高温合金加热炉电气控制系统设计
- 格式:pdf
- 大小:194.67 KB
- 文档页数:3
加热炉温度控制系统设计一、引言加热炉是一种常见的工业设备,用于将物体加热至一定温度。
在许多工业过程中,加热炉的温度控制至关重要,它直接影响到产品的质量和生产效率。
因此,设计一个稳定可靠的温度控制系统对于提高工业生产的效益十分重要。
本文将介绍一个基于控制理论的加热炉温度控制系统的设计。
二、控制系统设计原理1.温度传感器:温度传感器是测量加热炉内部温度的重要组成部分。
常用的温度传感器包括热电偶和热敏电阻。
传感器将温度信号转换为电信号,并将其发送给控制器。
2.控制器:控制器接收温度传感器发送的信号,并与设定值进行比较。
根据比较结果,控制器将控制信号发送给加热器以调整加热功率。
控制器通常使用PID控制算法,它根据偏差、积分和微分项来计算控制信号。
3.加热器:加热器是加热炉温度控制系统中的执行器。
根据控制信号,加热器可以调整加热功率,从而控制加热炉的温度。
三、温度传感器选择温度传感器的选择对于温度控制系统的性能至关重要。
常见的温度传感器有热电偶和热敏电阻。
在选择传感器时需要考虑以下因素:1.测量范围:根据加热炉的工作温度范围选择合适的传感器。
不同的传感器有不同的工作温度范围。
2.精度:传感器的精度对于控制系统的准确性非常重要。
一般来说,热电偶的精度比热敏电阻高。
3.响应时间:加热炉温度的变化通常需要快速响应。
因此,传感器的响应时间也是一个重要的考虑因素。
四、控制器设计1.控制算法选择:常见的控制算法有比例控制、积分控制和微分控制。
PID控制算法结合了这三种控制算法,被广泛应用于温度控制系统。
2. 参数调节:根据具体的应用场景和系统性能要求,需要对PID控制器进行参数调节。
常见的调节方法有Ziegler-Nichols方法和临时增减法。
3.控制信号输出:控制信号输出给加热器,影响加热功率。
一般来说,控制信号越大,加热功率越高,温度升高的速度越快。
五、系统测试和优化完成控制系统的设计后,需要进行系统测试和优化。
加热炉过程自动控制系统的设计以下是一个加热炉过程自动控制系统的设计方案,详细描述了系统的组成、工作原理及控制策略:一、系统组成:1.传感器:用于检测加热炉的温度、湿度、压力、流量等参数。
2.执行器:负责控制加热炉的加热功率、燃料供给、风量等。
3.控制器:根据传感器信号,通过计算和判断,产生相应的控制命令,控制执行器的动作。
4.人机界面:提供对加热炉过程的监控、设置和操作功能,使操作员能够方便地对加热炉进行调试和控制。
二、工作原理:1.传感器采集加热炉的各项参数,并将数据传输给控制器。
2.控制器根据传感器数据进行计算和分析,将所需的控制命令传输给执行器。
3.执行器根据控制命令控制相应设备的动作,如调节加热功率、燃料供给量、风量等。
4.执行器调整加热炉的工作状态,使其达到预定的温度、湿度、压力、流量等参数。
5.人机界面可以通过可视化界面显示加热炉的运行状态和参数,操作员可以通过界面进行参数设置和调整。
三、控制策略:1.温度控制:根据加热炉的加热需求,设置温度控制器的目标温度,并通过加热功率的控制来调节温度,使其尽量趋近目标温度。
2.湿度控制:根据加热炉的加热需求,设置湿度控制器的目标湿度,并通过蒸汽量或喷雾量的控制来调节湿度,使其尽量趋近目标湿度。
3.压力控制:根据加热炉的加热需求,设置压力控制器的目标压力,并通过调节燃料供给量和风量的控制来调节压力,使其尽量趋近目标压力。
4.流量控制:根据加热炉的加热需求,设置流量控制器的目标流量,并通过调节燃料供给量和风量的控制来调节流量,使其尽量趋近目标流量。
5.故障诊断与安全保护:系统可以检测加热炉的异常状态和故障情况,并进行相应的故障诊断和安全保护措施,如当温度超过安全范围时,自动切断燃料供给等。
基于PLC控制的加热炉温度控制系统设计概述加热炉是工业生产中常见的设备之一,其主要作用是提供高温环境用于加热物体。
为了确保加热炉的稳定性和安全性,需要设计一个可靠的温度控制系统。
本文将介绍一个基于PLC(可编程逻辑控制器)控制的加热炉温度控制系统设计方案。
系统设计原理在加热炉温度控制系统中,PLC作为核心控制器,通过监测温度传感器的输出信号,根据预设的温度设定值和控制策略,控制加热炉的加热功率,从而实现对加热炉温度的稳定控制。
以下是系统设计的主要步骤:1.硬件设备选择:选择适合的温度传感器和控制元件,如热电偶、温度控制继电器等。
2.PLC选型:根据实际需求,选择合适的PLC型号。
PLC需要具备足够的输入输出点数和计算能力。
3.传感器连接:将温度传感器接入PLC的输入端口,读取实时温度数据。
4.温度控制策略设计:根据加热炉的特性和工艺需求,设计合适的温度控制策略。
常见的控制策略包括比例控制、积分控制和微分控制。
5.控制算法实现:根据温度控制策略,编写PLC程序,在每个采样周期内计算控制算法的输出值。
6.加热功率控制:使用控制继电器或可调功率装置,控制加热炉的加热功率。
7.温度反馈控制:通过监测实际加热炉温度和设定值之间的差异,不断修正加热功率控制,使加热炉温度稳定在设定值附近。
系统硬件设计基于PLC控制的加热炉温度控制系统的硬件设计主要包括以下几个方面:1.温度传感器:常用的温度传感器有热电偶和热敏电阻。
根据加热炉的工艺需求和温度范围,选择适合的温度传感器。
2.PLC:选择适合的PLC型号,根据实际需求确定PLC的输入输出点数和计算能力。
3.控制继电器或可调功率装置:用于控制加热炉的加热功率。
根据加热炉的功率需求和控制方式,选择合适的继电器或可调功率装置。
4.运行指示灯和报警器:用于显示系统的运行状态和报警信息。
PLC程序设计PLC程序是基于PLC的加热炉温度控制系统的关键部分,其主要功能是实现温度控制算法。
摘要温度控制系统广泛应用于工业控制领域,如钢铁厂、化工厂、火电厂等锅炉的温度控制系统,电焊机的温度控制系统等。
加热炉温度控制在许多领域中得到广泛的应用。
这方面的应用大多是基于单片机进行PID 控制, 然而单片机控制的DDC 系统软硬件设计较为复杂, 特别是涉及到逻辑控制方面更不是其长处, PLC 在这方面却是公认的最佳选择。
加热炉温度是一个大惯性系统,一般采用PID调节进行控制。
随着PLC功能的扩充在许多PLC控制器中都扩充了PID 控制功能, 因此在逻辑控制与PID控制混合的应用场所中采用PLC控制是较为合理的。
本设计是利用西门子S7-300PLC控制加热炉温度的控制系统。
首先介绍了温度控制系统的工作原理和系统的组成,然后介绍了西门子S7-300PLC和系统硬件及软件的具体设计过程。
关键词:西门子S7-300PLC,PID,温度传感器,固态继电器目录摘要 (I)Abstract .......................................... 错误!未定义书签。
第一章引言 . (1)1.1 系统设计背景 (IV)1.2 系统工作原理 (IV)1.3 系统设计目标及技术要求 (IV)1.4 技术综述 (IV)第二章系统设计 (V)2.1 控制原理与数学模型 (V)2.1.1 PID控制原理 (V)2.1.2 PID指令的使用注意事项 (VIII)2.2 采样信号和控制量分析 (IX)2.3 系统组成 (IX)第三章硬件设计 ................................................... X I3.1 PLC的基本概念 (XI)3.1.1 模块式PLC的基本结构 (XII)3.1.2 PLC的特点 (XIII)3.2 PLC的工作原理 (XIV)3.2.1 PLC的循环处理过程 (XIV)3.2.2 用户程序的执行过程 (XVI)3.3 S7-300 简介 (XVI)3.3.1 数字量输入模块 (XVII)3.3.2 数字量输出模块 (XVII)3.3.3 数字量输入/输出模块 (XVII)3.3.4 模拟量输入模块 (XVII)3.3.5 模拟量输出模块 (XVIII)3.4 温度传感器 (XVIII)3.4.1 热电偶 (16)3.4.2 热电阻 (17)3.5 固态继电器 (XX)3.5.1 概述 (18)3.5.2 固态继电器的组成 (18)3.5.3 固态继电器的优缺点 (19)第四章软件设计 ................................................. X XII4.1 STEP7编程软件简介 (XXII)4.1.1 STEP7概述 (XXII)4.1.2 STEP7的硬件接口 .......................... .. (XXII)4.1.3 STEP7的编程功能 (XXII)4.1.4 STEP7的硬件组态与诊断功能 (XXIII)4.2 STEP7项目的创建 (XXIV)4.2.1 使用向导创建项目 (XXIV)4.2.2 直接创建项目 (XXIV)4.2.3 硬件组态与参数设置 (XXIV)4.3 用变量表调试程序 (XXVI)4.3.1 系统调试的基本步骤 (XXVI)4.3.2 变量表的基本功能 (XXVII)4.3.3 变量表的生成 (XXVIII)4.3.4 变量表的使用 (XXVIII)4.4 S7-300的编程语言 (XXIX)4.4.1 PLC编程语言的国际标准 (XXIX)4.4.2 STEP7中的编程技术 (XXX)结束语 ......................................................... X XXIV 致谢 (33)参考文献 (34)附录 (35)1.1系统设计背景近年来,加热炉温度控制系统是比较常见和典型的过程控制系统,温度是工业生产过程中重要的被控参数之一,冶金﹑机械﹑食品﹑化工等各类工业生产过程中广泛使用的各种加热炉﹑热处理炉﹑反应炉,对工件的处理均需要对温度进行控制。
摘要温度是流程工业中极为常见的热工参数,对它的控制也是过程控制的一个重点。
由于加热过程、加热装置特殊结构等具体原因,使得过程对象经常具有大时滞、非线性、难以建立精确数学模型等特点,利用传统的PID控制策略对其进行控制,难以取得理想的控制效果,而应用数字PID控制算法能得到较好的控制效果。
本文主要阐述了一种改进型的加热炉对象及其工艺流程,采用了PLC控制装置设计了控制系统,使加热炉的恒温及点火实现了自动控制,从而使加热炉实现了全自动化的控制。
此种加热炉可广泛应用于铝厂、钢厂等金属冶炼、金属加工行业以及化工行业。
此设计以工业中的电加热炉为原型,以实验室中的电加热炉为实际的被控对象,采用PID控制算法对其温度进行控制。
提出了一种适合电加热炉对象特点的控制算法,并以PLC 为核心,组成电加热炉自适应控制系统,其控制精度,可靠性,稳定性指标均远高于常规仪表组成的系统。
关键词:温度;电加热炉;PLC;控制系统Control System Design of BoilerABSTRACTTemperature is a very popular parameter of pyrology in flow industry,so temperature control is an emphases of process control.Considering some special condition such as heating mechanism and the special structure of heater there are often some features such as long time lag,nonlinearity and difficulties of modeling of targets of process.It's difficult to control very well by traditional PID algorithm,the Digital PID control algorithm can get better control effect.This article described a type of imp roved regenerative heating furnace, which makes the temperature invariable and auto ignition using PLC. It can be available in aluminum and steelmill and other metal industry, which can bring obvious economic and social benefits.The industrial design of the prototype electric oven to laboratory electric furnace of the real object, PID control algorithm for temperature control.The paper presents a target for electric furnace characteristics of control algorithms, and PLC as the core to form the furnace adaptive control system. Control accuracy, reliability and stability indicators are much higher than the system which is consisted of the conventional instrument, thedesign uses PID algorithm to control its temperature.Keyword: Temperature;heating furnace;PLC;control system目录摘要 (I)ABSTRACT (II)第一章绪论 (1)1.1选题的背景及意义 (1)1.2加热炉控制研究现状 (2)1.3本设计的主要工作及技术路线 (3)1.3.1主要工作 (3)1.3.2本论文的技术路线 (4)第二章控制方案确定 (5)2.1控制对象的数学模型及仿真 (5)2.2 电加热炉控制系统分析: (9)2.3控制系统的控制过程 (11)2.3.1 温度--流量串级控制系统 (11)2.3.2 液位-流量串级控制系统 (11)2.4 控制系统主要特色 (12)第三章PLC 控制系统硬件设计及仪表选型 (14)3.1系统特性分析 (14)3.2 PROFIBUS 现场总线介绍 (14)3.3电加热炉PLC系统结构 (15)3.4 PLC控制系统设计 (16)3.4.1 恒温控制系统 (16)3.4.2 恒压控制系统 (17)第四章控制系统的软件设计 (20)4.1 下位机软件设计 (20)4.1.1Step-7简介 (20)4.1.2下位机软件设计流程图 (22)4.2上位机软件设计 (22)4.2.1Win CC 简介 (23)4.2.2监控系统的设计 (24)第五章仪器仪表的选型 (26)5.1现场仪表的选型 (26)5.1.1控制阀的选型 (26)5.1.2节流装置的计算 (27)5.1.3电气阀门的定位器 (28)5.1.4 压力变送器的选型 (29)5.1.5 压力表的选型 (30)5.1.6流量计的选择 (30)5.1.7 温度变送器的选型 (31)5.1.8浮子液位计的选型 (32)5.2控制室仪表选型 (33)5.2.1PLC的选型 (33)5.2.2 控制柜的选型 (33)5.2.3安全栅的选型 (34)5.2.4供电箱的选型 (34)5.2.5智能调节器的选型 (35)5.3其他仪器的选型 (36)5.3.1水箱的选型 (36)5.3.2水泵的选型 (36)5.3.4接线箱的选型 (37)5.3.5三相调压模块的选型 (37)第六章总结和展望 (38)6.1 设计总结 (38)6.2 课题展望 (39)参考文献(References) (40)致谢 (42)第一章绪论1.1选题的背景及意义我国的电加热锅炉在10多年前问世,由于受到当时电力因素的制约,发展非常缓慢,只有几个非锅炉行业的厂家在生产。
中小企业管理与科技四、捕获屏幕编码器也可以将本机的屏幕做为视频源进行编码、保存或者广播,该功能结合广播实况事件功能,可以做到将讲座老师的人象、声音、计算机上的PPT等内容同步进行广播或者保存,这就是现在很流行的网络教学课件的一个基础模式:包括授课老师的视频、音频,以及计算机屏幕的内容。
五、总结与体会虽然WindowsMediaEncorder的软件体积很小,但是他的功能却很强大,最重要的是很实用,虽然做这些广播、格式转换等工作不如一些专业软件那么强大,但是我们却可以用20分的代价做到了80分的效果,对于一款仅仅有9M多的免费软件来说,我想已经是非常不错了。
只要结合相关硬件(摄象机、摄象头、麦克风等)和相关软件(WindowsMediaServer、IIS等),就能够使用编码器零软件费用的实现我们平时工作中相当多的对流媒体相关的需求。
摘要:加热炉是冶金企业中重要的工业设备,步进式加热炉是各种工业、企业中普遍应用的炉窑。
本文以步进式加热炉为例介绍了加热炉生产过程中的控制系统设计,主要介绍了燃烧控制系统、炉膛压力控制系统、热风放散和冷风稀释控制系统。
关键词:加热炉燃烧控制炉膛压力概述加热炉在轧钢生产线中广泛应用,是轧钢工艺的前部工序。
在轧钢厂的热轧生产中,必须要将轧制的钢锭或钢坯加热到一定的温度,使它具有一定的可塑性,才能进行轧制,而这一过程是在加热炉中进行的。
钢坯从入炉侧装入,经过预热、加热、均热等燃烧区域达到控制温度后,从出炉侧出炉。
影响钢质量的因素很多,其中炉膛压力和温度起着关键作用,要使产出的钢材符合要求和生产能顺利进行,所以加热炉燃烧控制和炉膛压力控制显得十分重要。
加热炉的工艺流程如图1所示。
图1工艺流程图1燃烧控制系统设计加热炉消耗的燃料能量很大,所以理想的燃烧控制将会取得明显得节能效果。
根据燃烧理论,空气过剩率与燃烧效率,节能和防止公害有很大关系,一般空气过剩率的最佳区域在1.02 ̄1.1之间。
加热炉温度串级控制系统设计摘要:生产自动控制过程中 ,随着工艺要求 ,安全、经济生产不断提高的情况下 ,简单、常规的控制已不能适应现代化生产。
传统的单回路控制系统很难使系统完全抗干扰。
串级控制系统具备较好的抗干扰能力、快速性、适应性和控制质量,因此在复杂的过程控制工业中得到了广泛的应用.对串级控制系统的特点和主副回路设计进行了详述,设计了加热炉串级控制系统,并将基于MATLAB的增量式PID算法应用在控制系统中.结合基于计算机控制的PID参数整定方法实现串级控制,控制结果表明系统具有优良的控制精度和稳定性.关键词:串级控制干扰主回路副回路Abstract:Automatic control of production process, with the technical requirements, security, economic production rising cases, simple, conventional control can not meet the modern production. The traditional single-loop control system is difficult to make the system completely anti-interference. Cascade control system with good anti-jamming capability, rapidity, flexibility and quality control, and therefore a complex process control industry has been widely used. Cascade control system of the characteristics and the main and sub-loop design was elaborate, designed cascade control system, furnace, and MATLAB-based incremental PID algorithm is applied in the control system. Combination of computer-based control method to achieve PID parameter tuning cascade control, control results show that the system has excellent control accuracy and stabilityKeywords:Cascade control, interference, the main circuit, the Deputy loop目录1.前言 (2)2、整体方案设计 (3)2.1方案比较 (3)2.2方案论证 (5)2.3方案选择 (5)3、串级控制系统的特点 (6)4. 温度控制系统的分析与设计 (7)4.1控制对象的特性 (7)4.2主回路的设计 (8)4.3副回路的选择 (8)4.4主、副调节器规律的选择 (8)4.5主、副调节器正反作用方式的确定 (8)5、控制器参数的工程整定 (10)6 、MATLAB系统仿真 (10)6.1系统仿真图 (11)6.2副回路的整定 (12)6.3主回路的整定 (13)7.设计总结 (16)【参考文献】 (16)1.前言加热炉是炼油、化工生产中的重要装置之一。
热处理加热炉电气控制系统设计1. 简介热处理加热炉电气控制系统是加热炉的一个重要组成部分,主要负责加热炉的加热和控制过程。
在热处理加热炉加热和控制过程中,电气系统起着至关重要的作用,能够控制炉温的升降,确保产品质量。
2. 设计要求为了满足加热炉的加热和控制要求,热处理加热炉电气控制系统设计需要考虑以下几个要求:1.加热炉的加热速度和温度控制要求高精度;2.控制系统需要具备稳定性和可靠性,避免因电气控制问题造成安全事故;3.控制系统需要具备良好的可扩展性,以满足日后对加热炉控制的进一步需求。
3. 系统设计3.1 系统组成热处理加热炉电气控制系统主要由以下几个组成部分:1.加热控制器:用于控制加热炉的温度和加热速度;2.电源控制器:用于控制加热炉的电源,确保电气安全;3.信号采集模块:用于采集加热炉的各种数据,向控制器提供反馈。
3.2 设计原则在设计过程中,我们需遵循以下原则:1.系统应该具备高可靠性和稳定性,确保加热炉运行安全;2.系统应该尽可能简单,易于维护和管理;3.系统应该具备可扩展性和灵活性,以满足日后的需求。
3.3 系统配置为了满足系统要求,我们建议采用以下组合,并按如下方式进行配置:1.PLC控制器,可实现高精度的温度和加热速度控制;2.I/O模块,基于数字信号,用于采集和输出数据;3.控制面板,用于人机交互。
其中,人机交互板提供温度设定,模式选择和状态监测功能。
4.调节器,用于控制加热炉中的温度。
4. 系统代码设计系统代码是系统设计的重要组成部分。
在系统设计中,我们需要考虑以下几个方面:4.1 程序结构系统代码可以分成以下几个部分:1.采集数据:用于采集加热炉温度、传感器反馈和其他数据;2.温度控制:控制加热炉的加热速度和温度;3.炉温监测:提供炉温监测功能。
4.2 代码编写为了满足系统要求,在编写代码时,我们需要注意以下几个方面:1.考虑代码的可读性和可维护性;2.确保代码能够实现高精度的温度和加热速度控制;3.注意代码的稳定性和可靠性。
过程控制系统课程设计设计题目加热炉温度控制系统学生姓名专业班级自动化指导老师2010 年12月31日第1章设计的目的和意义第2章控制系统工艺流程及控制要求2.1 生产工艺介绍2.2 控制要求总体设计方案3.1 系统控制方案3.2 系统结构和控制流程图控制系统设计4.1 系统控制参数确定4.2 PID 调节器设计控制仪表的选型和配置5.1 检测元件5.2 变送器5.3 调节器5.4 执行器系统控制接线图13元件清单13收获和体会14参考文献第1章设计的目的和意义电加热炉被广泛应用于工业生产和科学研究中。
由于这类对象使用方便,可以通过调节输出功率来控制温度,进而得到较好的控制性能,故在冶金、机械、化工等领域中得到了广泛的应用。
在一些工业过程控制中,工业加热炉是关键部件,炉温控制精度及其工作稳定性已成为产品质量的决定性因素。
对于工业控制过程,PID调节器具有原理简单、使用方便、稳定可靠、无静差等优点,因此在控制理论和技术飞跃发展的今天,它在工业控制领域仍具有强大的生命力。
在产品的工艺加工过程中,温度有时对产品质量的影响很大,温度检测和控制是十分重要的,这就需要对加热介质的温度进行连续的测量和控制。
在冶金工业中,加热炉内的温度控制直接关系到所冶炼金属的产品质量的好坏,温度控制不好,将给企业带来不可弥补的损失。
为此,可靠的温度的监控在工业中是十分必要的。
这里,给出了一种简单的温度控制系统的实现方案。
第2章控制系统工艺流程及控制要求2.1 生产工艺介绍加热炉是石油化工、发电等工业过程必不可少的重要动力设备,它所产生的高压蒸汽既可作为驱动透平的动力源,又可作为精馏、干燥、反应、加热等过程的热源。
随着工业生产规模的不断扩大,作为动力和热源的过滤,也向着大容量、高参数、高效率的方向发展。
加热炉设备根据用途、燃料性质、压力高低等有多种类型和称呼,工艺流程多种多样,常用的加热炉设备的蒸汽发生系统是由给水泵、给水控制阀、省煤器、汽包及循环管等组成。