代数式进行作差比较大小.试题方式甲所用绳长为4a +4b +8c ,方式乙所用绳长为4a +6b +6c ,方式丙所用绳长为6a +6b +4c ,因为a>b>c ,所以方式乙比方式甲多用绳(4a +6b +6c)-(4a +4b +8c)=2b -2c ,方式丙比方式乙多用绳(6a +6b +4c)-(4a +6b +6c)=2a -2c.因此,方式甲用绳最少,方式丙用绳最多.27.我们将不大于2020的正整数随机分为两组.第一组按照升序排列得到121010a a a <<<,第二组按照降序排列得到121010b b b >>>, 求112210101010a b a b a b -+-++-的所有可能值.解析:1020100【分析】 由题意知,对于代数式的任何一项:|a k -b k |(k=1,2,…1010),较大的数一定大于1010,较小的数一定不大于1010,即可得出结论.【详解】解:(1)若a k ≤1010,且b k ≤1010,则a 1<a 2<…<a k ≤1010,1010≥b k >b k+1>…>b 1010,则a 1,a 2,…a k ,b k ,……,b 1010,共1011个数,不大于1010不可能;(2)若a k >1010,且b k >1010,则a 1010>a 1009>…>a k+1>a k >1010及b 1>b 2>…>b k >1010,则b 1,……,b k ,a k ……a 1010共1011个数都大于100,也不可能;∴|a 1-b 1|,……,|a 1010-b 1010|中一个数大于1010,一个数不大于1010,∴|a 1-b 1|+|a 2-b 2|+…+|a 1010-b 1010|=1010×1010=1020100.【点睛】本题考查数字问题,考查学生的计算能力,属于中档题.28.观察下列式子:0×2+1=12……①1×3+1=22……②2×4+1=32……③3×5+1=42……④……(1)第⑤个式子____,第⑩个式子_____;(2)请用含n(n 为正整数)的式子表示上述的规律,并证明.解析:(1)4×6+1=52,9×11+1=102;(2)(n ﹣1)(n+1)+1=n 2;证明见解析.【分析】(1)根据已知等式中的规律即可得;(2)根据整数的平方等于前一个整数与后一个整数乘积与1的和可得,利用整理的运算法则即可验证.【详解】(1)第⑤个式子为4×6+1=52,第⑩个式子9×11+1=102;故答案为4×6+1=52,9×11+1=102;(2)第n 个式子为(n ﹣1)(n+1)+1=n 2,证明:左边=n 2﹣1+1=n 2,右边=n 2,∴左边=右边,即(n ﹣1)(n+1)+1=n 2.【点睛】本题主要考查数字的变化规律,解题的关键是根据已知等式得出(n ﹣1)(n+1)+1=n 2的规律,并熟练加以运用.29.观察下面的点阵图和相应的等式,探究其中的规律:(1)在④和⑤后面的横线上分别写出相应的等式:①1=12;②1+3=22;③1+3+5=32;④_____________;⑤_____________;….(2)通过猜想写出与第n个点阵图相对应的等式.解析:(1) 1+3+5+7=42; 1+3+5+7+9=52;(2)1+3+5+…+(2n-1)=n2.【分析】根据图示和数据可知规律是:等式左边是连续的奇数和,等式右边是等式左边的首数与末数的平均数的平方,据此进行解答即可.【详解】(1)由图①知黑点个数为1个,由图②知在图①的基础上增加3个,由图③知在图②基础上增加5个,则可推知图④应为在图③基础上增加7个即有1+3+5+7=42,图⑤应为1+3+5+7+9=52,故答案为④1+3+5+7=42;⑤1+3+5+7+9=52;(2)由(1)中推理可知第n个图形黑点个数为1+3+5+…+(2n-1)=n2.【点睛】本题考查了规律型——数字的变化类,解答此类问题的关键是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.30.上海与南京间的公路长为364km,一辆汽车以xkm/h的速度开往南京,请用代数式表示:(1)汽车从上海到南京需多少小时?(2)如果汽车的速度增加2km/h,从上海到南京需多少小时?(3)如果汽车的速度增加2km/h,可比原来早到几小时?解析:(1)364xh;(2)3642x+h;(3)3643642x x⎛⎫-⎪+⎝⎭h【分析】(1)根据题意,可以用代数式表示出汽车从上海到南京需要的时间;(2)根据题意,可以用代数式表示出汽车的速度增加2千米/时,从上海到南京需要的时间;(3)根据题意,可以用代数式表示出如果汽车的速度增加2千米/时,可比原来早到几小时.【详解】解:(1)汽车从上海到南京需364xh;(2)如果汽车的速度增加2km/h,从上海到南京需3642x+h;(3)如果汽车的速度增加2km/h,可比原来早到3643642x x⎛⎫-⎪+⎝⎭h.【点睛】本题考查列代数式,解答本题的关键是明确题意,列出相应的代数式.。
一、选择题1.已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km 的两地同时出发,相向面行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相遇后又相距20km ?③甲乙两人从相距60km 的两地相向面行,甲的速度是4/km h ,乙的速度是6/km h ,如果甲先走了20km 后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km 的两地同时出发,背向而行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相距60km ?其中,可以用方程462060x x ++=表述题目中对应数量关系的应用题序号是( )A .①②③④B .①③④C .②③④D .①② 2.方程2424x x -=-+的解是 ( )A .x =2B .x =−2C .x =1D .x =03.如图,方格中的格子被填上了数,每一行、每一列以及两条对角线中所填的数字之和均相等,则的值为( )A .B .C .D . 4.下列运用等式的性质对等式进行的变形中,错误的是( ) A .()()2211a x b x +=+若,则a b =B .若a b =,则ac bc =C .若a b =,则22a b c c= D .若x y =,则33x y -=- 5.已知方程(1)30m m x-+=是关于x 的一元一次方程,则m 的值是( ) A .±1 B .1 C .-1 D .0或1 6.某校在举办“读书月”的活动中,将一些图书分给了七年一班的学生阅读,如果每人分3本,则剩余20本:如果每人分4本,则还缺25本.若设该校七年一班有学生x 人,则下列方程正确的是( )A .3x ﹣20=24x +25B .3x +20=4x ﹣25C .3x ﹣20=4x ﹣25D .3x +20=4x +25 7.将方程2152132x x -+=-去分母,得( )A .()()211352x x -=-+B .416152x x -=-+C .416152x x -=--D .()()2216352x x -=-+8.对于ax+b=0(a ,b 为常数),表述正确的是( )A .当a≠0时,方程的解是x=b aB .当a=0,b≠0时,方程有无数解C .当a=0,b=0,方程无解D .以上都不正确.9.下列说法正确的是( )A .若a c =b c ,则a=bB .若-12x=4y ,则x=-2y C .若ax=bx ,则a=b D .若a 2=b 2,则a=b10.如图,正方ABCD 形的边长是2个单位,一只乌龟从A 点出发以2个单位/秒的速度顺时针绕正方形运动,另有一只兔子也从A 点出发以6个单位/秒的速度逆时针绕正方形运动,则第2020次相遇在( )A .点AB .点BC .点CD .点D11.一游泳池计划注入一定体积的水,按每小时500立方米的速度注水,注水2小时,注水口发生故障,停止注水,经20分钟抢修后,注水速度比原来提高了20%,结果比预定的时间提前了10分钟完成注水任务,则计划注入水的体积为( )A .34000mB .32500mC .32000mD .3500m 12.下列方程中,以x =-1为解的方程是( )A .B .7(x -1)=0C .4x -7=5x +7D .x =-3二、填空题13.用等式的性质解方程:155x -=,两边同时________,得x =________;245y =,两边同时________,得y =________.14.猪是中国十二生肖排行第十二的动物,对应地支为“亥”.现规定一种新的运算,a 亥b ab b =-,则满足等式123x -亥61=-的x 的值为__________. 15.若4a +9与3a +5互为相反数,则a 的值为_____. 16.开学初,小明到某商场购物,发现商场正在进行购物返券活动,活动规则如下:购物每满100元,返购物券50元,此购物券在本商场通用,且用购物券购买商品不再返券,也不得找零. 小明只购物买了单价别为60元,80元和120元的物品各一件,使用购物券后,他的实际花费为_________元.17.某长方形足球场的周长为340米,长比宽多20米,问这个足球场的长和宽各是多少米.(1)若设这个足球场的宽为x米,那么长为_______米。
一、选择题1.若│x -2│+(3y+2)2=0,则x+6y 的值是( )A .-1B .-2C .-3D .322.已知下列四个应用题:①现有60个零件的加工任务,甲单独每小时可以加工4个零件,乙单独每小时可以加工6个零件.现甲乙两人合作,问两人开始工作几小时后还有20个零件没有加工?②甲乙两人从相距60km 的两地同时出发,相向面行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相遇后又相距20km ?③甲乙两人从相距60km 的两地相向面行,甲的速度是4/km h ,乙的速度是6/km h ,如果甲先走了20km 后,乙再出发,问乙出发后几小时两人相遇?④甲乙两人从相距20km 的两地同时出发,背向而行,甲的速度是4/km h ,乙的速度是6/km h ,问经过几小时后两人相距60km ?其中,可以用方程462060x x ++=表述题目中对应数量关系的应用题序号是( )A .①②③④B .①③④C .②③④D .①② 3.如图,相同形状的物体的重量是相等的,其中最左边天平是平衡的,则右边三个天平中仍然平衡的是( )A .①②③B .①③C .①②D .②③ 4.如果x =2是方程12x +a =﹣1的解,那么a 的值是( ) A .0B .2C .﹣2D .﹣6 5.下列变形中,正确的是( ) A .变形为 B .变形为 C .变形为 D .变形为6.下列解方程的过程中,移项正确的是( ) A .由,得B .由,得C .由,得D .由,得7.一家商店将某种服装按成本提高40%标价,又以8折优惠卖出,结果每件服装仍可获利15元,则这种服装每件的成本价是()A.120元B.125元C.135元D.140元8.下列变形不正确的是()A.由2x-3=5得:2x=8 B.由-23x=2得:x=-3C.由2x=5得:x=25D.由x+5 =3x-2得:7=2x9.下列方程中,其解为﹣1的方程是()A.2y=﹣1+y B.3﹣y=2 C.x﹣4=3 D.﹣2x﹣2=410.解方程32282323x x x----=的步骤如下,错误的是()①2(3x﹣2)﹣3(x﹣2)=2(8﹣2x);②6x﹣4﹣3x﹣6=16﹣4x;③3x+4x=16+10;④x=267.A.①B.②C.③D.④11.一张试卷共有25道题,若做对1题得4分,做错1题扣1分,小明做了全部试题只得了70分,那么小明做对了()道.A.17 B.18 C.19 D.2012.下列方程中,以x=-1为解的方程是()A.B.7(x-1)=0 C.4x-7=5x+7 D.x=-3二、填空题13.为了创建宜居城市,某单位积极响应植树活动,由一人植树要80小时完成.现由一部分人植树5小时,由于单位有紧急事情,再增加2人,4小时后完成植树任务.若这些人的工作效率相同,则先植树的有________人.14.若关于x的方程2x+a=9﹣a(x﹣1)的解是x=3,则a的值为_____.15.某公司销售一种进价为21元的电子产品,按标价的九折销售,仍可获利20%,则这种电子产品的标价为_________元.16.对于实数a,b,c,d,规定一种运算a bc d=ad-bc,如102(2)-=1×(-2)-0×2=-2,那么当(1)(2)(3)(1)x xx x++--=27时,则x=_____.17.一个长方形周长是44cm,长比宽的3倍少10cm,则这个长方形的面积是______.18.将一个底面直径是10cm、高为40cm的圆柱锻压成底面直径为16cm的圆柱,则锻压后圆柱的高为________cm.19.某次数学测验中有16道选择题,评分办法:答对一道得6分,答错一道扣2分,不答得0分.某学生有一道题未答,那么这个同学至少要答对________道题,成绩才能在60分以上.20.关于x 的方程211-20m mx m x +﹣(﹣)=如果是一元一次方程,则其解为_____.三、解答题21.某商场投入13800元资金购进甲、乙两种矿泉水共500箱,矿泉水的成本价和销售价如表所示:(1)该商场购进甲、乙两种矿泉水各多少箱?(2)全部售完500箱矿泉水,该商场共获得利润多少元?22.解方程:121(2050)(52)(463210)0x x x ++++=-. 23.如果,a b 为定值,关于x 的方程2236kx a x bk +-=+无论k 为何值时,它的根总是1,求,a b 的值. 24.《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”25.设a ,b ,c ,d 为有理数,现规定一种新的运算:a bad bc c d =-,那么当35727x-=时,x 的值是多少?26.解下列方程(1)-9x-4x+8x=-3-7;(2)3x+10x=25+0.5x .【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【分析】根据非负数的性质,可求得x 、y 的值,再将x ,y 的值代入可得出答案.【详解】解:∵│x -2│+(3y+2)2=0,∴x-2=0且3y+2=0,解得x=2,y=-23, ∴x+6y=2+6×(-23)=2-4=-2. 故选:B .【点睛】本题考查了非负数的性质,能够利用非负数的和为零得出x 、y 的值是解题关键. 2.B解析:B【分析】①根据甲的工作量+乙的工作量+未完成的工作量=总的工作量,设x 小时后还有20个零件没有加工,据此列方程解答;②根据甲行驶的路程+乙行驶的路程=总路程+相遇后相距的路程,设x 小时后相遇后相距20km ,据此列方程解答;③依据甲乙行驶的路程和+甲先走的路程=总路程,设x 小时后相遇后,据此列方程解答; ④根据甲乙两人的距离+甲乙各自行驶的路程=总路程,设行驶x 小时,据此列方程解答即可.【详解】①设x 小时后还有20个零件没有加工,根据题意得,462060x x ++=,故①正确; ②设x 小时后相遇后相距20km ,根据题意得,466020x x +=+,故②错误; ③甲先走了20km 后,乙再出发,设乙出发后x 小时两人相遇,根据题意得,462060x x ++=,故③正确;④经过x 小时后两人相距60km ,根据题意得,462060x x ++=,故④正确. 因此,正确的是①③④.故选:B.【点睛】此题考查了一元一次方程的应用,关键是读懂题意,找出题目中的等量关系,列出方程. 3.B解析:B【分析】根据等式的性质,可得答案.【详解】因为最左边天平是平衡的,所以2个球的重量=4个圆柱的重量;①中一个球的重量=两个圆柱的重量,根据等式的性质,此选项正确;②中,一个球的重量=1个圆柱的重量,错误;③中,2个球的重量=4个圆柱的重量,正确;故选B.【点睛】本题的实质是考查等式的性质,先根据①判断出2个球的重量=4个圆柱的重量,再据此解答.4.C解析:C【分析】将x=2代入方程12x+a=-1可求得.【详解】解:将x=2代入方程12x+a=﹣1得1+a=﹣1,解得:a=﹣2.故选C.【点睛】本题是一道求方程待定字母值的试题,把方程的解代入原方程是求待定字母的值的常用方法,平时应多注意领会和掌握.5.B解析:B【解析】【分析】利用等式的性质对每个等式进行变形即可找出答案.【详解】A. 根据等式性质1,2x+6=0两边同时减去6,即可得到2x=−6;故选项错误.B. 根据等式性质2, 两边同时乘以2,即可得到x+3=4+2x;故选项正确.C. 根据等式性质2, 两边都除以−2,应得到x−4=−1,故选项错误;D. 根据等式性质2, 两边同时乘以2,即可得到−x−1=1;故选项错误.故选B.【点睛】本题考查解一元一次方程,熟练掌握计算法则是解题关键.6.D解析:D【解析】【分析】把方程两边都加上(或减去)同一个数或同一个整式,就相当于把方程中的某些项改变符号后,从方程的一边移到另一边,这样的变形叫做移项。
七年级数学上册《第二章 整式的加减》化简求值练习及答案-人教版学校:___________班级:___________姓名:___________考号:___________ 1.先化简,再求值:()()()()2222242a b a b a b b b ⎡⎤---+-÷⎣⎦,其中1a =和2b =-.2.先化简,再求值22(2)(2)a a a ---,其中1a =-.3.先化简,再求值()()()222222332a b ab a b ab +---+,其中2a =-和1b .4.先化简,再求值:()()22223233x y xy xy x y ---,其中2x =和1y =-5.先化简,再求值.()()222624420.5a ab a a ab +-+-+,其中1a =和1b .6.先化简再求值:2222332232a b ab ab a b ab ab ⎡⎤⎛⎫---++ ⎪⎢⎥⎝⎭⎣⎦,其中4a =-和12b =.7.先化简,再求值:()22244xy xy xy xy ⎡⎤---⎣⎦,其中2023,1x y ==-.15.先化简,再求值:224[63(42)]1x y xy x x y ----+.其中,2x =-和12y =.16.先化简再求值:()()222223324xy x y xy xy x y +---,其中4x =-和1y =. 17.先化简,再求值:2225435256x x x x x +----+,其中 =1x -.18.先化简,再求值:()()3223242a b a b a ---+,其中3a =-和2b =-. 1.【答案】22b a - 6-2.【答案】22529a a -+;3.【答案】2ab - 24.【答案】22910x y xy - 56-5.【答案】10ab - 106.【答案】2ab ab + 3-7.【答案】2xy 20238.【答案】ab - 19.【答案】2294xy x y -;3410.【答案】(1)24xy y -(2)9-11.【答案】226x y xy -+ -112.【答案】23xy y - 7-13.【答案】28xy - 814.【答案】21333x y 015.【答案】256125x y xy x -+- 13-16.【答案】2273x y xy - 12417.【答案】1x - 2-18.【答案】22b a - 11。
人教版七年级数学上册第2章整式的加减复习题一、选择题1. 下列式子:7x,3,0,4a2+a-5,1x-1,x2y3,12ab+1中,是单项式的有()A.3个B.4个C.5个D.6个2. 下列式子中,不是整式的是()A. B.+b C. D.4y3. 已知M=4x2-3x-2,N=6x2-3x+6,则M与N的大小关系是()A.M<N B.M>NC.M=N D.以上都有可能4. 某校组织若干名师生进行社会实践活动.若学校租用45座的客车x辆,则余下15人无座位;若租用60座的客车,则可少租用1辆,且最后一辆还没坐满,那么乘坐最后一辆60座客车的人数是() A.75-15x B.135-15xC.75+15x D.135-60x5. 观察如图所示的图形,则第n个图形中三角形的个数是()A.2n+2B.4n+4C.4nD.4n-46. 按图所示的运算程序,能使输出的结果为12的是()A.x=3,y=3 B.x=-4,y=-2C.x=2,y=4 D.x=4,y=27. 用一根长为a cm的铁丝,首尾相接围成一个正方形,现要将这个正方形按图K-26-1所示的方式向外等距扩1 cm得到新的正方形,则这根铁丝的长度需增加()图K-26-1A.4 cm B.8 cm C.(a+4)cm D.(a+8)cm8. 观察下面的一列单项式:-x,2x2,-4x3,8x4,-16x5,…,根据其中的规律,得出第10个单项式是()A.-29x10B.29x10C.-29x9D.29x99. 在一列数:a1,a2,a3,…a n中,a1=7,a2=1,从第三个数开始,每一个数都等于它前面两个数之积的个位数字,则这个数中的第2020个数是()A.1 B.3 C.7 D.910. 如图,在2020年10月份的月历表上,任意圈出一个正方形,则下列等式中错误的是()A.a+d=b+cB.a-c=b-dC.a-b=c-dD.d-a=c-b二、填空题11. 式子axy2-12x与14x-bxy2的和是单项式,则a,b的关系是________.12. 某商店经销一种品牌的洗衣机,其中某一型号的洗衣机每台的进价为a元,商店将进价提高20%后作为零售价进行销售,一段时间后,商店又以9折优惠价促销,这时该型号洗衣机的零售价为________元.13. 如图,将长和宽分别是a,b的长方形纸片的四个角各剪去一个边长为x的小正方形.用含a,b,x的式子表示长方形纸片剩余部分的面积为__________.14. 我校七年级学生在今年植树节栽了m棵树,若八年级学生比七年级学生多栽n棵树,则两个年级共栽树________棵.15. 如图是一个数表,现用一个长方形在数表中任意框出4个数,若右上角的数字用a来表示,则这4个数的和为________.三、解答题16. 计算:(1)3-(1-x)+(1-x+x2);(2)(-6x2+5xy)-12xy-(2x2-9xy);(3)2x2y+{2xy-[3x2y-2(-3x2y+2xy)]-4xy2}.17. 已知多项式-a12+a11b-a10b2+…+ab11-b12.(1)请你按照上述规律写出多项式的第五项,并指出它的系数和次数;(2)这个多项式是几次几项式?18. 如图,一个长方形运动场被分隔成A,B,A,B,C共5个区,A区是边长为a m的正方形,C 区是边长为b m的正方形.(1)列式表示每个B区长方形场地的周长,并将式子化简;(2)列式表示整个长方形运动场的周长,并将式子化简;(3)如果a=20,b=10,求整个长方形运动场的面积.答案一、选择题1. 【答案】B [解析] 单项式有7x ,3,0,x 2y 3,共4个.2. 【答案】C [解析] +b 是多项式,是整式;4y 是单项式,是整式;只有不是整式.3. 【答案】A [解析] 因为M -N =(4x 2-3x -2)-(6x 2-3x +6)=4x 2-3x -2-6x 2+3x -6=-2x 2-8<0,所以M <N.4. 【答案】B [解析] 总人数为45x +15,则乘坐最后一辆60座客车的人数为45x +15-60(x -2)=135-15x.故选B.5. 【答案】C [解析] 根据给出的3个图形可以知道:第1个图形中三角形的个数是4,第2个图形中三角形的个数是8,第3个图形中三角形的个数是12,从而得出一般的规律:第n 个图形中三角形的个数是4n .6. 【答案】C [解析] 将四个选项分别按运算程序进行计算.A .当x =3,y =3时,输出结果为32+2×3=15,不符合题意;B .当x =-4,y =-2时,输出结果为(-4)2-2×(-2)=20,不符合题意;C .当x =2,y =4时,输出结果为22+2×4=12,符合题意;D .当x =4,y =2时,输出结果为42+2×2=20,不符合题意.故选C.7. 【答案】B [解析] 因为原正方形的周长为a cm ,所以原正方形的边长为a 4 cm.因为将该正方形按图中所示的方式向外等距扩1 cm ,所以新正方形的边长为(a 4+2)cm.所以新正方形的周长为4(a 4+2)=(a +8)cm.所以需要增加的铁丝长度为a +8-a =8(cm).故选B.8. 【答案】B9. 【答案】C [解析] 依题意得:a 1=7,a 2=1,a 3=7,a 4=7,a 5=9,a 6=3,a 7=7,a 8=1,…,周期为6,2020÷6=336……4,所以a2020=a4=7.故选C.10. 【答案】D二、填空题11. 【答案】a=b[解析] axy2-12x+14x-bxy2=-14x+(a-b)xy2.因为axy2-12x与14x-bxy2的和是单项式,所以a-b=0,即a=b.12. 【答案】1.08a[解析] 由题意可得,该型号洗衣机的零售价为a(1+20%)×0.9=1.08a(元).故答案为1.08a.13. 【答案】ab-4x214. 【答案】(2m+n)[解析] 因为七年级学生在今年植树节栽了m棵树,八年级学生比七年级学生多栽n棵树,所以八年级学生栽树(m+n)棵,所以两个年级共栽树m+m+n=(2m+n)棵.15. 【答案】4a+8[解析] 由图可知,右上角的数为a,则左上角的数为a-1,右下角的数为a+5,左下角的数为a+4,所以这4个数的和为a+(a-1)+(a+4)+(a+5)=4a+8.三、解答题16. 【答案】解:(1)原式=3+x2.(2)原式=-6x2+5xy-12xy-2x2+9xy=-8x2+2xy.(3)原式=2x2y+[2xy-(3x2y+6x2y-4xy)-4xy2]=2x2y+(2xy-3x2y-6x2y+4xy-4xy2)=2x2y+2xy-3x2y-6x2y+4xy-4xy2=-7x2y-4xy2+6xy.17. 【答案】[解析] 观察所给条件,a的指数逐次减1,b的指数逐次加1,每一项的次数都为12.各项系数分别为-1,1,-1,1,…,“-1”与“1”间隔出现,奇数项系数为-1,偶数项系数为1.解:(1)第五项为-a8b4,它的系数为-1,次数为12.(2)十二次十三项式.18. 【答案】解:(1)2[(a+b)+(a-b)]=2(a+b+a-b)=4a(m).(2)2[(a+a+b)+(a+a-b)]=2(a+a+b+a+a-b)=8a(m).(3)当a=20,b=10时,整个长方形运动场的长=a+a+b=50(m),整个长方形运动场的宽=a+a-b=30(m),所以整个长方形运动场的面积=50×30=1500(m2).。
人教版数学七年级上册:第二章 整式的加减单元综合练习(含答案)一.填空题(共8小题,3*8=24)1.-πx 2y 的系数是________,次数是____.132.已知a 2+2a =1,则3(a 2+2a)+2的值为________.3. 若3a 3b n c 2-5a m b 4c 2所得的差是单项式,则这个单项式为_______________.4.一种长方形餐桌的四周可坐6人用餐,现把若干张这样的餐桌按如图方式进行拼接.若把n 张这样的餐桌拼接起来,四周可坐____________人.5.已知x +y =-2,xy =3, 则2xy +x +y 的值是__________.6.计算:-(x -x 2+1)-2(x 2-1+3x)=______________.7. 已知A =-3x 2-2mx +3x +1,B =2x 2+2mx -1,且2A +3B 的值与x 无关,则m 的值是________.8. 已知a ,b 互为相反数,m ,n 互为倒数,x 的绝对值为2,则-2mn +-x 2=_______;a +bm -n 二.选择题(本大题共10小题,每小题3分,共30分)9.下列代数式中,符合书写规范的是()A .m÷nB .2x25C .yx D .a×20%10.下列说法不正确的是( )A .多项式5x 2+4x -2的项是5x 2,4x ,-2B .5是单项式C .2x 3,,,都是单项式a +b 3ab 23a πD .3-4a 中,一次项的系数是-411.用式子表示“a ,b 两数的和与c 的积”是()A .a +bcB .ab +cC .(a +b)cD .a(b +c)12.下列各算式中,合并同类项正确的是()A .x 2+x 2=2x 2 B .x 2+x 2=x 4C .2x 2-x 2=2D .2x 2-x 2=2x13.下列说法正确的是( )A .a 是单项式,它的系数为0B.+3xy -3y 2+5是一个多项式3x C .多项式x 2-2xy +y 2是单项式x 2,2xy ,y 2的和D .如果一个多项式的次数是3,那么这个多项式的任何一项的次数都不大于314.(2018·枣庄)如图,将边长为3a 的正方形沿虚线剪成两块正方形和两块长方形.若拿掉边长2b 的小正方形后,再将剩下的三块拼成一块矩形,则这块矩形较长的边长为()A .3a +2b B .3a +4bC .6a +2bD .6a +4b15.下列各题去括号错误的是()A .x -(3y -)=x -3y +1212B .m +(-n +a -b)=m -n +a -bC .-(4x -6y +3)=-2x +3y +312D .(a +b)-(-c +)=a +b +c -12132712132716.当x =1时,ax +b +1的值为-2,则(a +b -1)(1-a -b)的值为()A .-16 B .-8C .8D .1617.如图,边长为(m +3)的正方形纸片剪出一个边长为m 的正方形之后,剩余部分又剪拼成一个长方形(不重叠无缝隙),若拼成的长方形一边长为3,则周长是()A .2m +6B .4m +12C .2m +3D .m +618.用棋子摆出如图所示的一组“口”字,按照这种方法摆下去,则摆第n 个“口”字需用棋子( )A .4n 枚B .(4n -4)枚C .(4n +4)枚D .n 2枚三.解答题(共9小题,66分)19. (6分)计算:(1)(2m 2+4m -3)+(5m +2);(2)1+-.2x +y 3x -3y 220. (6分) 列式计算(1)求比多项式5a 2-2ab +4小5a 2-4ab 的多项式.(2)求5x 2-7x +3与3x 2+4x -1的差.21. (6分)先化简,后求值。
人教版数学七年级上学期第二章整式的加减测试一、选择题(每小题只有一个正确答案)1.下列各式按字母x 的降幂排列的是( )A. -5x 2-x 2+2x 2B. ax 3-2bx+cx 2C. -x 2y-2xy 2+y 2D. x 2y-3xy 2+x 3-2y 22.下列运算正确的是( )A 3-(x-1)=2-xB. 3-(x-1)=2+xC. 3-(x-1)=4-xD. 3-(x-1)=4+x3.若M=2a 2b ,N=7ab 2,P=-4a 2b ,则下列等式成立是( )A M+N=9a 2b B. N+P=3ab C. M+P=-2a 2bD. M-P=2a 2b 4. 下列各式中,合并同类项正确的是( )A. 7a+a=7aB. 4xy-2xy 2=2xyC. 9ab-4ab+ab -7ab +5ab =2abD. a-3ab+5- a-3ab -7=-6ab-25.已知2x 6y 2和﹣313mn x y 是同类项,则9m 2﹣5mn ﹣17的值是( )A. ﹣1B. ﹣2C. ﹣3D. ﹣4 6.一个多项式加上2233x y xy -得323x x y -则这个多项式是:( )A x 3+3xy 2 B. x 3-3xy 2 C. x 3-6x 2y +3xy 2 D. x 3-6x 2y -3x 2y7.要使关于x,y 的多项式4x+7y+3-2ky+2k 不含y 项,则k 的值是( )A. 0B.27C. 72D -72 8.组成多项式2x 2-x -3的单项式是下列几组中的( )A. 2x 2,x ,3B. 2x 2,-x ,-3C. 2x 2,x ,-3D. 2x 2,-x ,39.计算3(2)4(2)x y x y --+-的结果是( )A. 2x y -B. 2x y +C. 2x y --D. 2x y -+10.观察下列各单项式:a,-2a 2,4a 3,-8a 4,16a 5,-32a 6,…,根据你发现的规律,第10个单项式是A. -512a 10B. 29a 10C. 210a 10D. -210a 1011.下列各组式中是同类项的是( )A. a 与−12a 2 B. x 2y 3z 与-x 2y 3C. x 2与y 2D. 94yx 2与-5x 2y 12.下列代数式中,属于单项式的是( )A. 0B. 2(x+1)C. 1xD. a 2+2ab+b 2二、填空题13.多项式2-xy 2-4x 3y 是_______次________项式,其中3次项的系数是________.14.单项式23x y -的系数是____. 15.有理数a 、b 、c 在数轴上的位置如图,则a c c b a b ++--+=______.16.将(2a+3)看作一个整体,化简(2a+3)2+6(2a+3)2=___________.17.去括号并合并:3(a-b)-2(2a+b)=___________.三、解答题18.合并同类项:(1)a2+2a-a+a2-1;(2)3y4-6x3y-5y4+2yx3.19.已知多项式5x m+1y2+2xy2-4x3+1是六次四项式,单项式26x2n y5-m的次数与该多项式的次数相同,求(-m)3+2n的值.20. 数a,b,c在数轴上的位置如图所示,化简式子|a﹣b|﹣|b﹣c|﹣|a+c|﹣|b|+2|a|.21.已知 a是绝对值等于4的负数,b是最小的正整数,c的倒数的相反数是﹣2,求:4a2b3﹣[2abc+(5a2b3﹣7abc)﹣a2b3].答案与解析一、选择题(每小题只有一个正确答案)1.下列各式按字母x的降幂排列的是( )A. -5x2-x2+2x2B. ax3-2bx+cx2C. -x2y-2xy2+y2D. x2y-3xy2+x3-2y2【答案】C【解析】【分析】根据题意将各式按字母x的降幂排列,就是要求x的指数从高到低排列. 【详解】A. -5x2-x2+2x2,指数相同,不符合条件;B. ax3-2bx+cx2,没有按x降幂排列;C. -x2y-2xy2+y2,有按x降幂排列;D. x2y-3xy2+x3-2y2,没有按x降幂排列.故选C【点睛】本题考核知识点:字母的降幂排列. 解题关键点:理解幂的意义.2.下列运算正确的是( )A. 3-(x-1)=2-xB. 3-(x-1)=2+xC. 3-(x-1)=4-xD. 3-(x-1)=4+x【答案】C【解析】【分析】根据整式的运算法则逐个分析即可.【详解】3-(x-1)=3-x+1=4-x故选C【点睛】本题考核知识点:整式的加减. 解题关键点:熟记整式的加减法则,特别是去括号.3.若M=2a2b,N=7ab2,P=-4a2b,则下列等式成立的是()A. M+N=9a2bB. N+P=3abC. M+P=-2a2bD. M-P=2a2b【答案】C【解析】【分析】判断M与P是同类项,然后进行计算即可.【详解】解:因为M=2a2b,N=7ab2,P=-4a2b,所以M与P是同类项,所以M+P=-2a2b ,故选:C.【点睛】本题考查合并同类项,掌握同类项的概念是本题的解题关键.4. 下列各式中,合并同类项正确的是( )A. 7a+a=7aB. 4xy-2xy2=2xyC. 9ab-4ab+ab -7ab +5ab =2abD. a-3ab+5- a-3ab -7=-6ab-2【答案】D【解析】试题分析:因为7a+a=8a,所以A错误;因为4xy与-2xy2不是同类型,所以不能合并,所以B错误;因为9ab-4ab+ab -7ab +5ab =3ab,所以C 错误;因为a-3ab+5- a-3ab -7=-6ab-2,所以D 正确;考点:合并同类项5.已知2x 6y 2和﹣313m n x y 是同类项,则9m 2﹣5mn ﹣17的值是( )A. ﹣1B. ﹣2C. ﹣3D. ﹣4 【答案】A【解析】【分析】先由同类项定义得6=3m,2=n,求出m,n,再代入9m 2-5mn-17可得答案..【详解】因为,2x 6y 2和-13x 3m y n 是同类项,所以,6=3m,2=n,所以,m=2,n=2,所以,9m 2-5mn-17=9×22-5×2×2-17=-1故选A【点睛】本题考核知识点:同类项.解题关键点:理解同类项的定义.6.一个多项式加上2233x y xy -得323x x y -则这个多项式是:( )A. x 3+3xy 2B. x 3-3xy 2C. x 3-6x 2y +3xy 2D. x 3-6x 2y -3x 2y【答案】C【解析】【分析】根据题意得出:(x 3-3x 2y )-(3x 2y -3xy 2),求出即可.【详解】解:根据题意得:(x 3-3x 2y )-(3x 2y -3xy 2)=x 3-3x 2y -3x 2y +3xy 2=x 3-6x 2y +3xy 2,故选C .【点睛】本题考查了整式的加减的应用,主要考查学生的计算能力.7.要使关于x,y 的多项式4x+7y+3-2ky+2k 不含y 项,则k 的值是( )A. 0B. 27C.72D. -72 【答案】C【解析】【分析】先将含y 的项合并,要使关于x ,y 的多项式不含y 项,则7-2k=0,可求k.【详解】4x+7y+3-2ky+2k=4x+3+(7-2k)y+2k, 要使关于x ,y 的多项式不含y 项,则7-2k=0,所以,k=72故选C【点睛】本题考核知识点:合并同类项.解题关键点:理解同类项的意义.8.组成多项式2x 2-x -3的单项式是下列几组中的( )A. 2x 2,x ,3B. 2x 2,-x ,-3C. 2x 2,x ,-3D. 2x 2,-x ,3 【答案】B【解析】试题解析:多项式是由多个单项式组成的,在多项式2x 2-x-3中,单项式分别是2x 2,-x,-3,故选B .9.计算3(2)4(2)x y x y --+-的结果是( )A. 2x y -B. 2x y +C. 2x y --D. 2x y -+ 【答案】A【解析】原式去括号合并即可得到结果.解:原式=﹣3x+6y+4x ﹣8y=x ﹣2y,故选A .10.观察下列各单项式:a,-2a 2,4a 3,-8a 4,16a 5,-32a 6,…,根据你发现的规律,第10个单项式是A. -512a10B. 29a10C. 210a10D. -210a10【答案】A【解析】【分析】观察各单项式:a,-2a2,4a3,-8a4,16a5,-32a6,…,发现规律:第n个单项式是:2n-1a n(n是奇数)或-2n-1a n(n是偶数).运用规律可求结果.【详解】观察各单项式:a,-2a2,4a3,-8a4,16a5,-32a6,…,发现规律:第n个单项式是:2n-1a n(n是奇数)或-2n-1a n(n是偶数).所以,第10个单项式是:-210-1a10=-512a10故选A【点睛】本题考核知识点:单项式的规律. 解题关键点:运用有理数的运算分析系数和指数的规律.11.下列各组式中是同类项的是( )A. a与−12a2B. x2y3z与-x2y3C. x2与y2D. 94yx2与-5x2y【答案】D【解析】【分析】同类项的条件:含有相同的字母,且相同字母的指数相同.逐个分析即可.【详解】A. a与−12a2,相同字母指数不相同,不是同类项;B. x2y3z与-x2y3,含有不相同的字母,不是同类项;C. x2与y2,含有不相同的字母,不是同类项;D. 94yx2与-5x2y,是同类项.故选D【点睛】本题考核知识点:同类项.解题关键点:理解同类项的意义.12.下列代数式中,属于单项式的是( )A. 0B. 2(x+1)C. 1xD. a2+2ab+b2【答案】A【解析】【分析】由一个数字与一个字母的积或一个字母与一个字母的积所组成的代数式叫做单项式(单独的一个数字或字母也是单项式).据此分析即可.【详解】A. 0,是单项式;B. 2(x+1),不是单项式;C. 1,分母是字母,不是单项式;xD. a2+2ab+b2,是多项式.故选A【点睛】本题考核知识点:单项式.解题关键点:理解单项式的定义,分清单项式必须具备的条件.二、填空题13.多项式2-xy2-4x3y是_______次________项式,其中3次项的系数是________.【答案】(1). 四(2). 三(3). -1【解析】【分析】由若干个单项式的和组成的代数式叫做多项式(减法中有:减一个数等于加上它的相反数).多项式中每个单项式叫做多项式的项,这些单项式中的最高次数,就是这个多项式的次数.【详解】3次项是-xy2,多项式2-xy2-4x3y是四次三项式,其中3次项的系数是-1.故答案为四,三,-1【点睛】本题考核知识点:多项式.解题关键点:理解多项式和单项式的意义.14.单项式23x y-的系数是____.【答案】-1 3【解析】【分析】单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数; 单项式的系数:单项式中的数字因数.【详解】单项式-2x y3的系数是: -13.故答案为-1 3【点睛】本题考核知识点:单项式的系数.解题关键点:理解单项式的系数的意义.15.有理数a、b、c在数轴上位置如图,则a c c b a b++--+=______.【答案】0【解析】【分析】根据a、b、c在数轴上的位置,进行绝对值的化简,然后合并.【详解】由图可得,a<b<0<c,原式=(-a-c)+(c-b)-(-a-b)=-a-c+c-b+a+b=0.故答案为0【点睛】本题考查了整式加减,解答本题的关键是掌握去括号法则和合并同类项法则.16.将(2a+3)看作一个整体,化简(2a+3)2+6(2a+3)2=___________.【答案】7(2a+3)2【解析】【分析】运用整体思想,将(2a+3)看作一个整体,(2a+3)2+6(2a+3)2=7(2a+3)2.【详解】将(2a+3)看作一个整体,化简(2a+3)2+6(2a+3)2=7(2a+3)2故答案为7(2a+3)2【点睛】本题考核知识点:合并同类项. 解题关键点:运用整体思想进行化简.17.去括号并合并:3(a-b)-2(2a+b)=___________.【答案】-a-5b【解析】【分析】根据乘法分配律去括号,再合并同类项.详解】3(a-b)-2(2a+b)=3a-3b-4a-2b=-a-5b故答案为-a-5b【点睛】本题考核知识点:整式的运算.解题关键点:正确去括号,合并同类项.三、解答题18.合并同类项:(1)a2+2a-a+a2-1;(2)3y4-6x3y-5y4+2yx3.【答案】(1)原式=2a2+a-1;(2)原式=-2y4-4x3y.【解析】【分析】合并同类项就是将同类项的系数相加,所得的结果作为系数,字母和指数不变.【详解】解:(1)a2+2a-a+a2-1= a2+a2+2a-a -1=2a2+a-1(2)3y4-6x3y-5y4+2yx3=3y4-5y4-6x3y+2yx3= -2y4-4x3y.【点睛】本题考核知识点:合并同类项.解题关键点:掌握合并同类项的方法.19.已知多项式5x m+1y2+2xy2-4x3+1是六次四项式,单项式26x2n y5-m的次数与该多项式的次数相同,求(-m)3+2n的值.【答案】-23【解析】【分析】由已知可得:m+1+2=6,得到m的值后,根据题意可列关于n的式子,求出m,n,再代入(-m)3+2n即可求解. 【详解】解:由于多项式是六次四项式,所以m+1+2=6,解得m=3,因为,单项式26x2n y5-m的次数与该多项式的次数相同,所以,由题意可知2n+5-m=6,即:2n+5-3=6,解得n=2,所以(-m)3+2n=(-3)3+2×2=-23.【点睛】本题考核知识点:整式的项、次数.解题关键点:理解整式的有关概念.20. 数a,b,c在数轴上的位置如图所示,化简式子|a﹣b|﹣|b﹣c|﹣|a+c|﹣|b|+2|a|.【答案】2a+2c﹣b.【解析】试题分析:先根据各点在数轴上的位置判断出其符号及绝对值的大小,在去绝对值符号,合并同类项即可.解:∵由图可知c<0<a<b,|c|>b>a,∴a﹣b<0,b﹣c>0,a+c<0,∴原式=(b﹣a)﹣(b﹣c)﹣(﹣a﹣c)﹣b+2a=b﹣a﹣b+c+a+c﹣b+2a=2a+2c﹣b.考点:整式的加减;数轴;绝对值.21.已知 a是绝对值等于4的负数,b是最小的正整数,c的倒数的相反数是﹣2,求:4a2b3﹣[2abc+(5a2b3﹣7abc)﹣a2b3].【答案】﹣10.【解析】试题分析:a是绝对值等于4的负数,b是最小的正整数,c的倒数的相反数是﹣2,可得:a=-4,b=1,c=12;再把原式化简,代入a、b、c的值计算即可.试题解析:∵a是绝对值等于4的负数,b是最小的正整数,c的倒数的相反数是﹣2,∴a=-4,b=1,c=1 2 .∴原式=4a2b3﹣2abc﹣5a2b3+7abc+a2b3 =5abc=5×(-4)×1×12=-10.。
一、解答题1.已知多项式2x 2+25x 3+x ﹣5x 4﹣13. (1)请指出该多项式的次数,并写出它的二次项和常数项;(2)把这个多项式按x 的指数从大到小的顺序重新排列.解析:(1)该多项式的次数是4,它的二次项是2x 2,常数项是﹣13;(2)﹣5x 4+25x 3+2x 2+x ﹣13. 【分析】 (1)根据多项式的次数、项等定义解答即可;(2)按x 得降幂排列多项式即可.【详解】解:(1)该多项式的次数是4,它的二次项是2x 2,常数项是﹣13; (2)这个多项式按x 的指数从大到小的顺序为:432215253x x x x -+++-. 【点睛】本题考查的是多项式的概念及应用.2.如图,已知等腰直角三角形ACB 的边AC BC a ==,等腰直角三角形BED 的边BE DE b ==,且a b <,点C 、B 、E 放置在一条直线上,联结AD .(1)求三角形ABD 的面积;(2)如果点P 是线段CE 的中点,联结AP 、DP 得到三角形APD ,求三角形APD 的面积;(3)第(2)小题中的三角形APD 与三角形ABD 面积哪个较大?大多少?(结果都可用a 、b 代数式表示,并化简)解析:(1)ab (2)()24a b +(3)三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【分析】(1)由题意知//AC DE (同旁内角互补,两条直线平行),所以四边形ACED 是梯形,再由梯形面积减去两个等腰直角三角形面积即可求得;(2)与题(1)思路完全一样,由梯形面积减去两个直角三角形面积即可求得; (3)将所求的两个面积作差,化简并与0比较大小即可.【详解】(1)()()22111222ABD ABC BDE ACED S S S S a b a b a b ab ∆∆∆=--=++--=四边形 (2)()()()2111222224APD APC PDE ACED a b a b a b S S S S a b a b a b ∆∆∆+++=--=++-⨯-⨯=四边形(3)()()2244APD ABDa b b a S S ab ∆∆+--=-=,∵b a >,∴()204APD ABD b a S S ∆∆--=>,即三角形APD 的面积比三角形ABD 的面积大,大()24b a -.【点睛】本题是一道综合题,考查了三角形的面积公式12S =⨯底⨯高,多项式的化简. 3.如图,将面积为2a 的小正方形和面积为2b 的大正方形放在同一水平面上(0b a >>)(1)用a 、b 表示阴影部分的面积;(2)计算当3a =,5b =时,阴影部分的面积.解析:(1)22111222a ab b ++;(2)492【分析】(1)阴影部分为两个直角三角形,根据面积公式即可计算得到答案;(2)将3a =,5b =代入求值即可.【详解】(1)()21122a a b b ⨯++, 22111222a ab b =++; (2)当3a =,5b =时,原式221113355222=⨯+⨯⨯+⨯492=. 【点睛】 此题考察列式计算,根据图形边长正确列式表示图形的面积即可.4.窗户的形状如图所示(图中长度单位:cm ),其中上部是半圆形,下部是边长相同的四个小正方形. 已知下部小正方形的边长是acm.(1)计算窗户的面积(计算结果保留π).(2)计算窗户的外框的总长(计算结果保留π).(3)安装一种普通合金材料的窗户单价是175元/平方米,当a=50cm 时,请你帮助计算这个窗户安装这种材料的费用(π≈3.14,窗户面积精确到0.1).解析:(1)2214a +a 2π;(2)6a a π+;(3)245.【分析】(1)根据图示,窗户的面积等于4个小正方形的面积加上半径是a 的半圆的面积;(2)根据图示,窗户外框的总长就是用3条长度是2acm 的边的长度加上半径是acm 的半圆的长度;(3)根据窗户的总面积,代入求值即可.【详解】 解:(1)窗户的面积为:()()222214a a 422a a a cm ππ⎛⎫⨯+=+ ⎪⎝⎭ (2)窗户的外框的总长为:()()132a 262a a a cm ππ⨯+⨯=+ (3)当a=50cm ,即:a=0.5m 时,窗户的总面积为:()2220.540.5128m ππ⎛⎫⨯+=+ ⎪⎝⎭ 取π≈3.14,原式=1+0.3925≈1.4(m 2)安装窗户的费用为:1.4×175=245(元).【点睛】本题考查的知识点是求组合图形的面积与周长,将已知图形分解为所熟悉的简单图形是解此题的关键.5.当0.2x =-时,求代数式22235735x x x x -+-+-的值。
人教版初中数学七年级上册第2章《整式加减》单元测试题一、选择题:1.式子222a b +表示的意义是( )A. a 与2b 平方的和B. a 与2b 和的平方C. a 的平方与2个b 平方的和D. 2b 与a 的平方和 2. 下列运算正确的是( )A .xy y x 532=+B .2325a a a += C.()a a b b --= D .422x x x =+ 3. 如果213n m xy -与35m x y -的和是单项式,则m 和n 的值分别是( )A .3和-2B .-3和2C .3和2D .-3和-2 4.下列判断中正确的是 ( )A.23a bc 与2bca 不是同类项B. 单项式32x y -的系数是-1C. 52n m 不是整式 D.2235x y xy -+是二次三项式5.若M 和N 都是四次多项式,则M N +一定是( )A.四次多项式B.八次多项式C.次数不高于四次的整式D.次数一定是低于四次的整式 6.化简()2x x y x y x ⎡⎤-----⎣⎦等于( )A. 0B.2xC.x y -D.3x7. 若代数式2231x x -+的值是8,则代数式2463x x --的值是( )A.10B.11C.12D.138. 某人靠墙围成一块梯形园地,三面用篱笆围成.设一腰为a ,另一腰为b ,与墙面相对的一边比两腰的和还大b ,则此篱笆的总长是( ) A.2a b + B.23a b + C.22a b + D.3a b + 9.已知一个多项式与279x x +的和等于2741x x +-,则这个多项式是( )A .51x --B .51x +C .131x --D .131x +10. 若将代数式中的任意两个字母交换,代数式不变,则称这个代数式为完全对称式,如a b c ++就是完全对称式.下列三个代数式:①2)(b a -;②ab bc ca ++;③222a b b c c a ++.其中是完全对称式的是( )A .①②B .①③C . ②③D .①②③ 二、填空题:11. 今年的香蕉价格比去年贵了许多,已知现在香蕉的价格是去年的2倍还多0.5元,如果今年香蕉的价格为a 元,那么去年香蕉的价格可表示为 .12. 一个多项式减去212x -得到223x x +-,那么这个多项式是 .13. 对于有理数a 、b ,定义b a b a 32-=*,则)()(x y y x -*-的结果是 . 14. 若35,a b a c -=+=,则(2)()a b c a b c ++---= .15. 观察下列单项式:0,23x -,38x -,415x -,524x -,……,按此规律写出第n 个单项式是_____. 16. 若()23214x x b x bx -+---化简后不含x 的一次项,则b = . 17. 如图所示是用棋子摆成的“巨”字,那么第4个“巨”字续摆下去,第n 个“巨”字所需要的棋子_________________.18. 如果一个数等于它的不包括自身的所有因数之和,那么这个数就叫完全数.例如,6的不包括自身的所有因数为1,2,3.而且6123=++,所以6是完全数.大约2200多年前,欧几里德提出:如果21n -是质数,那么12(21)n n --是一个完全数,请你根据这个结论写出6之后的下一个完全数是 . 三、解答题:19. 已知5=+y x ,3-=xy ,求代数式)4()232(xy y x xy y x +----的值.20. 某县城的房价近两年有了大幅的上涨,前年上升了50%,去年又上升了40%.人教版数学七年级上册第2章《整式的加减》单元检测试题及答案一、选择题(每小题3分,共18分) 1.计算3a 3+a 3,结果正确的是( )A .3a 6B .3a 3C .4a 6D .4a 32.已知a 3b m +x n -1y 3m -1-a 1-s b n+1+x 2m -5y s+3n 的化简结果是单项式,那么mns=( )A . 6B . -6C . 12D . -123.已知多项式ax 5+bx 3+cx ,若当x=1时该多项式的值为2,则当x=-1时该多项式的值为( )A .-2B .2 4.下列运算正确的是( )A .-2(3x-1)=-6x-1B .-2(3x-1)=-6x+1C .-2(3x-1)=-6x+2D .-2(3x-1)=-6x-2 5.化简a+a 的结果为( )A .2B .a 2C .2a 2D .2a 6.在下列式子3ab ,-4x ,75abc -,π,2m n-,0.81,1y,0中,单项式共有( ) A .5个 B .6个 C .7个D .8个二、填空题(本大题共6小题,每小题3分,共18分) 7.单项式的系数与次数之积为 .8.一个三位数,个位数字为a ,十位数字比个位数字少2,百位数字比个位数字多1,那么这个三位数为________________.9.已知多项式x |m |+(m -2)x +8(m 为常数)是二次三项式,则m 3=________. 10.如果3x 2y 3与x m +1y n -1的和仍是单项式,则(n -3m )2016的值为________.11.如图所示,点A 、B 、C 分别表示有理数a 、b 、c ,O 为原点,化简:|a -c |-|b -c |=________________.12.如下表,从左到右在每个小格中都填入一个整数,使得任意三个相邻格子所填整数之和都相等,则第2017个格子中的整数是_________.三、(本大题共5小题,每小题6分,共30分) 13.化简:(1)a+2b+3a ﹣2b . (2)(3a ﹣2)﹣3(a ﹣5)14.列式计算:整式(x -3y )的2倍与(2y -x )的差.15.先化简再求值:-9y +6x 2+3⎝⎛⎭⎫y -23x 2,其中x =2,y =-1.16.老师在黑板上写了个正确的演算过程,随后用手捂住了其中一个多项式,形式如图:-(a 2b -2ab 2)+ab 2=2(a 2b +ab 2).试问老师用手捂住的多项式是什么?17.给出三个多项式:12x 2+2x -1,12x 2+4x +1,12x 2-2x ,请选择你最喜欢的两个多项式进行加法运算,并求当x =-2时该式的结果.四、(本大题共3小题,每小题8分,共24分)18.若多项式4x n +2-5x 2-n +6是关于x 的三次多项式,求代数式n 3-2n +3的值.19.已知A=2x2+xy+3y-1,B=x2-xy.(1)若(x+2)2+|y-3|=0,求A-2B的值;(2)若A-2B的值与y的取值无关,求x的值.20.暑假期间2名教师带8名学生外出旅游,教师旅游费每人a元,学生每人b元,因是团体予以优惠,教师按8折优惠,学生按6.5折优惠,问共需交旅游费多少元(用含字母a、b 的式子表示)?并计算当a=300,b=200时的旅游费用.五、(本大题共2小题,每小题9分,共18分)21.已知A=5a+3b,B=3a2﹣2a2b,C=a2+7a2b﹣2,当a=1,b=2时,求A﹣2B+3C的值(先化简再求值).22.阅读材料:“如果代数式5a+3b的值为-4,那么代数式2(a+b)+4(2a+b)的值是多少?”我们可以这样来解:原式=2a+2b+8a+4b=10a+6b.把式子5a+3b=-4两边同乘以2,得10a+6b=-8.仿照上面的解题方法,完成下面的问题:(1)已知a2+a=0,求a2+a+2017的值;(2)已知a-b=-3,求3(a-b)-a+b+5的值;(3)已知a2+2ab=-2,ab-b2=-4,求2a2+5ab-b2的值.六、(本大题共12分)23.探究题.用棋子摆成的“T”字形图,如图所示:(1)填写下表:(2)写出第n个“T”字形图案中棋子的个数(用含n的代数式表示);(3)第20个“T”字形图案共有棋子多少个?(4)计算前20个“T”字形图案中棋子的总个数(提示:请你先思考下列问题:第1个图案与第20个图案中共有多少个棋子?第2个图案与第19个图案中共有多少个棋子?第3个图案与第18个图案呢?).参考答案:一、选择题1.D2.D3.A4.C5.D6.B二、填空题7.﹣238.111a+809.-810.111.2c-a-b解析:由图可知a<c<0<b,∴a-c<0,b-c>0,∴原式=c-a-(b-c)=c-a-b+c=2c-a-b.故答案为2c-a-b.12.-4解析:∵任意三个相邻格子中所填整数之和都相等,∴-4+a+b=a+b+c,解得c=-4,a+b+c=b+c+6,解得a=6,∴数据从左到右依次为-4、6、b、-4、6、b、-4、6、-2.由题意易得第9个数与第6个数相同,即b=-2,∴每3个数“-4、6、-2”为一个循环组依次循环.∵2017÷3=672……1,∴第2017个格子中的整数与第1个格子中的数相同,为-4.故答案为-4.三、解答题13.解:解:(1)原式=4a;(3分)(2)原式=3a﹣2﹣3a+15=13;(6分)14.解:2(x-3y)-(2y-x)=2x-6y-2y+x=3x-8y.(6分)15.解:原式=-9y+6x2+3y-2x2=4x2-6y.(3分)当x=2,y=-1时,原式=4×22-6×(-1)=22.(6分)16.解:设该多项式为A,∴A=2(a2b+ab2)+(a2b-2ab2)-ab2=3a2b-ab2,(5分)∴捂住的多项式为3a2b-ab2.(6分)17.解:情况一:12x 2+2x -1+12x 2+4x +1=x 2+6x ,(3分)当x =-2时,原式=(-2)2+6×(-2)=4-12=-8.(6分)情况二:12x 2+2x -1+12x 2-2x =x 2-1,(3分)当x =-2时,原式=(-2)2-1=4-1=3.(6分)情况三:12x 2+4x +1+12x 2-2x =x 2+2x +1,(3分)当x =-2时,原式=(-2)2+2×(-2)+1=4-4+1=1.(6分)18.解:由题意可知该多项式最高次数项为3次,当n +2=3时,此时n =1,∴n 3-2n +3=1-2+3=2;(3分)当2-n =3时,即n =-1,∴n 3-2n +3=-1+2+3=4.(6分)综上所述,代数式n 3-2n +3的值为2或4.(8分)19.解:(1)∵A =2x 2+xy +3y -1,B =x 2-xy ,∴A -2B =2x 2+xy +3y -1-2x 2+2xy =3xy+3y -1.∵(x +2)2+|y -3|=0,∴x =-2,y =3,则A -2B =-18+9-1=-10.(4分)(2)∵A -2B =y (3x +3)-1,又∵A -2B 的值与y 的取值无关,∴3x +3=0,解得x =-1.(8分)20.解:共需交旅游费为0.8a ×2+0.65b ×8=(1.6a +5.2b )(元).(4分)当a =300,b =200时,旅游费用为1.6×300+5.2×200=1520(元).(8分) 21.解:∵A=5a+3b ,B=3a 2﹣2a 2b ,C=a 2+7a 2b ﹣2, ∴A ﹣2B+3C=(5a+3b )﹣2(3a 2﹣2a 2b )+3(a 2+7a 2b ﹣2) =5a+3b ﹣6a 2+4a 2b+3a 2+21a 2b ﹣6 =﹣3a 2+25a 2b+5a+3b ﹣6,当a=1,b=2时,原式=﹣3×12+25×12×2+5×1+3×2﹣6=52. 22.解:(1)∵a 2+a =0,∴a 2+a +2017=0+2017=2017.(3分)(2)∵a -b =-3,∴3(a -b )-a +b +5=3×(-3)-(-3)+5=-1.(6分)(3)∵a 2+2ab =-2,ab -b 2=-4,∴2a 2+5ab -b 2=2a 2+4ab +ab -b 2=2×(-2)+(-4)=-8.(9分)人教版初中数学七年级上册第二章《整式的加减》 单元测试一、选择题(每题3分,共30分) 1.下列说法正确的是( ) A.a 的系数是0 B.1y是一次单项式 C.-5x 的系数是5 D.0是单项式2.下列单项式:①312a 2b ;②-2x 1y 2;③-32x 2;④-1a 2b .其中书写不正确的有( ) A.1个 B.2个 C.3个 D.4个3.下列各组中的两项,不是同类项的是( ) A.a 2b 与-6ab 2 B.-5x 3y 与934yx 3C.2πR 与π2RD.-35与53 4.下列说法正确的是( )A.整式就是多项式B.π是单项式C.x 4+2x 3是七次二项次D.315x 是单项式 5.不改变多项式3b 3-2ab 2+4a 2b -a 3的值,把后三项放在前面是“-”号的括号中,正确的是( )A.3b 3-(2ab 2-4a 2b +a 3)B.3b 3-(2ab 2+4a 2b +a 3)C.3b 3-(-2ab 2+4a 2b -a 3)D.3b 3-(2ab 2+4a 2b -a 3) 6.若m ,n 都是正整数,多项式x m +y n +3m +n 的次数是( )A.2m +2nB.m 或nC.m +nD.m ,n 中的较大数7.张老板以每颗a 元的单价买进水蜜桃100颗,现以每颗比单价多两成的价格卖出70颗后,再以每颗比单价低b 元的价格将剩下的30颗卖出,那么全部水蜜桃共卖( )元A.70a +30(a -b )B.70×(1+20%)×a +30bC.100×(1+20%)×a -30(a -b )D.70×(1+20%)×a +30(a -b )8.在一定条件下,若物体运动的路程s (m)与时间t (s)的关系式为s =5t 2+2t ,则当t =6秒时,该物体所经过的路程为( )A.198mB.192mC.188mD.182m9.明明在今天数学课上学习了整式的加减知识,放学后,明明见妈妈的午饭没有做好,拿出课堂笔记,认真地复习课上学习的内容,他突然发现一道题:(-x 2+3xy -12y 2)-(-12x 2+4xy -32y 2)=-12x 2y 2,被钢笔墨水弄污了,那么被弄污的地方应填( ) A.-7xy B.7xy C.-xy D.xy10.多项式-3x 2y -10x 3+3x 3+6x 3y +3x 2y -6x 3y +7x 3-2020的值是( ) A.与x ,y 都无关 B.只与x 有关 C.只与y 有关 D.与x ,y 都有关 二、填空题(每题3分,共24分)11.把多项式3x 2y -4xy 2+x 3-5y 3按y 的降幂排列是___.12.两堆棋子,将第一堆的2个棋子移到第二堆去之后,第二堆棋子数就成了第一堆棋子数的2倍,设第一堆原有a 个棋子,第二堆原有___个棋子.13.如果x 表示一辆火车行驶的速度,那么1.5x 可以解释为___.14.大家知道53是一个两位数,个位数字是3,十位数字是5,若将53写成5×10+3,如果一个两位数的个位数字是b ,十位数字是a ,用含a 、b 的式子表示这个两位数是___.15.化简:―[―(2a ―b )]=___.16.的结果是___.17.小颖在计算a +N 时,误将“+”看成“―”,结果得3a ,则a +N =___. 18.数学家发明了一个魔术盒,当任意实数对...(a ,b )进入其中时,•会得到一个新的实数:a 2+b +1.例如把(3,-2)放入其中,就会得到32+(-2)+1=8,现将实数对...(-2,3)放入其中得到实数m,再将实数对...(m,1)放入其中后,得到的实数是___.三、解答题(共66分)19.化简:(1)-0.8a2b-6ab-3.2a2b+5ab+a2b.(2)5(a-b)2-3(a-b)2-7(a-b)-(a-b)2+7(a-b).20.先化简,再求值:(1)5a2-4a2+a-9a-3a2-4+4a,其中a=-1 2 .(2)5ab-92a2b+12a2b-(114ab+a2b+5),其中a=1,b=-2.(3)2a2-(3ab+b2+a2-ab)-2b2,其中a2-b2=2,ab=-3.21.小明研究汽车行驶时油箱里的剩油量与汽车行驶的路程之间的关系如下表:n=150千米时,A 是多少?22.有这样一道题:“当a=2020,b=-2019时,求多项式7a3-6a3b+3a2b+3a3+6a3b -3a2b-10a3+2019的值.”小明说:本题中a=2020,b=-2019是多余的条件;小强马上反对说:这不可能,多项式中含有a和b,不给出a,b的值怎么能求出多项式的值呢?你同意哪名同学的观点?请说明理由.23.按照下列步骤做一做:第一步:任意写一个两位数;第二步:交换这个两位数的十位数字和个位数字,得到一个新数;第三步:求这两个两位数的差.再写几个两位数重复上面的过程,这些差有什么规律?这个规律对任意一个两位数都成立吗?为什么?24. 甲、乙两家超市以相同的价格出售同样的商品,为了吸引顾客,各自推出不同的优惠方案:在甲超市累计购买商品超出300元之后,超出部分按原价的8折优惠;在乙超市购买商品超出200元之后,超出部分按原价的8.5折优惠,设某顾客预计累计购物x元(x >300元).(1)请用含x的代数式分别表示顾客在两家超市购物所付的费用.(2)当该顾客累计购物500元时在哪个超市购物合算.25.永丰学校七年级学生在5名教师的带领下去公园秋游,公园的门票为每人30元.现有两种优惠方案,甲方案:带队教师免费,学生按8折收费;乙方案:师生都7.5折收费.(1)若有m名学生,用代数式表示两种优惠方案各需多少元?(2)当m=70时,采用哪种方案优惠?当m=100时,采用哪种方案优惠?26.在边长为16cm的正方形纸片的四个角各剪去一个同样大小的正方形,折成一个无盖的长方体.(1)如果剪去的小正方形的边长为x cm,请用x来表示这个无盖长方体的容积.(2)当剪去的小正方体的边长x的容积的大小.参考答案:一、1.D;2.C;3.A;4.B;5.A;6.D;7.D;8B;9.C;10.A.点拨:-3x2y-10x3+3x3+6x3y+3x2y -6x3y+7x3-2012=-2012.二、11.-5y3-4xy2+3x2y+x3;12.2a-6;13.这辆火车行驶了1.5小时的路程;14.10a+b;15.2a-b;16.m2-m+1;17.-a;18.66.三、19.(1)-3a2b-ab.(2)(a-b)2.20.(1)5a2-4a2+a-9a-3a2-4+4a=-2a2-4a-4,当a=-12时,原式=-52.(2)5ab-92a2b+12a2b-(114ab+a2b+5)=5ab-92a2b+12a2b-114ab-a2b-5=94ab-5a2b-5,当a=1,b=-2时,原式=12.(3)2a2-(3ab+b2+a2-ab)-2b2=2a2-3ab-b2-a2+ab-2b2=a2-b2-2ab,当a2-b2=2,ab=-3时,原式=8.21.依题意,得A=20-Q,A=20-0.04n,当n=150时,A=20-0.04×150=14(升).22.因为7a3-6a3b+3a2b+3a3+6a3b-3a2b-10a3+2019=2019,所以a=2020,b=-2019是多余的条件,故小明的观点正确.23.第一步:如,24;第二步:得42;第三步:42-24=18,是9的倍数.猜想:这些差的规律是都能被9整除.理由:第一步:设原两位数的十位数字为b,个位数字为a(b>a),则原两位数为10b+a;第二步:交换后的两位数为10人教版七年级数学上册第二章整式的加减单元测试题一、选择题(本大题共7小题,每小题3分,共21分;在每小题列出的四个选项中,只有一项符合题意)1.下列各组中的两项,属于同类项的是( )A.-2x2y与xy2B.x2y与x2zC.3mn与4nmD.-0.5ab与abc2.已知苹果的单价为a元/千克,香蕉的单价为b元/千克,则购买2千克苹果和3千克香蕉共需( )A .(a +b )元B .(3a +2b )元C .(2a +3b )元D .5(a +b )元3.下列说法错误的是( ) A .2x 2-3xy -1是二次三项式 B .-x +1不是单项式 C .-22xab 2的次数是6 D .-23πxy 2的系数是-23π4.下面是小林做的4道作业题:(1)2ab +3ab =5ab ;(2)2ab -3ab =-ab ;(3)2ab -3ab =6ab ;(4)-2(a -b )=-2a +2b .做对一题得2分,做错不扣分,则他一共得到( )A .2分B .4分C .6分D .8分5.已知一个多项式与3x 2+9x 的和等于3x 2+4x -1,则这个多项式是( ) A .-5x -1B .5x +1C .-13x -1D .13x +16.如果2<x <3,那么化简|2-x |-|x -3|的结果是( ) A .-2x +5 B .2x -5 C .1D .-57.某月的月历表如图1所示,任意圈出一横行或一竖列相邻的三个数,这三个数的和不可能是( )图1A .24B .43C .57D .69二、填空题(本大题共5小题,每小题4分,共20分) 8.单项式5x 2y ,-6x 2y ,34x 2y 的和是________.9.去括号:6x 3-[3x 2-(x -1)]=____________.10.一根铁丝的长为5a +4b ,剪下一部分围成一个长为a ,宽为b 的长方形,则这根铁丝还剩下__________.11.如果A =3x 2-2xy +1,B =7xy -6x 2-1,那么A -B =______________. 12.某校艺术班同学,每人都会弹钢琴或古筝,其中会弹钢琴的人数比会弹古筝的人数多10人,两种都会的有7人.设会弹古筝的有m 人,则该班同学共有________人.(用含m 的式子表示)三、解答题(本大题共6小题,共59分) 13.(12分)化简:(1)2a -(5a -3b )+(7a -b );(2)5a 2-[4a 2-(a 2+1)];(3)(3x 2-xy -2y 2)-2(x 2+xy -2y 2);(4)5(a 2b -2ab 2+c )-4(2c +3a 2b -ab 2).14.(8分)若(x +2)2+⎪⎪⎪⎪⎪⎪y -12=0,求5x 2-[2xy -3(13xy +2)+4x 2]的值.15.(8分)已知A =2x 2+3xy -2x -1,B =-x 2+xy -1. (1)求3A +6B ;(2)若3A +6B 的值与x 的取值无关,求y 的值.16.(9分)图2中的图案是某大院窗格的一部分,其中“○”代表窗纸上所贴的剪纸,求:图2(1)第1个图中所贴剪纸的个数为________个;第2个图中所贴剪纸的个数为________个;第3个图中所贴剪纸的个数为________个.(2)第n个图中所贴剪纸的个数为多少?求第500个图中所贴剪纸的个数.17.(10分)某名同学做一道题:已知两个多项式A,B,求2A-B的值.他误将2A-B 看成A-2B,求得结果为3x2-3x+5,已知B=x2-x-1.(1)求多项式A;(2)求2A-B的正确答案.18.(12分)某土特产公司组织20辆汽车装运甲、乙、丙三种土特产去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满.设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,根据下表提供的信息,解答以下问题:(1)求这20辆汽车共装运了多少吨土特产;(2)求销售完装运的这批土特产后所获得的总利润是多少万元.1. C 2.C. 3.C 4. C. 5. A. 6. B. 7. B. 8.[答案] -14x 2y 9.[答案] 6x 3-3x 2+x -1 10.[答案] 3a +2b 11.[答案] 9x 2-9xy +2 12.[答案] (2m +3)13.解:(1)原式=2a -5a +3b +7a -b =4a +2b. (2)原式=5a 2-(4a 2-a 2-1)=5a 2-4a 2+a 2+1=2a 2+1. (3)原式=3x 2-xy -2y 2-2x 2-2xy +4y 2=x 2-3xy +2y 2.(4)原式=5a 2b -10ab 2+5c -8c -12a 2b +4ab 2=-7a 2b -6ab 2-3c. 14.解:由题意得x =-2,y =12. 原式=5x 2-2xy +xy +6-4x 2=x 2-xy +6. 当x =-2,y =12时,原式=4+1+6=11.15.[解析] (1)把A ,B 代入3A +6B ,再按照去括号规律去掉整式中的小括号,再合并整式中的同类项,将3A +6B 化到最简即可.(2)根据3A +6B 的值与x 无关,令含x 的项的系数为0,即可求得y 的值. 解:(1)3A +6B =3(2x 2+3xy -2x -1)+6(-x 2+xy -1)=6x 2+9xy -6x -3-6x 2+6xy -6=15xy -6x -9.(2)3A +6B =15xy -6x -9=(15y -6)x -9,要使3A +6B 的值与x 的取值无关,则15y -6=0,解得y =25.16.解:(1)5 8 11(2)第n 个图中所贴剪纸个数为(3n +2). 当n =500时,3n +2=3×500+2=1502. 17.解:(1)A =(3x 2-3x +5)+2(x 2-x -1) =3x 2-3x +5+2x 2-2x -2 =5x 2-5x +3.(2)因为A =5x 2-5x +3,B =x 2-x -1, 所以2A -B=2(5x 2-5x +3)-(x 2-x -1) =10x 2-10x +6-x 2+x +1 =9x 2-9x +7.18.解:(1)8x +6y +5(20―x ―y)=(3x +y +100)吨. 答:这20辆汽人教版数学七年级上册第二章整式的加减单元测试题一、填空题(每题3分,共36分)1、单项式23x -减去单项式y x x y x 2222,5,4--的和,列算式为 , 化简后的结果是 。
人教版七年级数学上册第二单元整式的加减法练习题精选 一、列式表示。
60天中,小张长跑路程累积达到65000m,小李跑了am,平均每天小李和小张各跑多少米?平均每天小李比小张多跑多少米?
二、计算。 -x2y+7x2y -10y2-3.5y2
1 1 —a2bc-—cba2 7a2b+0.3a2b 2 6
1 1 -—mn+—mn-1 -9x3y2-1.5x3y2 2 4
6ab+6a2b2+5+6ab2+6a2b2-6-4ab 人教版七年级数学上册第二单元整式的加减法练习题精选 9x3-8x2-9y2+2y-6x2+y-y2
(3a2b-8b3)+(8a2b2+6b3) (-x2y-xy2)+(9x2y-3xy2) -3c2+[-3c2-(2c2+6c)+6(c2+2c)] 11+3(1-a)+(1-a-a2)-4(1-a+a2-a3) (-a2b-ab)+(8a2b-6ab) 人教版七年级数学上册第二单元整式的加减法练习题精选 (8s2-3s-4)-(9s2+3s-3)
(9m2+4m-8)-3(2+5m-9m2) 三、先化简下式,再求值。 x2-4-3x2+7x-5x2-2-3x 其中,x=3。
三、把(a+b)和(c+d)各看成一个整体,对下列各式进行化简: 6(a+b)-5(a+b)-6(a+b)
(c+d)2+7(c+d)-5(c+d)2+3(c+d) 人教版七年级数学上册第二单元整式的加减法练习题精选 一、列式表示。
甲地的海拔高度是hm,乙地比甲地高100m,丙地比甲地低14m,列式表示乙、丙两地的海拔高度,并计算这两地的高度差。
二、计算。 x2y-5x2y -90z2+2.5z2
1 1 -—a2bc-—cba2 -a2b+0.2a2b 2 3
1 1 —mn+—mn-8 4x2y+4.5x2y 6 4
ab+4a2b2+6+3ab2+8a2b2-7+8ab 人教版七年级数学上册第二单元整式的加减法练习题精选 8x3+9x2+3y2+y+x2+y+y2
(8a2b-b3)-(-a2b2+4b3) (x2y+xy2)-(8x2y+xy2) 3c2+[9c2-(8c2-9c)-4(c2+4c)] 5-4(1-a)-(1-a-a2)-2(1-a+a2-a3) (a2b-ab)+(-a2b-ab) 人教版七年级数学上册第二单元整式的加减法练习题精选 (3s2+4s-3)+(4s2+3s+3)
(6x2-6x+1)-5(6-4x+7x2) 三、先化简下式,再求值。 x2-9-2x2-5x+3x2+6-8x 其中,x=-4。
三、把(p+q)和(e+f)各看成一个整体,对下列各式进行化简: 5(p+q)-9(p+q)-7(p+q)
(e+f)2+8(e+f)-2(e+f)2+6(e+f) 人教版七年级数学上册第二单元整式的加减法练习题精选 一、列式表示。
10天中,小张长跑路程累积达到75000m,小李跑了am,平均每天小李和小张各跑多少米?平均每天小李比小张多跑多少米?
二、计算。 x2y+4x2y 60x2-19.5x2
1 1 —a2bc+—cba2 -a2b+0.9a2b 5 4
1 1 —ab-—ab+2 4ab2-2.5ab2 2 4
6ab-5a2b2+4+3ab2+6a2b2+4-5ab 人教版七年级数学上册第二单元整式的加减法练习题精选 4x3+5x2+6y2-3y-7x2+7y-7y2
(-a2b+8b3)+(-7a2b2+5b3) (8x2y+xy2)+(x2y+6xy2) -7z2-[-8z2+(4z2+9z)-5(z2-6z)] 14-4(1-a)+(1-a-a2)-4(1-a+a2-a3) (-a2b-ab)+(8a2b-4ab) 人教版七年级数学上册第二单元整式的加减法练习题精选 (9x2+2x-7)+(8x2-2x+8)
(3x2-3x+5)-2(2-6x+2x2) 三、先化简下式,再求值。 x2-2+4x2+2x+3x2+2-9x 其中,x=5。
三、把(p+q)和(e+f)各看成一个整体,对下列各式进行化简: 6(p+q)+7(p+q)+7(p+q)
(e+f)2-7(e+f)-7(e+f)2+8(e+f) 人教版七年级数学上册第二单元整式的加减法练习题精选 一、列式表示。
某地冬季一天的温差是17℃,这天最低气温是t℃,最高气温是多少℃?
二、计算。 -5x2y+5x2y -40c2+13.5c2
1 1 -—a2bc-—cba2 -a2b-0.6a2b 3 4
1 1 —pq+—pq+7 3x2y-3.5x2y 2 3
ab-5a2b2-3-9ab2+3a2b2+9-4ab 人教版七年级数学上册第二单元整式的加减法练习题精选 3x3+7x2-7y2-7y-9x2+5y-6y2
(a2b-8b3)+(-a2b2+5b3) (-5x2y+xy2)-(x2y+7xy2) -3t2+[-4t2-(6t2-7t)+6(t2+2t)] 17-3(1-a)-(1-a-a2)-5(1-a+a2-a3) (-9a2b+ab)+(-a2b+ab) 人教版七年级数学上册第二单元整式的加减法练习题精选 (5n2+2n+1)-(6n2-2n-5)
(7b2+5b+5)-4(2+5b+8b2) 三、先化简下式,再求值。 x2+8-2x2-3x+7x2-5+4x 其中,x=-5。
三、把(x+y)和(y+z)各看成一个整体,对下列各式进行化简: (x+y)+3(x+y)-6(x+y)
4(y+z)2+5(y+z)-5(y+z)2-4(y+z) 人教版七年级数学上册第二单元整式的加减法练习题精选 一、列式表示。
长方形的长是4xcm,宽是3cm,梯形的上底长xcm,下底长是上底长的2倍,高是4cm,哪个图形面积大?大多少?
二、计算。 x2y-4x2y -50t2-2.5t2
1 1 —a2bc-—cba2 -a2b-0.4a2b 6 5
1 1 —st-—st+10 6x2y2+7.5x2y2 2 3
4ab-6a2b2-2+3ab2-3a2b2+4+4ab 人教版七年级数学上册第二单元整式的加减法练习题精选 6x3-2x2+y2+y+x2+4y+y2
(a2b-4b3)-(-a2b2-b3) (-x2y+xy2)-(5x2y+3xy2) -9t2-[-6t2+(8t2-5t)+8(t2-8t)] 17-9(1-a)+(1-a-a2)-5(1-a+a2-a3) (2a2b+ab)-(5a2b+8ab) 人教版七年级数学上册第二单元整式的加减法练习题精选 (2x2-4x-5)-(5x2+4x+2)
(7s2+2s+1)-4(4-6s+3s2) 三、先化简下式,再求值。 x2-7+3x2-5x+8x2-8+2x 其中,x=-1。
三、把(s+t)和(y+z)各看成一个整体,对下列各式进行化简: 8(s+t)-6(s+t)-2(s+t)
(y+z)2+7(y+z)-3(y+z)2+9(y+z) 人教版七年级数学上册第二单元整式的加减法练习题精选 一、列式表示。
体校里男生人数是x,女生人数是y,教练人数与学生人数的比是1:17,教练人数是多少?
二、计算。 -x2y+8x2y -10z2-4.5z2
1 1 —a2bc-—cba2 -7a2b+0.7a2b 2 2
1 1 —ab-—ab-3 10a2b2-6.5a2b2 4 4
9ab-5a2b2-4-8ab2-9a2b2+9-4ab 人教版七年级数学上册第二单元整式的加减法练习题精选 3x3-7x2+2y2+2y+x2+2y+8y2
(-4a2b-b3)+(a2b2-b3) (x2y+xy2)+(8x2y+xy2) -2b2-[-3b2-(6b2-4b)+3(b2+5b)] 5+2(1-a)+(1-a-a2)-4(1-a+a2-a3) (-9a2b-ab)+(-a2b+ab) 人教版七年级数学上册第二单元整式的加减法练习题精选 (3b2+4b-5)+(6b2+4b+4)
(9z2+5z-1)+2(3+3z+6z2) 三、先化简下式,再求值。 4x2-5+8x2+5x+6x2-9+8x 其中,x=-5。
三、把(a+b)和(e+f)各看成一个整体,对下列各式进行化简: 2(a+b)-5(a+b)+2(a+b)
(e+f)2+7(e+f)+3(e+f)2+5(e+f) 人教版七年级数学上册第二单元整式的加减法练习题精选 一、列式表示。
甲地的海拔高度是hm,乙地比甲地高90m,丙地比甲地低12m,列式表示乙、丙两地的海拔高度,并计算这两地的高度差。
二、计算。 9x2y+6x2y -50x2-19.5x2
1 1 -—a2bc+—cba2 -6a2b-0.2a2b 6 4
1 1 -—mn-—mn-9 8a3b+7.5a3b 2 4
2ab-4a2b2+8-6ab2-2a2b2-3+5ab