2018-2019学年长春外国语学校高一数学下期末试卷
- 格式:docx
- 大小:113.58 KB
- 文档页数:4
吉林省长春外国语学校高一(上)期末数学试卷一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.sin210°=()A.B.C.﹣ D.﹣2.sin27°cos18°+cos27°sin18°的值为()A.B.C.D.13.已知集合A={x|1<2x<8},集合B={x|0<log2x<1},则A∩B=()A.{x|1<x<3}B.{x|1<x<2}C.{x|2<x<3}D.{x|0<x<2}4.已知a=sin80°,,,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a5.一扇形的圆心角为60°,所在圆的半径为6,则它的面积是()A.6πB.3πC.12πD.9π6.若α,β∈(0,π)且,则α+β=()A.B. C. D.7.的一条对称轴是()A.B.C. D.8.要得到的图象,只需将y=3cos2x的图象()A.右移B.左移C.右移D.左移9.函数的定义域为()A.B.C.D.10.函数y=sinx+cosx的值域是()A.[﹣1,1]B.[﹣2,2]C.D.11.下列函数中既是偶函数,最小正周期又是π的是()A.y=sin2x B.y=cosx C.y=tanx D.y=|tanx|12.函数f(x)=lnx+x2+a﹣1有唯一的零点在区间(1,e)内,则实数a的取值范围是()A.(﹣e2,0)B.(﹣e2,1)C.(1,e) D.(1,e2)二、填空题:本题共4小题,每小题5分.13.若tanα=2,则的值为.14.已知函数y=的单调递增区间为.15.的对称中心是.16.若,则(1+tanα)•(1+tanβ)=.三、解答题:本题共6小题,17题10分,18--22每小题10分.17.已知集合A={x|x2﹣4x﹣5<0},B={x|3<2x﹣1<7},设全集U=R,求(1)A∪B.(2)A∩∁U B.18.化简.19.已知函数y=Asin(ωx+ϕ)其中,若函数的最小正周期为π,最大值为2,且过(0,1)点,(1)求函数的解析式;(2)求函数的单调递减区间.20.已知函数,(1)求f(x)的值域;(2)说明怎样由y=sinx的图象得到f(x)的图象.21.已知,且,(1)求sin(α+β),与与cos(α﹣β)的值;(2)求tan(2α﹣β)的值.22.已知函数f(x)=3sin2x+acosx﹣cos2x+a2﹣1,(1)判断f(x)的奇偶性,并加以证明;(2)求f(x)的最大值.吉林省长春外国语学校高一(上)期末数学试卷参考答案与试题解析一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.sin210°=()A.B.C.﹣ D.﹣【考点】运用诱导公式化简求值.【分析】利用诱导公式可得sin210°=sin=﹣sin30°,化简得出结果.【解答】解:sin210°=sin=﹣sin30°=﹣,故选C.2.sin27°cos18°+cos27°sin18°的值为()A.B.C.D.1【考点】两角和与差的余弦函数.【分析】利用两角和的正弦函数公式,特殊角的三角函数值即可计算得解.【解答】解:sin27°cos18°+cos27°sin18°=sin(27°+18°)=sin45°=.故选:A.3.已知集合A={x|1<2x<8},集合B={x|0<log2x<1},则A∩B=()A.{x|1<x<3}B.{x|1<x<2}C.{x|2<x<3}D.{x|0<x<2}【考点】交集及其运算.【分析】化简集合A、B,根据交集的定义写出A∩B即可.【解答】解:集合A={x|1<2x<8}={x|0<x<3},集合B={x|0<log2x<1}={x|1<x<2},则A∩B={x|1<x<2}.故选:B.4.已知a=sin80°,,,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a【考点】对数值大小的比较.【分析】利用三角函数的单调性、指数函数与对数函数的单调性即可得出.【解答】解:a=sin80°∈(0,1),=2,<0,则b>a>c.故选:B.5.一扇形的圆心角为60°,所在圆的半径为6,则它的面积是()A.6πB.3πC.12πD.9π【考点】扇形面积公式.【分析】根据扇形的面积公式代入计算,即可得解.【解答】解:∵α=,r=6,∴由扇形面积公式得:S===6π.故选:A.6.若α,β∈(0,π)且,则α+β=()A.B. C. D.【考点】两角和与差的正切函数.【分析】直接利用两角和的正切函数求解即可.【解答】解:∵α,β∈(0,π)且,则tan(α+β)===1,∴α+β=.故选:A .7.的一条对称轴是( )A .B .C .D .【考点】正弦函数的图象.【分析】由题意, =kπ+,x=2kπ+,(k ∈Z ),即可得出结论.【解答】解:由题意, =kπ+,∴x=2kπ+,(k ∈Z ),∴的一条对称轴是x=﹣,故选C .8.要得到的图象,只需将y=3cos2x 的图象( )A .右移B .左移C .右移D .左移【考点】函数y=Asin (ωx +φ)的图象变换.【分析】根据三角函数图象平移的法则,即可得出正确的结论.【解答】解:函数=3cos [2(x ﹣)],要得到y=3cos (2x ﹣)的图象,只需将y=3cos2x 的图象向右平移个单位. 故选:C .9.函数的定义域为( )A .B .C .D .【考点】函数的定义域及其求法.【分析】根据函数成立的条件即可求函数的定义域. 【解答】解:要使函数有意义,则2sin (π﹣2x )﹣1≥0,即sin2x≥,则2kπ+≤2x≤2kπ+,k∈Z,则kπ+≤x≤kπ+,k∈Z,即函数的定义域为,故选:D10.函数y=sinx+cosx的值域是()A.[﹣1,1]B.[﹣2,2]C.D.【考点】三角函数中的恒等变换应用;正弦函数的定义域和值域.【分析】利用两角和差的正弦公式把函数y化为sin(x+),根据﹣1≤sin(x+)≤1,得到﹣≤sin(x+)≤,从而得到函数y的值域.【解答】解:函数y=sinx+cosx=sin(x+),由于﹣1≤sin(x+)≤1,∴﹣≤sin(x+)≤,故函数y=sinx+cosx的值域是,选D.11.下列函数中既是偶函数,最小正周期又是π的是()A.y=sin2x B.y=cosx C.y=tanx D.y=|tanx|【考点】三角函数的周期性及其求法;函数奇偶性的判断.【分析】逐一分析各个选项,利用三角函数的奇偶性、周期性排除A、B、C,从而得到D正确.【解答】解:由于函数y=sin2x周期为π,不是偶函数,故排除A.由于函数y=cosx周期为2π,是偶函数,故排除B.由于函数y=tanx是周期函数,且周期为π,但它不是偶函数,故排除C.由于函数y=|tanx|是周期函数,且周期为π,且是偶函数,故满足条件,故选:D.12.函数f(x)=lnx+x2+a﹣1有唯一的零点在区间(1,e)内,则实数a的取值范围是()A.(﹣e2,0)B.(﹣e2,1)C.(1,e) D.(1,e2)【考点】二分法的定义.【分析】利用导数得到函数为增函数,由题意可得f(1)<0且f(e)>0,解得即可.【解答】解:∵f(x)=lnx+x2+a﹣1,∴f′(x)=+2a>0在区间(1,e)上恒成立,∴f(x)在(1,e)上单调递增,∵函数f(x)=lnx+x2+a﹣1有唯一的零点在区间(1,e)内,∴f(1)<0且f(e)>0,即,解得﹣e2<a<0,故选:A二、填空题:本题共4小题,每小题5分.13.若tanα=2,则的值为.【考点】同角三角函数基本关系的运用.【分析】利用同角三角函数的基本关系求得要求式子的值.【解答】解:∵tanα=2,∴==,故答案为:14.已知函数y=的单调递增区间为(﹣∞,﹣1).【考点】复合函数的单调性.【分析】令t=x2﹣1>0,求得函数的定义域,再由y=,本题即求函数t在定义域内的减区间,再利用二次函数的性质可得结论.【解答】解:令t=x2﹣1>0,求得x>1,或x<﹣1,故函数的定义域为{x|x>1,或x<﹣1},且y=,故本题即求函数t在定义域内的减区间.再利用二次函数的性质可得函数t在定义域内的减区间为(﹣∞,﹣1),故答案为:(﹣∞,﹣1).15.的对称中心是(+,0),k∈Z.【考点】正弦函数的图象.【分析】利用正弦函数的图象的对称性,求得该函数的图象的对称中心.【解答】解:∵函数,令2x﹣=kπ,求得x=+,k∈Z,故函数的图象的对称中心是(+,0),k∈Z,故答案为:.16.若,则(1+tanα)•(1+tanβ)=2.【考点】两角和与差的正切函数.【分析】先求出tan(α+β)=1,把所求的式子展开,把tanα+tanβ 换成tan(α+β)(1﹣tanα•tanβ),运算求出结果.【解答】解:∵,∴tan(α+β)=1.∴(1+tanα)•(1+tanβ)=1+tanα+tanβ+tanα•tanβ=1+tan(α+β)(1﹣tanα•tanβ)+tanα•tanβ=1+1+tanα•tanβ﹣tanα•tanβ=2,故答案为2.三、解答题:本题共6小题,17题10分,18--22每小题10分.17.已知集合A={x|x2﹣4x﹣5<0},B={x|3<2x﹣1<7},设全集U=R,求(1)A∪B.(2)A∩∁U B.【考点】交、并、补集的混合运算.【分析】由已知中集合A={x|x2﹣4x﹣5<0},B={x|3<2x﹣1<7},全集U=R,结合集合交集,并集,补集的定义,可得答案.【解答】解:(1)∵集合A={x|x2﹣4x﹣5<0}={x|﹣1<x<5},集合B={x|3<2x﹣1<7}={x|2<x<4},故A∪B={x|﹣1<x<5};(2)由(1)中∁U B={x|x≤2或x≥4}可得:A∩C U B={x|﹣1<x≤2或4≤x<5}.18.化简.【考点】三角函数的化简求值.【分析】运用三角函数的诱导公式,化简即可得到所求值.【解答】解:=﹣=﹣1+1=0.19.已知函数y=Asin(ωx+ϕ)其中,若函数的最小正周期为π,最大值为2,且过(0,1)点,(1)求函数的解析式;(2)求函数的单调递减区间.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式;正弦函数的图象.【分析】(1)根据函数的周期,最值过定点,求出A,ω和φ的值即可,(2)结合三角函数的单调性进行求解即可.【解答】解:(1)∵函数的最小正周期为π,最大值为2,∴A=2,T=,即ω=2,则函数y=2sin(2x+φ),∵函数过(0,1)点,∴2sinφ=1,即sinφ=,∵|φ|<,∴φ=,则.(2)由2kπ+≤2x+≤2kπ+,k∈Z,得kπ+≤x≤kπ+,k∈Z,即函数的单调递减区间为为.20.已知函数,(1)求f (x )的值域; (2)说明怎样由y=sinx 的图象得到f (x )的图象.【考点】函数y=Asin (ωx +φ)的图象变换;三角函数中的恒等变换应用.【分析】(1)利用三角函数恒等变换的应用化简函数解析式可得f (x )=2sin (2x ﹣),利用正弦函数的性质可求值域.(2)由条件根据函数y=Asin (ωx +φ)的图象变换规律,可得结论.【解答】解:(1)∵=sin2x ﹣cos2x=2sin (2x ﹣),∴由sin (2x ﹣)∈[﹣1,1],可得:f (x )∈[﹣2,2].(2)把y=sinx 的图象向右平移个单位,可得函数y=sin (x ﹣)的图象;再把所得图象上的点的横坐标变为原来的倍,纵坐标不变,可得函数y=sin (2x ﹣)的图象;再所得图象上的点的纵坐标变为原来的2倍,横坐标不变,可得函数y=2sin (2x ﹣)的图象;21.已知,且,(1)求sin (α+β),与与cos (α﹣β)的值;(2)求tan (2α﹣β)的值.【考点】两角和与差的正切函数;两角和与差的余弦函数.【分析】(1)由已知利用同角三角函数基本关系式可求sinα,cosβ的值,进而利用两角和的正弦函数公式,两角差的余弦函数公式即可计算得解.(2)由(1)利用同角三角函数基本关系式可求tanα,tanβ,利用二倍角的正切函数公式可求tan2α的值,进而利用两角差的正切函数公式即可求值得解.【解答】解:(1)∵,且, ∴sinα==,cosβ=﹣=﹣,∴sin (α+β)=sinαcosβ+cosαsinβ==﹣,cos(α﹣β)=cosαcosβ+sinαsinβ=(﹣)×=.(2)由(1)可得:tan=﹣,tanβ=﹣,可得:tan2α==﹣,可得:tan(2α﹣β)===﹣.22.已知函数f(x)=3sin2x+acosx﹣cos2x+a2﹣1,(1)判断f(x)的奇偶性,并加以证明;(2)求f(x)的最大值.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】(1)化简函数,利用偶函数的定义进行证明即可;(2)配方,分类讨论,求f(x)的最大值.【解答】解:(1)偶函数,证明如下:f(x)=3sin2x+acosx﹣cos2x+a2﹣1=﹣4cos2x+acosx+a2+2∴f(﹣x)=f(x),函数是偶函数;(2)f(x)=﹣4(cosx﹣)2++2,a<﹣8,f(x)max=f(﹣1)=a2﹣a﹣2;﹣8≤a≤8,f(x)max=f()=+2;a>8,f(x)max=f(1)=a2+a﹣2.。
2018-2019学年新疆喀什地区喀什十五中职业学校高中班高一(下)期末数学试卷一、单选题(本题共16小题,每小题2分,共32分)A .38B .39C .41D .421.(2分)在等差数列{a n }中,已知a 1=2,a 2+a 3+a 4=24,则a 4+a 5+a 6=( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件2.(2分)已知直线l 1:ax +y -1=0,l 2:(a -1)x -2y +1=0,则“a =2”是“l 1⊥l 2”的( )A .[-18,6]B .[-2,6]C .[-2,18]D .[4,18]3.(2分)若圆C :x 2+y 2-6x -6y -m =0上有到(-1,0)的距离为1的点,则实数m 的取值范围为( )A .652B .65C .130D .1504.(2分)已知等差数列{a n }的公差d ≠0,且a 24+a 26+40d =a 28+a210,则该数列{a n }的前13项的和为( )A .π6B .π3C .2π3D .5π65.(2分)直线y =33x +1的倾斜角为( )√A .直线l 的倾斜角为π6B .直线l 的法向量为(3,1)C .直线l 的方向向量为(1,3)D .直线l 的斜率为−36.(2分)已知直线l :3x −y +3=0,下列结论正确的是( )√√√√7.(2分)已知正n 边形的边长为a ,内切圆的半径为r ,外接圆的半径为R ,则R +r =a2tanβ,其中β=( )A .πnB .π2nC .π3nD .π4nA .24bB .22bC .4+24bD .4+22b8.(2分)已知向量a ,b 满足|a |=1,|b |=2,a 与b 的夹角为π4,则a +b 在b 上的投影向量为( )→→→→→→→→→√→√→√→√→A .30°B .60°C .120°D .150°9.(2分)直线3x +3y +1=0的倾斜角α=( )√A .−2425B .725C .2425D .-72510.(2分)若角α的终边过点P (-3,4),则cos 2α=( )A .2B .2或18C .18D .1611.(2分)设P 是双曲线x2a2-y 29=1左支上一点,该双曲线的一条渐近线方程是3x +4y =0,F 1,F 2分别是双曲线的左、右焦点,若|PF 1|=10,则|PF 2|等于( )A .-3B .-32C .3D .3212.(2分)已知向量a =(3,0),b =(x ,-2),且a ⊥(a -2b ),则x =( )→√→→→→√√√√A .110B .78C .55D .4513.(2分)若等差数列{a n }满足2a 8-a 9=6,则它的前13项和为( )A .99B .66C .297D .14414.(2分)等差数列{a n }中,a 1+a 4+a 7=39,a 3+a 5+a 9=27,则前9项的和S 9=( )15.(2分)已知等差数列前n 项和为S n .且S 13<0,S 12>0,则此数列中绝对值最小的项为( )二、填空题(本题共8小题,每小题4分,共32分)三、解答题(本题共4小题,每小题9分,共36分)A .第5项B .第6项C .第7项D .第8项A .多821斤B .少821斤C .多13斤D .少13斤16.(2分)我国南北朝时的数学著作《张邱建算经》有一道题为:“今有十等人,每等一人,宫赐金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中间四人未到者,亦依次更给,问各得金几何?“则在该问题中,等级较高的一等人所得黄金比等级较低的九等人所得黄金( )17.(4分)已知向量a =(1,m ),b =(2,-2),且 a ⊥b ,则m =.→→→→18.(4分)等比数列{a n }中,a 4,a 8是关于x 的方程x 2-10x +4=0两个实根,则a 2a 6a 10=。
绝密★启用前吉林省长春外国语学校2018-2019学年高二下学期开学考试数学试题一、单选题1.设集合{}1,2,4A =, {}2|40 B x x x m =-+=.若{}1A B ⋂=,则B =( )A .{}1,3-B .{}1,0C .{}1,3D .{}1,5 【答案】C【解析】∵ 集合{}124A =,,, 2{|40}B x x x m =-+=, {}1A B ⋂= ∴1x =是方程240x x m -+=的解,即140m -+= ∴3m =∴{}22{|40}{|430}13B x x x m x x x =-+==-+==,,故选C2.计算( ) A .B .C .D .【答案】B 【解析】 【分析】直接利用复数运算法则求解。
【详解】.故选:B 【点睛】本题主要考查了复数的运算法则,属于基础题。
3.若,则( )A .B .C .D .【答案】B 【解析】由指数函数、对数函数的单调性直接判断。
【详解】因为在上递增,又,所以.故选:B【点睛】本题主要考查了指数函数与对数函数的单调性应用,属于基础题。
4.函数的一个零点在区间内,则实数的取值范围是()A.B.C.D.【答案】C【解析】【分析】由题意得,解不等式可得实数a的取值范围.【详解】由条件可知,即a(a-3)<0,解得0<a<3.故选C.【点睛】本题考查利函数零点存在性定理的应用,解题的关键是根据函数在给定的区间两端点处的函数值异号得到不等式,考查应用能力和计算能力,属于容易题.5.设,角的终边与单位圆的交点为,那么值等于( )A.B.-C.D.-【答案】A【解析】由题设可知,,应选答案B。
6.在一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于分为优秀,分以下为非优秀,统计成绩后,得到如下的列联表:根据列联表的独立性检验,则可以认为成绩与班级有关系的把握为( )公式:附表:A.95%B.97.5%C.99.9%D.99%【答案】D【解析】【分析】由表中的数据计算出,结合附表即可判断。
【必考题】高一数学下期末试卷(带答案)一、选择题1.已知集合{}22(,)1A x y x y =+=,{}(,)B x y y x ==,则A B 中元素的个数为( ) A .3B .2C .1D .02.在ABC 中,角A ,B ,C 所对的边为a ,b ,c ,且B 为锐角,若sin 5sin 2A cB b=,7sin B =,57ABC S =△,则b =( ) A .23B .27C .15D .143.如图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为( )A .20πB .24πC .28πD .32π4.已知()f x 是定义域为(,)-∞+∞的奇函数,满足(1)(1)f x =f +x -,若(1)2f =,则(1)(2)f +f (3)(2020)f f +++=( )A .50B .2C .0D .50-5.某三棱锥的三视图如图所示,则该三棱锥的体积为( )A .20B .10C .30D .606.设函数f (x )=cos (x +3π),则下列结论错误的是 A .f(x)的一个周期为−2π B .y=f(x)的图像关于直线x=83π对称 C .f(x+π)的一个零点为x=6π D .f(x)在(2π,π)单调递减 7.设正项等差数列的前n 项和为,若,则的最小值为 A .1B .C .D .8.记max{,,}x y z 表示,,x y z 中的最大者,设函数{}2()max 42,,3f x x x x x =-+---,若()1f m <,则实数m 的取值范围是( )A .(1,1)(3,4)-B .(1,3)C .(1,4)-D .(,1)(4,)-∞-+∞9.函数()(1)lg(1)35f x x x x =-+--的零点个数为( ) A .3B .2C .1D .010.如图,已知三棱柱111ABC A B C -的各条棱长都相等,且1CC ⊥底面ABC ,M 是侧棱1CC 的中点,则异面直线1AB 和BM 所成的角为( )A .2π B . C . D .3π 11.已知()f x 是定义在R 上的奇函数,当0x >时,()32f x x =-,则不等式()0f x >的解集为( )A .33,0,22⎛⎫⎛⎫-∞- ⎪⎪⎝⎭⎝⎭B .33,,22⎛⎫⎛⎫-∞-⋃+∞ ⎪ ⎪⎝⎭⎝⎭C .33,22⎛⎫- ⎪⎝⎭D .33,0,22⎛⎫⎛⎫-⋃+∞ ⎪ ⎪⎝⎭⎝⎭12.与直线40x y --=和圆22220x y x y ++-=都相切的半径最小的圆的方程是 A .()()22112x y +++= B .()()22114x y -++= C .()()22112x y -++=D .()()22114x y +++=二、填空题13.设n S 是数列{}n a 的前n 项和,且11a =-,11n n n a S S ++=,则n S =__________. 14.在区间[]0,1上随机选取两个数x 和y ,则满足20-<x y 的概率为________.15.若函数()6,23log ,2a x x f x x x -+≤⎧=⎨+>⎩(0a >且1a ≠)的值域是[)4,+∞,则实数a 的取值范围是__________.16.在圆x 2+y 2+2x +4y -3=0上且到直线x +y +1=02的点共有________个.17.从1,2,3,4这四个数中一次随机取两个数,则其中一个数是另一个的两倍的概率是______18.若圆x 2+y 2=4和圆x 2+y 2+4x -4y +4=0关于直线l 对称,则直线l 的方程为____________. 19.若1tan 46πα⎛⎫-= ⎪⎝⎭,则tan α=____________. 20.若()1,x ∈+∞,则131y x x =+-的最小值是_____. 三、解答题21.在ABC ∆中,内角A ,B ,C 的对边a ,b ,c ,且a c >,已知2BA BC ⋅=,1cos 3B =,3b =,求:(1)a 和c 的值; (2)cos()B C -的值.22.如图,在平面直角坐标系xOy 中,已知以M 点为圆心的圆22:1412600M x y x y +--+=及其上一点(4,2)A .(1)设圆N 与y 轴相切,与圆M 外切,且圆心在直线6y =上,求圆N 的标准方程; (2)设平行于OA 的直线l 与圆M 相交于B ,C 两点且BC OA =,求直线l 的方程. 23.已知(1,2),(2,1)(2)()a b m a t b n ka tb k R ==-=++=+∈,,. (1)若1t =,且m n ,求k 的值; (2)若t R ∈,且5m n =,求证:k 2≤.24.已知数列{}n a 满足11a =,()121n n na n a +=+,设nn a b n=. (1)求123b b b ,,; (2)判断数列{}n b 是否为等比数列,并说明理由; (3)求{}n a 的通项公式.25.已知ABC ∆中,内角,,A B C 所对边分别为,,a b c ,若()20a c cosB bcosC --=. (1)求角B 的大小;(2)若2b =,求a c +的取值范围.26.某学校微信公众号收到非常多的精彩留言,学校从众多留言者中抽取了100人参加“学校满意度调查”,其留言者年龄集中在[]25,85之间,根据统计结果,做出频率分布直方图如下:(1)求这100位留言者年龄的平均数和中位数;(2)学校从参加调查的年龄在[)35,45和[)65,75的留言者中,按照分层抽样的方法,抽出了6人参加“精彩留言”经验交流会,赠与年龄在[)35,45的留言者每人一部价值1000元的手机,年龄在[)65,75的留言者每人一套价值700元的书,现要从这6人中选出3人作为代表发言,求这3位发言者所得纪念品价值超过2300元的概率.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】试题分析:集合中的元素为点集,由题意,可知集合A 表示以()0,0为圆心,1为半径的单位圆上所有点组成的集合,集合B 表示直线y x =上所有的点组成的集合,又圆221x y +=与直线y x =相交于两点⎝⎭,⎛ ⎝⎭,则A B 中有2个元素.故选B.【名师点睛】求集合的基本运算时,要认清集合元素的属性(是点集、数集或其他情形)和化简集合,这是正确求解集合运算的两个先决条件.集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.2.D解析:D 【解析】 【分析】 利用正弦定理化简sin 5sin 2A cB b=,再利用三角形面积公式,即可得到,a c,由sin B =,求得cos B ,最后利用余弦定理即可得到答案. 【详解】 由于sin 5sin 2A c B b=,有正弦定理可得: 52a c b b =,即52a c =由于在ABC中,sin B =,ABC S =△1sin 2ABCS ac B ==联立521sin 2sin a c ac B B ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩,解得:5a =,2c = 由于B为锐角,且sin B =,所以3cos 4B ==所以在ABC 中,由余弦定理可得:2222cos 14b a c ac B =+-=,故b =(负数舍去) 故答案选D 【点睛】本题考查正弦定理,余弦定理,以及面积公式在三角形求边长中的应用,属于中档题.3.C解析:C 【解析】试题分析:由三视图分析可知,该几何体的表面积为圆锥的表面积与圆柱的侧面积之和.,,所以几何体的表面积为.考点:三视图与表面积.4.C解析:C 【解析】 【分析】利用()f x 是定义域为(,)-∞+∞的奇函数可得:()()f x f x -=-且()00f =,结合(1)(1)f x =f +x -可得:函数()f x 的周期为4;再利用赋值法可求得:()20f =,()32f =-,()40f =,问题得解.【详解】因为()f x 是定义域为(,)-∞+∞的奇函数, 所以()()f x f x -=-且()00f = 又(1)(1)f x =f +x -所以()()()()()21111f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=-=-⎣⎦⎣⎦ 所以()()()()()4222f x f x f x f x f x ⎡⎤⎡⎤+=++=-+=--=⎣⎦⎣⎦ 所以函数()f x 的周期为4,在(1)(1)f x =f +x -中,令1x =,可得:()()200f f ==在(1)(1)f x =f +x -中,令2x =,可得:()()()3112f f f =-=-=- 在(1)(1)f x =f +x -中,令3x =,可得:()()()4220f f f =-=-= 所以(1)(2)f +f ()()()()2020(3)(2020)12344f f f f f f ⎡⎤+++=⨯+++⎣⎦ 50500=⨯=故选C 【点睛】本题主要考查了奇函数的性质及函数的周期性应用,还考查了赋值法及计算能力、分析能力,属于中档题.5.B解析:B 【解析】 【分析】根据三视图还原几何体,根据棱锥体积公式可求得结果. 【详解】由三视图可得几何体直观图如下图所示:可知三棱锥高:4h =;底面面积:1155322S =⨯⨯= ∴三棱锥体积:1115410332V Sh ==⨯⨯= 本题正确选项:B 【点睛】本题考查棱锥体积的求解,关键是能够通过三视图还原几何体,从而准确求解出三棱锥的高和底面面积.6.D解析:D 【解析】f (x )的最小正周期为2π,易知A 正确; f 8π3⎛⎫⎪⎝⎭=cos 8ππ33⎛⎫+ ⎪⎝⎭=cos3π=-1,为f (x )的最小值,故B 正确; ∵f (x +π)=cos ππ3x ⎛⎫++ ⎪⎝⎭=-cos π3x ⎛⎫+ ⎪⎝⎭,∴f ππ6⎛⎫+ ⎪⎝⎭=-cos ππ63⎛⎫+ ⎪⎝⎭=-cos 2π=0,故C 正确; 由于f 2π3⎛⎫⎪⎝⎭=cos 2ππ33⎛⎫+ ⎪⎝⎭=cosπ=-1,为f (x )的最小值,故f (x )在,2ππ⎛⎫ ⎪⎝⎭上不单调,故D 错误. 故选D.7.D解析:D 【解析】【分析】先利用等差数列的求和公式得出,再利用等差数列的基本性质得出,再将代数式和相乘,展开后利用基本不等式可求出的最小值.【详解】由等差数列的前项和公式可得,所以,,由等差数列的基本性质可得,, 所以,,当且仅当,即当时,等号成立,因此,的最小值为,故选:D.【点睛】本题考查的等差数列求和公式以及等差数列下标性质的应用,考查利用基本不等式求最值,解题时要充分利用定值条件,并对所求代数式进行配凑,考查计算能力,属于中等题。
长春外国语学校2018—2019学年第一学期期中考试高一年级 数学试卷第Ⅰ卷一、选择题:本题共12小题,每小题5分.在每小题给出的四个选项中,只有一项是符合题目要求的。
1.下列四个命题:① {}0=Φ;②空集没有子集;③任何一个集合必有两个或两个以上的子集;④空集是任何一个集合的子集.其中正确的有 ( ) A .0个B .1个C .2个D .3个2。
若集合}{6|≤=x x M , 5=a , 则下面结论中正确的是 ( )A 。
}{M a ⊆B 。
M a ⊆ C. }{M a ∈ D. M a ∉3.552log 10log 0.25+= ( )A.0B.1C.2 D 。
44。
下列函数中,与函数(0)y x x =≥是同一函数的是 ( )A.2x y x=B 。
2y = C. x y = D 。
x y 2=5。
下列函数中,在),0(+∞上为减函数的是()A.xy 3= B 。
x y 1-= C 。
xy ⎪⎭⎫⎝⎛-=31 D.2x y -=6。
已知函数()⎪⎩⎪⎨⎧≥+<+=1,1,122x ax x x x f x,若()()a f f 40=,则实数a 等于( )A.21B. 54C 。
2 D.9 7。
函数()x f 是定义在[]()0,>-a a a 上的单调奇函数,()()1+=x f x F ,则()x F 最大值与最小值之和为 ( )A.1B.2 C 。
3 D.0 8。
设,7,3.0,3.0log 3.077===c b a 则 ( )A.b c a <<B.a c b << C 。
c b a << D.c a b << 9。
函数()x a x f =与()a ax x g -=的图象有可能是下图中的 ( )10。
函数()x f y =在区间()20,上是增函数,函数()2+=x f y 是偶函数,则正确结论是( )A.()⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛<27251f f fB. ()12527f f f <⎪⎭⎫⎝⎛<⎪⎭⎫ ⎝⎛C.()⎪⎭⎫ ⎝⎛<<⎪⎭⎫ ⎝⎛25127f f f D 。
2019-2020学年长春外国语学校高一下学期期中数学试卷一、单选题(本大题共12小题,共60.0分)1.若集合A={−1,1},B={−2,0,1},则A∩B等于()A. {0,−1}B. {1}C. {0}D. {−1,1}2.若tan(π2−α)=3cos(α−π),则cos2α=()A. −1B. 79C. 0或79D. −1或793.lg(√15+√5)与lg(√15−√5)的等差中项是()A. √32B. 12C. ±12D. 34.下列命题正确的个数是()①对于两个分类变量X与Y的随机变量K2的观测值k来说,k越小,判断“X与Y有关系”的把握程度越大;②在相关关系中,若用y1=c1e c2x拟合时的相关指数为R12,用y2=bx+a拟合时的相关指数为R22,且R12>R22,则y1的拟合效果好;③利用计算机产生0~1之间的均匀随机数a,则事件“3a−1>0”发生的概率为23;④“a>0,b>0”是“ab +ba≥2”的充分不必要条件.A. 1B. 2C. 3D. 45.在△ABC中,BC=1,∠B=,△ABC的面积S=,则sinC=()A. B. C. D.6.已知为双曲线C:的左、右焦点,点在上,,则P到轴的距离为()A. B. C. D.7.若f(x)=2cos(ωx+φ)+m(ω>0)对任意实数t都有f(t+π4)=f(−t),且f(π8)=−1,则实数m的值等于()A. −3或1B. −1或3C. ±3D. ±18. 已知,0<θ<π,则sinθ=A.B.C.D.9. 设P 为△ABC 所在平面内一点,且2PA⃗⃗⃗⃗⃗ +2PB ⃗⃗⃗⃗⃗ +PC ⃗⃗⃗⃗⃗ =0⃗ ,则△PAC 的面积与△ABC 的面积之比等于( )A. 14B. 25C. 15D. 不确定10. 在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,且c =√2,B =45°,面积S =3,则b 的值为( )A. 6B. 26C. √6D. √2611. 设等差数列{a n }的公差为d ,d ≠0,若{a n }的前10项之和大于其前21项之和,则( )A. d <0B. d >0C. a 16<0D. a 16>012. 将函数y =cos2x +1的图象向右平移π4个单位,再向下平移一个单位后得到y =f(x)的图象,则函数f(x)=( )A. cos(2x +π4)B. cos(2x −π4)C. sin2xD. −sin2x二、单空题(本大题共4小题,共20.0分)13. 等差数列{a n }中,a 2=8,S 10=185,则数列{a n }的通项公式a n = ______ (n ∈N ∗). 14. 若x ∈[−π2,π2]时,函数f(x)=cosx +asinx 的最小值为0,则实数a 的值为______ . 15. 化简√3sin80°−1cos80∘=______;16. 设扇形的周长为8cm ,面积为4cm 2,则扇形的圆心角的弧度数的绝对值是______ . 三、解答题(本大题共6小题,共72.0分) 17. (1)求函数f(x)=lg(2sin2x −1)的定义域(2)求值:log 2cos π9+log 2cos 2π9+log 2cos4π9.18. 已知A(−2,0),B(2,0),且△ABM 的周长等于2√6+4.(1)求动点M 的轨迹G 的方程;(2)已知点C ,D 分别为动直线y =k(x −2)(k ≠0)与轨迹G 的两个交点,问在x 轴上是否存在定点E ,使EC ⃗⃗⃗⃗⃗ ⋅ED ⃗⃗⃗⃗⃗ 为定值?若存在,试求出点E 的坐标和定值;若不存在,请说明理由.19. 如图,在△ ABC 中,∠ ABC =90°,AB =√3,BC =1,P 为△ ABC 内一点,∠ BPC =90°.(1)若PB =12,求PA ;(2)若∠ APB =150°,求tan∠ PBA .20. 设等差数列{a n }满足a 3=−6,a 10=8.(1)求{a n }的通项公式;(2)求{a n }的前n 项和S n 及使得S n 最小的序号n 的值.21.已知函数在一个周期内的图像下图所示。
长春外国语学校2018-2019学年第二学期期末考试高二年级数学试卷(文科)本试卷共5页。
考试结束后,将答题卡交回。
注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生 信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书 写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效; 在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷(选择题 共60分)一、选择题:本题共15小题,每小题4分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合=A {}1,2,3,4, {}|2B x y x ==-,则=B A ( )A. {}01,2,B. {}1,2C. (02),D. [0,2] 2. 若(1)1z i +=(i 为虚数单位),则复数z 所对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限3. 已知函数1()22xx f x =-(),则()f x ( ) A.是偶函数,且在R 上是增函数 B.是奇函数,且在R 上是增函数 C.是偶函数,且在R 上是减函数 D.是奇函数,且在R 上是减函数4. 角α的终边与单位圆交于点52555(,-),则cos2α=( )A .15 B . -15C. 35 D .35-5. 已知0.63a =,30.6b =,0.6log 3c =,则实数,,a b c 的大小关系是( )A .a b c >>B . b c a >> C. c b a >> D .a c b >> 6. 已知向量|a b +|=||a b -,且2||||==b a ,则|2|a b -=( )A. 22B. 2C. 25D. 10 7. 等差数列{}n a 中,3852=++a a a ,n S 为等差数列{}n a 的前n 项和,则=9S ( )A. 9B. 18C. 27D. 54 8. 已知实数,,2a b R a b +∈+=且,则14a b+的最小值为( ) A .9 B .92C .5D .4 9. 已知四个命题:①如果向量a 与b 共线,则a b =或a b =-; ②3x ≤是3x ≤的充分不必要条件;③命题p :0(0,2)x ∃∈,200230x x --<的否定是p ⌝:(0,2)x ∀∈,2230x x -->;④“指数函数xy a =是增函数,而1()2xy =是指数函数,所以1()2xy =是增函数” 此三段论大前提错误,但推理形式是正确的. 以上命题正确的个数为( )A .0B .1C .2D .3 10.已知数据1x ,2x ,,5x ,2的平均值为2,方差为1,则数据1x ,2x ,,5x相对于原数据( )A .一样稳定B .变得比较稳定C .变得比较不稳定D .稳定性不可以判断 11.《九章算术》是我国古代的数学名著,它在几何学中的研究比西方早一千多年,其中中有很多对几何体体积的研究.已知某囤积粮食的容器是由同底等高的一个圆锥和一个圆柱组成,若圆锥的底面积为8π、高为h ,则该容器外接球的表面积为( ) A .12πB .18πC .36πD .48π12.已知()R f x 为定义在上的奇函数,且满足(1)(1)f x f x +=-,则(10)f 的值 为 ( )A. 0B. 2 C .5 D .1013.已知)(cos 3sin )(R x x x x f ∈+=,若将其图像右移)(0>ϕϕ个单位后,图象关于原点对称,则ϕ的最小值是 ( ) A. 2π B. 6π C .3πD .4π14. 已知双曲线22221(0,0)x y a b a b-=>>的离心率为2,过其右焦点F 作斜率为2的直线,交双曲线的两条渐近线于,B C 两点()B 点在x 轴上方,则BFCF=( ) A. 2 B.3 C.22 D.2315.设()f x 是定义在R 上恒不为零的函数,对任意实数,x y R ∈,都有()()()f x f y f x y =+,若112a =,()()n a f n n N +=∈,则数列{}n a 的前n 项和n S 的取值范围是( )A. 1[,12)B. 1[,22)C. 1[,2]2D.1[,1]2第Ⅱ卷(非选择题 共90分)本题包括必考题和选考题两部分,第16-24题为必考题,每个考生都必须作答,第25-26题为选做题,考生根据要求作答.二、填空题:本题共4个小题,每小题5分,共20分.16. 已知实数,x y 满足约束条件0401x y x y y ì-?ïï+-?íï³ïî,则z x y =-的最大值为_____________.17. 已知抛物线24y x =,过焦点F 作直线与抛物线交于点A ,B 两点,若4||=AF , 则点A 的坐标为 .18. 在一次连环交通事故中,只有一个人需要负主要责任,但在警察询问时, 甲说:“主要责任在乙”;乙说:“丙应负主要责任”; 丙说:“甲说的对”; 丁说:“反正我没有责任”,四人中只有一个人说的是真话,则该事故中需要负主要责任的人是 .19. 若函数a xx x f ++=1ln )(有且只有一个零点,则实数a 的值为__________. 三、解答题:本题共6小题,20-24题每题12分,25-26题10分,选一题作答,解答题应写出必要的文字说明,证明过程或演算步骤.20.在ABC ∆中,角A ,B ,C 的对边分别是a ,b ,c ,且C c A b B a cos 2cos cos =+. (1)求角C 的大小;(2)已知等差数列{}n a 的公差不为零,若1cos 1=C a ,且1a ,3a ,7a 成等比数列, 求数列12n n a a +⎧⎫⎨⎬⎩⎭的前n 项和n S . 21.为庆祝党的98岁生日,某高校组织了“歌颂祖国,紧跟党走”为主题的党史知识竞 赛。
吉林省长春外国语学校2018-2019学年高二上学期期末考试数学(理)试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
考试结束后,将答题卡交回。
注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5. 保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷一、选择题:(本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数的共轭复数是( )A. 2+iB. 2-iC. -1+iD. -1-i【答案】D【解析】【分析】根据复数除法运算得到复数z,再由共轭复数的概念得到结果.【详解】复数,共轭复数是-1-i。
故答案为:D.【点睛】这个题目考查了复数的运算法则,以及共轭复数的概念,较为简单.2.一班有学员54人,二班有学员42人,现在要用分层抽样的方法从两个班中抽出一部分人参加4×4方队进行军训表演,则一班和二班分别被抽取的人数是( )A. 9人、7人B. 15人、1人C. 8人、8人D. 12人、4人【答案】A【解析】利用分层抽样的方法得,∴一班应抽出人,二班应抽出人,则一班与二班分别被抽取的人数是9,7,故选.点睛:本题主要考查了分层抽样方法及其应用,分层抽样中各层抽取个数依据各层个体数之比来分配,这是分层抽样的最主要的特点,首先各确定分层抽样的个数,分层后,各层的抽取一定要考虑到个体数目,选取不同的抽样方法,但一定要注意按比例抽取,牢记分层抽样的特点和方法是解答的关键,着重考查了学生的分析问题和解答问题的能力.3.已知命题、,如果是的充分而不必要条件,那么是的()A. 必要不充分条件B. 充分不必要条件C. 充要条件D. 既不充分也不必要【答案】B【解析】是的充分不必要条件,根据逆否命题与原命题的等价性可知,是的充分不必要条件,故选B.4.椭圆的长轴长为10,其焦点到中心的距离为4,则这个椭圆的标准方程为( )A. B.C. 或D. 或【答案】D【解析】【分析】根据题干条件得到a,c的值,再由,从而得到结果.【详解】椭圆的长轴长为10,故得到2a=10,a=5,焦点到中心的距离为4,故得到c=4,进而得到。
2018-2019学年湖北省武汉外国语学校高一(下)期末数学试卷≤0},B={-1,0,1},则card(A∩B)=()1.(单选题,5分)已知A={x| x+1x−1A.0B.1C.2D.32.(单选题,5分)设a⃗ =(1,2),b⃗⃗ =(1,1),c⃗ = a⃗ +k b⃗⃗,若b⃗⃗⊥c⃗,则实数k的值等于()A.- 32B.- 53C. 53D. 323.(单选题,5分)△ABC中,若sin(A-B)cosB+cos(A-B)sinB≥1,则△ABC是()A.锐角三角形B.直角三角形C.钝角三角形D.直角三角形或钝角三角形4.(单选题,5分)已知m,n是两条不同直线,α,β是两个不同平面,则下列命题正确的是()A.若α,β垂直于同一平面,则α与β平行B.若m,n平行于同一平面,则m与n平行C.若α,β不平行,则在α内不存在与β平行的直线D.若m,n不平行,则m与n不可能垂直于同一平面的值为()5.(单选题,5分)已知等比数列{a n}中,a3=2,a4a6=16,则a10−a12a6−a8A.2B.4C.8D.166.(单选题,5分)设a,b,c∈R,且a>b,则下列说法正确的是()A.ac>bcB.2a>2bC.a2>b2D. 1a <1b7.(单选题,5分)《莱因德纸草书》是世界上最古老的数学著作之一,书中有一道这样的题目:把100个面包分给5个人,使每人所得成等差数列,且使较大的三份之和的 17 是较小的两份之和,问最小一份为( )A. 53B. 103C. 56D. 1168.(单选题,5分)有下面三组定义:① 有两个面平行,其余各面都是四边形,且相邻四边形的公共边都互相平行的几何体叫棱柱; ② 用一个平面去截棱锥,底面与截面之间的部分组成的几何体叫棱台;③ 有一个面是多边形,其余各面都是三角形的几何体是棱锥.其中正确定义的个数是( )A.0B.1C.2D.39.(单选题,5分)如图,直角梯形ABCD 中,AD⊥DC ,AD || BC ,BC=2CD=2AD=2,若将直角梯形绕BC 边旋转一周,则所得几何体的表面积为( ) A.3π+ √2 πB.3π+2 √2 πC.6π+2 √2 πD.6π+ √2 π10.(单选题,5分)如图Rt△ABC 中,∠ABC= π2 ,AC=2AB ,∠BAC 平分线交△ABC 的外接圆于点D ,设 AB ⃗⃗⃗⃗⃗⃗=a ⃗,AC ⃗⃗⃗⃗⃗⃗=b ⃗⃗ ,则向量 AD ⃗⃗⃗⃗⃗⃗ =( )A. a⃗+b⃗⃗B. 12a⃗+b⃗⃗C. a⃗+12b⃗⃗D. a⃗+23b⃗⃗11.(单选题,5分)a2+b2=1,b2+c2=2,c2+a2=2,则ab+bc+ca的最小值为()A. √3 - 12B. 12- √3C.- 12- √3D. 12+ √312.(单选题,5分)已知α,β为两个不重合的平面,m,n为两条不重合的直线,且α∩β=m,n⊂β,记直线m与直线n的夹角和二面角α-m-β均为θ1,直线n与平面α所成的角为θ2,则下列说法正确的是()A.若0<θ1<π6,则θ1>2θ2B.若π6<θ1<π4,则tan θ1>2tanθ2C.若π4<θ1<π3,则sinθ1<sinθ2D.若π3<θ1<π2,则cosθ1>34cosθ213.(填空题,5分)若关于x的不等式(x+1)•(x-3)<m的解集为(0,n),则实数n 的值为___ .14.(填空题,5分)数列{a n}是等差数列,a1=1,公差d∈[1,2],且a4+λa10+a16=15,则实数λ的最大值为___ .15.(填空题,5分)已知a>0,b>0且1a + 1b=1,则3a+2b+ ba的最小值等于___ .16.(填空题,5分)已知三棱锥P-ABC的所有顶点都在球O的球面上,∠BAC=90°,AB=AC=2 √2,PA=2,∠PAC=∠PAB,则当球O的表面积最小时,三棱锥P-ABC的体积为___ .17.(问答题,10分)在△ABC中,2sinA•sinB(1-tanA•tanB)=tanA•tanB.(Ⅰ)求∠C的大小;(Ⅱ)求√3 sinA-cosB的取值范围.18.(问答题,12分)已知a⃗ =(1,2),b⃗⃗ =(-3,4),c⃗ = a⃗+λ b⃗⃗(λ∈R).(1)当λ为何值时,| c⃗ |最小?此时c⃗与b⃗⃗的位置关系如何?(2)当λ为何值时,c⃗与a⃗的夹角最小?此时c⃗与a⃗的位置关系如何?19.(问答题,12分)如图,在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,底面三角形ABC是边长为2的等边三角形,D为AB的中点.(1)求证:BC1 || 平面A1CD;(2)若直线CA1与平面A1ABB1所成的角为30°,求三棱柱ABC-A1B1C1的体积.20.(问答题,12分)已知S n是数列{a n}的前n项和,a1=3.且2S n=a n+1-3(n∈N*).(1)求数列{a n}的通项公式,(2)对于正整数i,j,k(i<j<k),已知λa j,6a i,μa k成等差数列,求正整数λ,μ的值;21.(问答题,12分)如图1,在长方形ABCD中,AB=4,BC=2,O为DC的中点,E为线段OC上一动点.现将△AED沿AE折起,形成四棱锥D-ABCE(Ⅰ)若E与O重合,且AD⊥BD(如图2).(ⅰ)证明:BE⊥平面ADE(ⅱ)求二面角D-AC-E的余弦值.(Ⅱ)若E不与O重合,且平面ABD⊥平面ABC(如图3),设DB=t,求t的取值范围.22.(问答题,12分)如图,矩形ABCD是某生态农庄的一块植物栽培基地的平面图,现欲修一条笔直的小路MN(宽度不计)经过该矩形区域,其中MN都在矩形ABCD的边界上,已知AB=8,AD=6(单位:百米),小路MN将矩形ABCD分成面积为S1,S2(单位:平方百米)的两部分,其中S1≤S2,且点A在面积为S1的区域内,记小路MN的长为l百米.(1)若l=4,求S1的最大值;(2)若S2=2S1,求l的取值范围.。
2018-2019学年浙江省宁波市镇海中学高一(下)期末数学试卷一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)如图是一个正四棱锥,它的俯视图是( )A .B .C .D .2.(4分)已知点(1,)(0)a a >到直线:20l x y +-=的距离为1,则a 的值为( ) A .2B .22-C .21-D .21+3.(4分)如图,正方体1111ABCD A B C D -中,直线1AB 与1BC 所成角为( )A .30︒B .45︒C .60︒D .90︒4.(4分)在直角梯形ABCD 中,//AB CD ,AB BC ⊥,5AB =,4BC =,2CD =,则梯形ABCD 绕着BC 旋转而成的几何体的体积为( )A .52πB .1163π C .1003πD (28410)+ 5.(4分)已知直线倾斜角的范围是2[,)(,]3223ππππα∈⋃,则此直线的斜率的取值范围是()A .[3,3]-B .(,3][3,)-∞-+∞C .33[,]33-D .33(,][,)33-∞-+∞ 6.(4分)正三角形ABC 的边长为2cm ,如图,△A B C '''为其水平放置的直观图,则△A B C '''的周长为( )A .8cmB .6cmC .(26)cm +D .(223)cm +7.(4分)一个几何体的三视图如图所示,则该几何体的外接球的体积为( )A .24πB .6πC .86πD 6π8.(4分)已知m ,n 表示两条不同的直线,α,β,γ表示三个不同的平面,给出下列四个命题: ①m αβ=,n α⊂,n m ⊥,则αβ⊥;②αβ⊥,m αγ=,n βγ=,则m n ⊥;③αβ⊥,αγ⊥,m βγ=,则m α⊥;④m α⊥,n β⊥,m n ⊥,则αβ⊥ 其中正确命题的序号为( ) A .①②B .②③C .③④D .②④9.(4分)若实数x ,y 满足不等式组031y x y x y ⎧⎪+⎨⎪--⎩,则2||z x y =-的最小值是( )A .1-B .0C .1D .210.(4分)已知圆1Γ与2Γ交于两点,其中一交点的坐标为(3,4),两圆的半径之积为9,x轴与直线(0)y mx m =>都与两圆相切,则实数(m = ) A .158B .74C .235 D .35二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(6分)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为4的正方形,则该圆柱的表面积为 ,体积为 .12.(6分)若直线12y kx k =+-与曲线21y x =-有交点,则实数k 的最大值为 ,最小值为 .13.(6分)若过点(1,1)的直线l 被圆224x y +=截得的弦长最短,则直线l 的方程是 ,此时的弦长为 .14.(6分)已知点(2,1)和圆22:220C x y ax y ++-+=,若点P 在圆C 上,则实数a = ;若点P 在圆C 外,则实数a 的取值范围为 . 15.(4分)异面直线a ,b 所成角为3π,过空间一点O 的直线l 与直线a ,b 所成角均为θ,若这样的直线l 有且只有两条,则θ的取值范围为 .16.(4分)在棱长均为2的三棱锥A BCD -中,E 、F 分别AB 、BC 上的中点,P 为棱BD 上的动点,则PEF ∆周长的最小值为 .17.(4分)在三棱锥P ABC -中,AB BC ⊥,2PA PB ==,22PC AB BC ===,作BD PC ⊥交PC 于D ,则BD 与平面PAB 所成角的正弦值是 .三、解答题:本大题共5小题,共74分.解答应写岀文字说明、证明过程或演算步骤. 18.(14分)正四棱锥P ABCD -的侧棱长与底面边长都相等,E 为PC 中点. (1)求证://PA 平面BDE ;(2)求异面直线PA 与DE 所成角的余弦值.19.(15分)已知圆22:(2)(3)2C x y -+-=.(1)过原点O 的直线l 被圆C 所截得的弦长为2,求直线l 的方程;(2)过圆C 外的一点P 向圆C 引切线PA ,A 为切点,O 为坐标原点,若||||PA OP =,求使||PA 最短时的点P 坐标.20.(15分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD AB ⊥,//AB DC ,2AD DC AP ===,1AB =,点E 为棱PC 的中点.(Ⅰ)证明:BE DC ⊥;(Ⅱ)求直线BE 与平面PBD 所成角的正弦值.21.(15分)如图,在正方体1111ABCD A B C D -中,M 是AB 的中点,E 在1CC 上,且12CE C E =. (1)求证:1AC ⊥平面1A BD ;(2)在线段1DD 上存在一点P ,1DP D P λ=,若1//PB 平面DME ,求实数λ的值.22.(15分)已知点(1,0)A ,(4,0)B ,曲线C 上任意一点P 满足||2||PB PA =. (1)求曲线C 的方程;(2)设点(3,0)D ,问是否存在过定点Q 的直线l 与曲线C 相交于不同两点E ,F ,无论直线l 如何运动,x 轴都平分EDF ∠,若存在,求出Q 点坐标,若不存在,请说明理由.2018-2019学年浙江省宁波市镇海中学高一(下)期末数学试卷参考答案与试题解析一、选择题:本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(4分)如图是一个正四棱锥,它的俯视图是( )A .B .C .D .【解答】解:该几何体直观图为一个正四棱锥,所以其俯视图轮廓为正方形,并且能够看到其四个侧棱,构成正方形的对角线, 故选:D .2.(4分)已知点(1,)(0)a a >到直线:20l x y +-=的距离为1,则a 的值为( ) A .2B .22-C .21-D .21+【解答】解:点(1,)(0)a a >到直线:20l x y +-=的距离为1,∴|12|12a +-=,解得12a =+故选:D .3.(4分)如图,正方体1111ABCD A B C D -中,直线1AB 与1BC 所成角为( )A .30︒B .45︒C .60︒D .90︒【解答】解:11//AB DC ,1DC B ∴∠是直线1AB 与1BC 所成角, 1BDC ∆是等边三角形,∴直线1AB 与1BC 所成角60︒.故选:C .4.(4分)在直角梯形ABCD 中,//AB CD ,AB BC ⊥,5AB =,4BC =,2CD =,则梯形ABCD 绕着BC 旋转而成的几何体的体积为( ) A .52πB .1163π C .1003π D .(28410)3π+ 【解答】解:梯形ABCD 绕着BC 旋转而成的几何体是圆台,圆台的高4h BC ==,上底面圆半径2r CD ==,下底面圆半径5R AB ==,∴梯形ABCD 绕着BC 旋转而成的几何体的体积:221()3V h R Rr r π=++14(25104)3π=⨯⨯++ 52π=.故选:A .5.(4分)已知直线倾斜角的范围是2[,)(,]3223ππππα∈⋃,则此直线的斜率的取值范围是()A .[3,3]-B .(,3][3,)-∞-+∞C .33[,]33-D .33(,][,)33-∞-+∞ 【解答】解:根据题意,直线倾斜角的范围是2[,)(,]3223ππππα∈⋃,其斜率tan k α=, 则3k -或3k,即k 的取值范围为(-∞,3)(3-⋃,)+∞; 故选:B .6.(4分)正三角形ABC 的边长为2cm ,如图,△A B C '''为其水平放置的直观图,则△A B C '''的周长为( )A .8cmB .6cmC .(26)cmD .(223)cm +【解答】解:正ABC ∆的边长为2cm ,则它的直观图△A B C '''中,2A B ''=,132sin 602O C ''=︒=; 2222332726612cos45121()42B C O B O C O B O C --∴''=''+''-''''︒=+-⨯==, 612B C ∴''=; 又2222332726612cos135121(()4A C O A O C O A O C ++''=''+''-''''︒=+-⨯=, 61A C +∴''=; ∴△A B C '''的周长为61612(26)()cm -+=+. 故选:C .7.(4分)一个几何体的三视图如图所示,则该几何体的外接球的体积为( )A .24πB .6πC .86πD .6π【解答】解:由已知的三视图可得:该几何体是一个以俯视图为底面的三棱锥, 其四个顶点是以俯视图为底面,以1为高的三棱锥的四个顶点,如图是长方体的一部分, 故其外接球,相当于一个长2,宽1,高1的长方体的外接球,故外接球的半径2221612122R ⨯++=, 故球的体积346()632V ππ=⨯=,故选:D .8.(4分)已知m ,n 表示两条不同的直线,α,β,γ表示三个不同的平面,给出下列四个命题: ①m αβ=,n α⊂,n m ⊥,则αβ⊥;②αβ⊥,m αγ=,n βγ=,则m n ⊥;③αβ⊥,αγ⊥,m βγ=,则m α⊥;④m α⊥,n β⊥,m n ⊥,则αβ⊥ 其中正确命题的序号为( ) A .①②B .②③C .③④D .②④【解答】解:①m αβ=,n α⊂,n m ⊥,则n β⊥不一定成立,进而αβ⊥不一定成立,故错误;②令α,β,γ为底面为直角三角形的三棱柱的三个侧面,且αβ⊥,m αγ=,n βγ=,则//m n ,即m n ⊥不一定成立,故错误; ③αβ⊥,αγ⊥,m βγ=,则m α⊥,故正确;④若m α⊥,m n ⊥,则//n α,或n α⊂,又由n β⊥,则αβ⊥,故正确; 故选:C .9.(4分)若实数x ,y 满足不等式组031y x y x y ⎧⎪+⎨⎪--⎩,则2||z x y =-的最小值是( )A .1-B .0C .1D .2【解答】解:画出实数x ,y 满足不等式组031y x y x y ⎧⎪+⎨⎪--⎩的可行域如图所示,可得(1B ,2)(1A -,0),(3,0)C ,(0,1)D当目标函数2||z x y =-经过点(0,1)D 时,z 的值为1-, 故选:A .10.(4分)已知圆1Γ与2Γ交于两点,其中一交点的坐标为(3,4),两圆的半径之积为9,x 轴与直线(0)y mx m =>都与两圆相切,则实数(m = ) A .158B .74C 23D .35【解答】解:两切线均过原点,∴连心线所在直线经过原点,该直线设为y tx =,设两圆与x 轴的切点分别为1x ,2x ,则两圆方程分别为:222111222222()()()()()()x x y tx tx x x y tx tx ⎧-+-=⎪⎨-+-=⎪⎩, 圆1Γ与2Γ交点的坐标为(3,4)P , (3,4)P ∴在两圆上.∴222111(3)(4)()x tx tx -+-=①,222222(3)(4)()x tx tx -+-=②,又两圆半径之积为9,∴21212||||||9tx tx x x t ==③,联立①②③,可得1x ,2x 是方程222(3)(4)()x tx tx -+-=的两根, 化简得2(68)250x t x -++=,即1225x x =. 代入③,得2925t =,即35t =.由于所求直线的倾斜角是连心线所在直线倾斜角的两倍,即221tm t =-. 158m ∴=. 故选:A .二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分.11.(6分)已知圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为4的正方形,则该圆柱的表面积为 6π ,体积为 . 【解答】解:设圆柱的底面直径为2R ,则高为2R , 圆柱的上、下底面的中心分别为1O ,2O ,过直线12O O 的平面截该圆柱所得的截面是面积为4的正方形,244R ∴=,解得1R =,∴该圆柱的表面积2122126S πππ=⨯⨯+⨯⨯⨯=,体积2122V ππ=⨯⨯=. 故答案为:6π,2π.12.(6分)若直线12y kx k =+-与曲线21y x =-有交点,则实数k 的最大值为 1 ,最小值为 .【解答】解:直线12y kx k =+-,即(2)1y k x =-+经过定点(2,1)P . 曲线21y x =-表示圆221x y +=的上半部分,(1,0)A ,(0,1)B . 直线12y kx k =+-与曲线21y x =-有交点, 则实数k 的最大值为10121PA k -==-,最小值为0PB k =. 故答案为:1,0.13.(6分)若过点(1,1)的直线l 被圆224x y +=截得的弦长最短,则直线l 的方程是 2x y += ,此时的弦长为 .【解答】解:直线I 的方程为1(1)y k x -=-,与圆联立可得出两点M ,N ,即22(1)4x kx k +-+=,韦达定理求解得2122221k k x x k -+=+,2122231k k x x k --=+,2222121222323(1)1()442211k k k MN k x x x x k k +++=++-=+++,当1k =-时,MN 最短,直线I 为2x y +=,弦长为22 故填:2x y +=;2214.(6分)已知点(2,1)和圆22:220C x y ax y ++-+=,若点P 在圆C 上,则实数a = 52- ;若点P 在圆C 外,则实数a 的取值范围为 .【解答】解:①P 在圆C 上,将P 点代入圆的方程,即22212220a ++-+=,解得52a =-,代入圆检验成立,②P 在圆C 外,将P 点代入圆的方程,即22212220a ++-+,解得5a -,圆的方程为222()(1)124a a x y ++-=-,2104a ->,解得2a >或2a <-,25a ∴->-或2a >,故填52-;25a ->-或2a >.15.(4分)异面直线a ,b 所成角为3π,过空间一点O 的直线l 与直线a ,b 所成角均为θ,若这样的直线l 有且只有两条,则θ的取值范围为 (6π,)3π.【解答】解:由最小角定理可得:异面直线a ,b 所成角为3π,过空间一点O 的直线l 与直线a ,b 所成角均为θ,若这样的直线l 有且只有两条,则θ的取值范围为:63ππθ<<,故答案为:(6π,)3π.16.(4分)在棱长均为2的三棱锥A BCD -中,E 、F 分别AB 、BC 上的中点,P 为棱BD 上的动点,则PEF ∆周长的最小值为 23 .【解答】解:棱长均为2的三棱锥A BCD -中,E 、F 分别AB 、BC 上的中点,首先把三棱锥转换为平面图形,即转换为平面图形在平面展开图,棱长均为2的三棱锥A BCD -中,EF 分别为AB ,BC 的中点(中位线定理)得1EF =,因为所求周长最小为PE PF EF ++的值,所以要求PE PF +的值最小故2222cos120EF BE BF BE BF =+-︒,由于1BE BF ==,解得EF由于E 、F 分别为AB ,BC 的中点(中位线定理)得1EF =, 所以PEF ∆周长的最小值1EG FG EF ++=.故答案为:1+17.(4分)在三棱锥P ABC -中,AB BC ⊥,2PA PB ==,PC AB BC ===,作BD PC ⊥交PC 于D ,则BD 与平面PAB 所成角的正弦值是. 【解答】解:如图,取AB 中点E ,AC 中点F ,连接EF ,PE ,AF ,2,AP PB AB ===PE ∴ AB BC ⊥,AB BC ==4AC ∴=,在APC ∆中,余弦定理可得2223cos 24PC AP AC PAC AP AC -++∠==.在APF∆中,余弦定理可得cos PF AP AF PAC =∠ 在PEF ∆中,PE PF EF ===AB ⊥面PEF , 过F 作FO EP ⊥,易得FO ⊥面ABP ,且FO=,∴点C 到面ABP122PBCS∆=⨯=. ∴12PC BD ⨯⨯,∴BD =,PD =, :1:4PD PC ∴=,∴点D 到面ABP故BD 与平面PAB=,故答案为:2114.三、解答题:本大题共5小题,共74分.解答应写岀文字说明、证明过程或演算步骤. 18.(14分)正四棱锥P ABCD -的侧棱长与底面边长都相等,E 为PC 中点. (1)求证://PA 平面BDE ;(2)求异面直线PA 与DE 所成角的余弦值.【解答】解:(1)连接AC , 设AC ,BD 的交点为O , 连接OE , 因为//OE PA ,PA ⊂/面EBD ,又OE ⊂面EBD , 故//AP 面BDE , (2)由(1)可得:DEO ∠为异面直线PA 与DE 所成的角,设2AB =,则1EO =,2OD ,3DE , 由勾股定理可得:ODE ∆为直角三角形,则13cos 33OE DEO DE ∠===, 故异面直线PA 与DE 所成角的余弦值为33.19.(15分)已知圆22:(2)(3)2C x y -+-=.(1)过原点O 的直线l 被圆C 所截得的弦长为2,求直线l 的方程;(2)过圆C 外的一点P 向圆C 引切线PA ,A 为切点,O 为坐标原点,若||||PA OP =,求使||PA 最短时的点P 坐标.【解答】(1)原点O 在圆22:(2)(3)2C x y -+-=外,可得直线l 的斜率存在, 设直线方程为y kx =,即0kx y -=.由直线l 被圆C 所截得的弦长为2,得圆心(2,3)到直线的距离为1. 211k =+,解得623k ±=. ∴直线l 的方程为623y -=或623y +; (2)由圆的切线长公式可得22222||||(2)(3)2PA PC R x y =-=-+--, 由||||PA PO =得,2222(2)(3)2x y x y -+--=+,即46110x y +-=,即11342x y =-, 此时22222113133121||||()13()4222613PA PO x y y y y ==+-+=-+∴当3326y =,即11(13P ,33)26时,||PA 最短.20.(15分)如图,在四棱锥P ABCD -中,PA ⊥底面ABCD ,AD AB ⊥,//AB DC ,2AD DC AP ===,1AB =,点E 为棱PC 的中点.(Ⅰ)证明:BE DC ⊥;(Ⅱ)求直线BE 与平面PBD 所成角的正弦值.【解答】(Ⅰ)证明:如图,取PD 中点M ,连接EM ,AM . 由于E ,M 分别为PC ,PD 的中点,故//EM DC , 且12EM DC =, 又由已知,可得//EM AB ,且EM AB =, 故四边形ABEM 为平行四边形,所以//BE AM . 因为PA ⊥底面ABCD ,故PA CD ⊥, 而CD DA ⊥,从而CD ⊥平面PAD , 因为AM ⊂平面PAD ,于是CD AM ⊥, 又//BE AM ,所以BE CD ⊥.⋯(6分)(Ⅱ)解:连接BM ,由(Ⅰ)有CD ⊥平面PAD ,得CD PD ⊥, 而//EM CD ,故PD EM ⊥.又因为AD AP =,M 为PD 的中点,故PD AM ⊥, 可得PD BE ⊥,所以PD ⊥平面BEM ,故平面BEM ⊥平面PBD .所以直线BE 在平面PBD 内的射影为直线BM , 而BE EM ⊥,可得EBM ∠为锐角,故EBM ∠为直线BE 与平面PBD 所成的角.⋯(9分) 依题意,有22PD =,而M 为PD 中点, 可得2AM =,进而2BE =. 故在直角三角形BEM 中,12tan 22EM AB EBM BE BE ∠====, 所以直线BE 与平面PBD 所成的角的正切值为22.⋯(12分)21.(15分)如图,在正方体1111ABCD A B C D -中,M 是AB 的中点,E 在1CC 上,且12CE C E =. (1)求证:1AC ⊥平面1A BD ;(2)在线段1DD 上存在一点P ,1DP D P λ=,若1//PB 平面DME ,求实数λ的值.【解答】证明:(1)以D 为原点,分别以DA ,DC ,DD 所在直线为x ,y ,z 轴,建立空间直角坐标系,设6AB =,则(6A ,0,0),1(0C ,6,6),1(6A ,0,6),(6B ,6,0),(0D ,0,0), 1(6AC =-,6,6),1(6DA =,0,6),(6DB =,6,0),110AC DA =,10AC DB =, 11AC DA ∴⊥,1AC DB ⊥, 1DA DB D =,1AC ∴⊥平面1A BD .解:(2)在线段1DD 上存在一点P ,1DP D P λ=,设(06)DP t t =,则(0P ,0,)t ,1(6B ,6,6),(6M ,3,0),(0E ,6,4), 1(6PB =,6,6)t -,(6DM =,3,0),(0DE =,6,4),设平面DME 的法向量(n x =,y ,)z ,则630640n DM x y n DE y z ⎧=+=⎪⎨=+=⎪⎩,取1x =,得(1n =,2-,3), 1//PB 平面DME ,∴16121830PB n t =-+-=,解得4t =,2λ∴=.22.(15分)已知点(1,0)A ,(4,0)B ,曲线C 上任意一点P 满足||2||PB PA =. (1)求曲线C 的方程;(2)设点(3,0)D ,问是否存在过定点Q 的直线l 与曲线C 相交于不同两点E ,F ,无论直线l 如何运动,x 轴都平分EDF ∠,若存在,求出Q 点坐标,若不存在,请说明理由. 【解答】解:(1)设(,)P x y ,||2||PB PA =.∴2222(4)2(1)x y x y -+-+224x y +=.(2)设存在定点Q 满足条件,设直线l 的方程为y kx b =+. 设1(E x ,1)y ,2(F x ,2)y . 联立224y kx b x y =+⎧⎨+=⎩, 化为:22()4x kx b ++=, 222(1)240k x kbx b ∴+++-=,△0>.12221kbx x k ∴+=-+,212241b x x k -=+, 无论直线l 如何运动,x 轴都平分EDF ∠, 则0DE DF k k +=,∴1212033y yx x +=--. 1221()(3)()(3)0kx b x kx b x ∴+-++-=, 12122(3)()60kx x b k x x b ∴+-+-=,222422(3)6011b kb k b k b k k -∴---=++,化为:430k b +=.34k b ∴=-.3(1)4y b x ∴=-+,可得直线经过定点4(3,0).∴存在过定点4(3Q ,0)的直线l 与曲线C 相交于不同两点E ,F ,无论直线l 如何运动,x轴都平分EDF ∠.。
绝密★启用前吉林省长春外国语学校2018-2019学年高二下学期期中考试数学(文)试题一、单选题1.已知集合,,则=A.B.C.D.【答案】B【解析】【分析】由交集运算直接求解即可【详解】由题故选:B【点睛】本题考查集合运算,准确计算是关键,是基础题2.计算=A.B.C.D.【答案】B【解析】分析:根据复数乘法法则求结果.详解:选B.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为3.下列函数中,在内单调递减的是()A.B.C.D.【答案】A【解析】【分析】直接根据指数型函数的单调性判断出在R上递减,求得结果.【详解】由题,在R上递减,所以在内单调递减,故选A【点睛】本题主要考查了函数的单调性,利用函数的性质是解题的关键,属于基础题. 4.命题“”的否定是A.B.C.D.【答案】D【解析】【分析】利用全称命题的否定是特称命题,写出结果即可【详解】因为全称命题的否定是特称命题,所以命题“,”的否定是,故选D【点睛】本题主要考查了全称命题的否定是特称命题,属于基础题.5.方程的解所在的区间是( )A.B.C.D.【答案】D【解析】【分析】由题意结合零点存在定理确定方程的解所在的区间即可.【详解】方程的解所在的区间即函数的零点所在的区间,由于:,,,,,结合函数零点存在定理可得函数零点所在区间为.本题选择D选项.【点睛】本题主要考查函数零点存在定理及其应用等知识,意在考查学生的转化能力和计算求解能力.6.已知函数的图象在点处的切线与直线平行,则实数A.B.C.D.【答案】D【解析】【分析】=,x=2代入得a的方程求解即可【详解】=,解a=4故选:D【点睛】本题考查切线方程,求导运算,直线平行,是基础题7.下边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的分别为14,18,则输出的为A.0 B.2 C.4 D.14【答案】B【解析】【分析】模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=b=2时不满足条件a≠b,输出a的值为2.模拟执行程序框图,可得a=14,b=18满足条件a≠b,不满足条件a>b,b=4满足条件a≠b,满足条件a>b,a=10满足条件a≠b,满足条件a>b,a=6满足条件a≠b,满足条件a>b,a=2满足条件a≠b,不满足条件a>b,b=2不满足条件a≠b,输出a的值为2.故选:B.【点睛】本题主要考查了循环结构程序框图,准确计算是关键,属于基础题.8.若直线与圆相交于两点,则线段中点的坐标为A.B.C.D.【答案】A【解析】【分析】根据题意,设AB的中点为M,由垂径定理可得直线OM与直线AB垂直,进而可得直线OM的方程为y x,据此可得M为直线AB与直线OM的交点,则有,解可得x、y的值,即可得答案.【详解】根据题意,设AB的中点为M,圆C:x2+y2=4的圆心为O,(0,0),直线与圆C:x2+y2=4相交于A,B两点,则直线OM与直线AB垂直,则直线OM的方程为y x,M为直线AB与直线OM的交点,则有,解可得:,则M的坐标为(,);故选:A.本题考查直线与圆的方程的应用,涉及直线与圆的位置关系,考查运算能力,属于中档题.9.已知数列的前项和为,且,则=A.B.C.D.【答案】A【解析】【分析】整理得:,问题得解。
长春外国语学校2018-2019学年第二学期期中考试高二年级数学试卷(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
考试结束后,将答题卡交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷一、选择题:本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合,,则=A. B. C. D.【答案】B【解析】【分析】由交集运算直接求解即可【详解】由题故选:B【点睛】本题考查集合运算,准确计算是关键,是基础题2.计算=A. B. C. D.【答案】B【解析】分析:根据复数乘法法则求结果.详解:选B.点睛:首先对于复数的四则运算,要切实掌握其运算技巧和常规思路,如. 其次要熟悉复数相关基本概念,如复数的实部为、虚部为、模为、对应点为、共轭为3.下列函数中,在内单调递减的是()A. B. C. D.【答案】A【解析】【分析】直接根据指数型函数的单调性判断出在R上递减,求得结果.【详解】由题,在R上递减,所以在内单调递减,故选A【点睛】本题主要考查了函数的单调性,利用函数的性质是解题的关键,属于基础题.4.命题“”的否定是A. B.C. D.【答案】D【解析】【分析】利用全称命题的否定是特称命题,写出结果即可【详解】因为全称命题的否定是特称命题,所以命题“,”的否定是,故选D【点睛】本题主要考查了全称命题的否定是特称命题,属于基础题.5.方程的解所在的区间是( )A. B. C. D.【答案】D【解析】【分析】由题意结合零点存在定理确定方程的解所在的区间即可.【详解】方程的解所在的区间即函数的零点所在的区间,由于:,,,,,结合函数零点存在定理可得函数零点所在区间为.本题选择D选项.【点睛】本题主要考查函数零点存在定理及其应用等知识,意在考查学生的转化能力和计算求解能力.6.已知函数的图象在点处的切线与直线平行,则实数A. B. C. D.【答案】D【解析】【分析】=,x=2代入得a的方程求解即可【详解】=,解a=4故选:D【点睛】本题考查切线方程,求导运算,直线平行,是基础题7.下边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的分别为14,18,则输出的为A. 0B. 2C. 4D. 14【答案】B【解析】【分析】模拟执行程序框图,依次写出每次循环得到的a,b的值,当a=b=2时不满足条件a≠b,输出a的值为2.【详解】模拟执行程序框图,可得a=14,b=18满足条件a≠b,不满足条件a>b,b=4满足条件a≠b,满足条件a>b,a=10满足条件a≠b,满足条件a>b,a=6满足条件a≠b,满足条件a>b,a=2满足条件a≠b,不满足条件a>b,b=2不满足条件a≠b,输出a的值为2.故选:B.【点睛】本题主要考查了循环结构程序框图,准确计算是关键,属于基础题.8.若直线与圆相交于两点,则线段中点的坐标为A. B. C. D.【答案】A【解析】【分析】根据题意,设AB的中点为M,由垂径定理可得直线OM与直线AB垂直,进而可得直线OM的方程为yx,据此可得M为直线AB与直线OM的交点,则有,解可得x、y的值,即可得答案.【详解】根据题意,设AB的中点为M,圆C:x2+y2=4的圆心为O,(0,0),直线与圆C:x2+y2=4相交于A,B两点,则直线OM与直线AB垂直,则直线OM的方程为y x,M为直线AB与直线OM的交点,则有,解可得:,则M的坐标为(,);故选:A.【点睛】本题考查直线与圆的方程的应用,涉及直线与圆的位置关系,考查运算能力,属于中档题.9.已知数列的前项和为,且,则=A. B. C. D.【答案】A【解析】【分析】整理得:,问题得解。
长春外国语学校2018-2019学年第二学期期中考试高二年级数学试卷(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共4页。
考试结束后,将答题卡交回。
注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信 息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书 写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效; 在草稿纸、试题卷上答题无效。
4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。
5.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
第Ⅰ卷一、选择题:本题共12小题,每小题5分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合{}2,1,0,1-=A ,{}21<≤-=x x B ,则B A ⋂=A. {}2,1,0,1-B. {},1,0,1-C. {}2,1,0D. {}1,0 2.计算)2()1(i i +⋅+=A. i -1B. i 31+C. i +3D. i 33+3.下列函数中,在(0,)+∞内单调递减的是 A. 22xy -= B. x x y +-=11 C. 121log y x= D. 22y x x a =-++ 4.命题“1xx e x R ∀∈+,≥”的否定是A. 1xx e x R ∀∈<+, B. 0001xx e x R ∃∈+,≥C. 1xx e x R ∀∉<+, D. 0001x x ex R ∃∈<+,5. 方程x x -=6ln 2的解所在的区间是A. )1,0(B. )2,1(C. )3,2(D. )4,3( 6. 已知函数1ln )(-+=xax x f 的图象在点))2(,2(f 处的切线与直线012=-+y x 平行,则实数=a A. 2- B. 2 C. 4- D. 47. 下边程序框图的算法思路来源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b 分别为14,18,则输出的a 为A.0B.2C.4D.148. 若直线32y x =+与圆22:4C x y +=相交于,A B 两点,则线段AB 中点的坐标为 A. )23,23(-B. )23,23(--C. )23,23(D. )23,23(- 9. 已知数列{}n a 中,nn a n +=21,则n S = A. 1+n n B. 12+n n C. 1-n n D. 12-n n10. F 是抛物线y x 42=的焦点,以F 为端点的射线与抛物线相交于点A ,与抛物线的准线相交于点B ,若4=,则=⋅A. 49B. 23C. 6D. 911. 函数()2x xe ef x x --=的图象大致为12. 已知)(x f 为定义在R 上的奇函数,x x f x g -=)()(,且对任意的[)+∞∈,0,21x x , 当21x x <时,)()(21x g x g <,则不等式3)2()12(-≥+--x x f x f 的解集为 A. ),3(+∞ B. (]3,∞- C. [)+∞,3 D. )3,(-∞第Ⅱ卷本卷包括必考题和选考题两部分。
2018-2019学年高一上学期期末考试数学试卷一、选择题1.(5分)已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7},则A∩(∁U B)=()A.{5} B.{2,4} C.{2,4,5,6} D.{1,2,3,4,5,7}2.(5分)下列函数中,既是奇函数又是周期函数的是()A.y=sin x B.y=cos x C.y=ln x D.y=x33.(5分)已知平面向量=(1,﹣2),=(2,m),且∥,则m=()A.1 B.﹣1 C.4 D.﹣44.(5分)函数f(x)=2sin(ωx+φ)(ω>0,﹣<φ<)的部分图象如图所示,则ω,φ的值分别是()A. B. C. D.5.(5分)下列各组向量中,可以作为基底的是()A., B.,C.,D.,6.(5分)已知a=sin80°,,,则()A.a>b>c B.b>a>c C.c>a>b D.b>c>a7.(5分)已知cosα+cosβ=,则cos(α﹣β)=()A.B.﹣C.D.18.(5分)已知非零向量,满足||=4||,且⊥(2+),则与的夹角为()A.B.C.D.9.(5分)函数y=log0.4(﹣x2+3x+4)的值域是()A.(0,﹣2] B.[﹣2,+∞)C.(﹣∞,﹣2] D.[2,+∞)10.(5分)把函数y=sin(x+)图象上各点的横坐标缩短到原来的倍(纵坐标不变),再将图象向右平移个单位,那么所得图象的一条对称轴方程为()A.B.C.D.11.(5分)已知函数f(x)和g(x)均为奇函数,h(x)=af(x)+bg(x)+2在区间(0,+∞)上有最大值5,那么h(x)在(﹣∞,0)上的最小值为()A.﹣5 B.﹣1 C.﹣3 D.512.(5分)已知函数,若a,b,c互不相等,且f(a)=f(b)=f(c),则a+b+c的取值范围是()A.(1,2017)B.(1,2018)C.[2,2018] D.(2,2018)二、填空题13.(5分)已知tanα=3,则的值.14.(5分)已知,则的值为.15.(5分)已知将函数的图象向左平移个单位长度后得到y=g(x)的图象,则g(x)在上的值域为.16.(5分)下列命题中,正确的是.①已知,,是平面内三个非零向量,则()=();②已知=(sin),=(1,),其中,则;③若,则(1﹣tanα)(1﹣tanβ)的值为2;④O是△ABC所在平面上一定点,动点P满足:,λ∈(0,+∞),则直线AP一定通过△ABC的内心.三、解答题17.(10分)已知=(4,3),=(5,﹣12).(Ⅰ)求||的值;(Ⅱ)求与的夹角的余弦值.18.(12分)已知α,β都是锐角,,.(Ⅰ)求sinβ的值;(Ⅱ)求的值.19.(12分)已知函数f(x)=cos4x﹣2sin x cos x﹣sin4x.(1)求f(x)的最小正周期;(2)当时,求f(x)的最小值以及取得最小值时x的集合.20.(12分)定义在R上的函数f(x)满足f(x)+f(﹣x)=0.当x>0时,f(x)=﹣4x+8×2x+1.(Ⅰ)求f(x)的解析式;(Ⅱ)当x∈[﹣3,﹣1]时,求f(x)的最大值和最小值.21.(12分)已知向量=(),=(cos),记f(x)=.(Ⅰ)求f(x)的单调递减区间;(Ⅱ)若,求的值;(Ⅲ)将函数y=f(x)的图象向右平移个单位得到y=g(x)的图象,若函数y=g(x)﹣k在上有零点,求实数k的取值范围.22.(12分)已知函数f(x),当x,y∈R时,恒有f(x+y)=f(x)+f(y).当x>0时,f(x)>0(1)求证:f(x)是奇函数;(2)若,试求f(x)在区间[﹣2,6]上的最值;(3)是否存在m,使f(2()2﹣4)+f(4m﹣2())>0对任意x∈[1,2]恒成立?若存在,求出实数m的取值范围;若不存在,说明理由.【参考答案】一、选择题1.B【解析】∵全集U={1,2,3,4,5,6,7},B={1,3,5,7},∴C U B={2,4,6},又A={2,4,5},则A∩(C U B)={2,4}.故选B.2.A【解析】y=sin x为奇函数,且以2π为最小正周期的函数;y=cos x为偶函数,且以2π为最小正周期的函数;y=ln x的定义域为(0,+∞),不关于原点对称,没有奇偶性;y=x3为奇函数,不为周期函数.故选A.3.D【解析】∵∥,∴m+4=0,解得m=﹣4.故选:D.4.A【解析】∵在同一周期内,函数在x=时取得最大值,x=时取得最小值,∴函数的周期T满足=﹣=,由此可得T==π,解得ω=2,得函数表达式为f(x)=2sin(2x+φ),又∵当x=时取得最大值2,∴2sin(2•+φ)=2,可得+φ=+2kπ(k∈Z),∵,∴取k=0,得φ=﹣,故选:A.5.B【解析】对于A,,,是两个共线向量,故不可作为基底.对于B,,是两个不共线向量,故可作为基底.对于C,,,是两个共线向量,故不可作为基底..对于D,,,是两个共线向量,故不可作为基底.故选:B.6.B【解析】a=sin80°∈(0,1),=2,<0,则b>a>c.故选:B.7.B【解析】已知两等式平方得:(cosα+cosβ)2=cos2α+cos2β+2cosαcosβ=,(sinα+sinβ)2=sin2α+sin2β+2sinαsinβ=,∴2+2(cosαcosβ+sinαsinβ)=,即cosαcosβ+sinαsinβ=﹣,则cos(α﹣β)=cosαcosβ+sinαsinβ=﹣.故选B.8.C【解析】由已知非零向量,满足||=4||,且⊥(2+),可得•(2+)=2+=0,设与的夹角为θ,则有2+||•4||•cosθ=0,即cosθ=﹣,又因为θ∈[0,π],所以θ=,故选:C.9.B【解析】;∴有;所以根据对数函数log0.4x的图象即可得到:=﹣2;∴原函数的值域为[﹣2,+∞).故选B.10.A【解析】图象上各点的横坐标缩短到原来的倍(纵坐标不变),得到函数;再将图象向右平移个单位,得函数,根据对称轴处一定取得最大值或最小值可知是其图象的一条对称轴方程.故选A.11.B【解析】令F(x)=h(x)﹣2=af(x)+bg(x),则F(x)为奇函数.∵x∈(0,+∞)时,h(x)≤5,∴x∈(0,+∞)时,F(x)=h(x)﹣2≤3.又x∈(﹣∞,0)时,﹣x∈(0,+∞),∴F(﹣x)≤3⇔﹣F(x)≤3⇔F(x)≥﹣3.∴h(x)≥﹣3+2=﹣1,故选B.12.D【解析】作出函数的图象,直线y=m交函数图象于如图,不妨设a<b<c,由正弦曲线的对称性,可得(a,m)与(b,m)关于直线x=对称,因此a+b=1,当直线y=m=1时,由log2017x=1,解得x=2017,即x=2017,∴若满足f(a)=f(b)=f(c),(a、b、c互不相等),由a<b<c可得1<c<2017,因此可得2<a+b+c<2018,即a+b+c∈(2,2018).故选:D.二、填空题13.【解析】===,故答案为:.14.﹣1【解析】∵,∴f()==,f()=f()﹣1=cos﹣1=﹣=﹣,∴==﹣1.故答案为:﹣1.15.[﹣1,]【解析】将函数=sin2x+﹣=sin(2x+)的图象,向左平移个单位长度后得到y=g(x)=sin(2x++)=﹣sin2x的图象,在上,2x∈[﹣],sin2x∈[﹣,1],∴﹣sin(2x)∈[﹣1,],故g(x)在上的值域为[﹣1,],故答案为:[﹣1,].16.②③④【解析】①已知,,是平面内三个非零向量,则()•=•()不正确,由于()•与共线,•()与共线,而,不一定共线,故①不正确;②已知=(sin),=(1,),其中,则•=sinθ+=sinθ+|sinθ|=sinθ﹣sinθ=0,则,故②正确;③若,则(1﹣tanα)(1﹣tanβ)=1﹣tanα﹣tanβ+tanαtanβ=1﹣tan(α+β)(1﹣tanαtanβ)+tanαtanβ=1﹣(﹣1)(1﹣tanαtanβ)+tanαtanβ=2,故③正确;④∵,λ∈(0,+∞),设=,=,=+λ(+),﹣=λ(+),∴=λ(+),由向量加法的平行四边形法则可知,以,为邻边的平行四边形为菱形,而菱形的对角线平分对角∴直线AP即为A的平分线所在的直线,即一定通过△ABC的内心,故④正确.故答案为:②③④.三、解答题17.解:(Ⅰ)根据题意,=(4,3),=(5,﹣12).则+=(9,﹣9),则|+|==9,(Ⅱ)=(4,3),=(5,﹣12).则•=4×5+3×(﹣12)=﹣16,||=5,||=13,则cosθ==﹣.18.解:(Ⅰ)∵α,β都是锐角,且,.∴cos,sin(α+β)=,∴sinβ=sin[(α+β)﹣α]=sin(α+β)cosα﹣cos(α+β)sinα=;(Ⅱ)=cos2β=1﹣2sin2β=1﹣2×.19.解:f(x)=cos2x﹣2sin x cos x﹣sin2x=cos2x﹣sin2x=cos(2x+)(1)T=π(2)∵∴20.解:由f(x)+f(﹣x)=0.当,则函数f(x)是奇函数,且f(0)=0,当x>0时,f(x)=﹣4x+8×2x+1.当x<0时,﹣x>0,则f(﹣x)=﹣4﹣x+8×2﹣x+1.由f(x)=﹣f(﹣x)所以:f(x)=4﹣x﹣8×2﹣x﹣1.故得f(x)的解析式;f(x)=(Ⅱ)x∈[﹣3,﹣1]时,令,t∈[2,8],则y=t2﹣8t﹣1,其对称轴t=4∈[2,8],当t=4,即x=﹣2时,f(x)min=﹣17.当t=8,即x=﹣3时,f(x)max=﹣1.21.解:(Ⅰ)f(x)==sin cos+=sin+=sin(+)+,由2kπ+≤+≤2kπ+,求得4kπ+≤x≤4kπ+,所以f(x)的单调递减区间是[4kπ+,4kπ+].(Ⅱ)由已知f(a)=得sin(+)=,则a=4kπ+,k∈Z.∴cos(﹣a)=cos(﹣4kπ﹣)=1.(Ⅲ)将函数y=f(x)的图象向右平移个单位得到g(x)=sin(﹣)+的图象,则函数y=g(x)﹣k=sin(﹣)+﹣k.∵﹣≤﹣≤π,所以﹣sin(﹣)≤1,∴0≤﹣sin(﹣)+≤.若函数y=g(x)﹣k在上有零点,则函数y=g(x)的图象与直线y=k在[0,]上有交点,所以实数k的取值范围为[0,].22.(1)证明:令x=0,y=0,则f(0)=2f(0),∴f(0)=0.令y=﹣x,则f(0)=f(x)+f(﹣x),∴﹣f(x)=f(﹣x),即f(x)为奇函数;(2)解:任取x1,x2∈R,且x1<x2,∵f(x+y)=f(x)+f(y),∴f(x2)﹣f(x1)=f(x2﹣x1),∵当x>0时,f(x)>0,且x1<x2,∴f(x2﹣x1)>0,即f(x2)>f(x1),∴f(x)为增函数,∴当x=﹣2时,函数有最小值,f(x)min=f(﹣2)=﹣f(2)=﹣2f(1)=﹣1.当x=6时,函数有最大值,f(x)max=f(6)=6f(1)=3;(3)解:∵函数f(x)为奇函数,∴不等式可化为,又∵f(x)为增函数,∴,令t=log2x,则0≤t≤1,问题就转化为2t2﹣4>2t﹣4m在t∈[0,1]上恒成立,即4m>﹣2t2+2t+4对任意t∈[0,1]恒成立,令y=﹣2t2+2t+4,只需4m>y max,而(0≤t≤1),∴当时,,则.∴m的取值范围就为.。
长春外国语学校2018-2019学年第一学期期末考试高一年级政治试卷(文科)第Ⅰ卷一、选择题:本题共30小题,每小题2分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.六年前出去吃饭购物基本都是付现金;三年前出去吃饭、购物基本都是刷卡;而现在出去吃饭、购物基本都是“扫一扫”,这种“扫一扫”的生活模式有利于①提高货币的购买力②减少携带现金的风险③防止通货影胀现象的发生④减少现金的使用,方使购物消费A. ①②B. ①③C. ②④D. ③④答案:C解析:详解:从材料可以看出,支付方式在不断发生变化,这种扫一扫的生活模式有利于减少现金的使用,减少携带现金的风险,方使购物消费,②④项符合题意;扫一扫只是消费方式或支付方式发生了改变,并没有改变货币的本质和职能,也不能提高货币的购买力或防止通货膨胀现象的发生,①③项说法错误;正确选项为C。
点拨:与传统的支付方式相比较,移动支付能减少现金的使用,能够简化收款手续,可以方便购物消费,因而受到欢迎;移动支付能减少现金的使用量,但不能减少货币的发行量。
2.下表是两个时间的人民币汇率中间价:同学们分析人民币汇率中间价上述变化的影响,有一位同学绘制了以下四幅示意图,其中正确的有A. ①④B. ①②C. ②③D. ③④答案:B解析:详解:外汇是用外币表示的用于国际间结算的支付手段。
如果用100单位外币可以兑换成更多的人民币,说明外币汇率升高;反之,则说明外币汇率跌落。
到2017年10月1日时,100欧元兑换的人民币多了,说明欧元升值,人民币贬值,人民币汇率跌落,欧洲商品的人民标价上升,有利于我国向欧元区出口,①正确,③错误;100美元兑换的人民币少了,说明人民币升值,美元贬值,人民币汇率升高,②正确;100日元兑换的人民币少了,说明人民币升值,日元贬值,人民币汇率升高,不利于中国对日本出口,④错误;故该题答案选B。
点拨:人民币币值变化的影响3.美国当地时间2015年9月9日上午10点苹果公司在旧金山比尔格拉汉姆公民大礼堂召开新品发布会,发布了全新的Apple Watch、iPad Pro、Apple TV、iPhone 6s 以及iPhone 6s Plus。
2018-2019学年长春外国语学校高一数学下期末试卷
数学试卷
出题人 :王先师 审题人:于海君
第Ⅰ卷
一、选择题:本题共12小题,每小题5分。在每小题给出的四个选项中,只有一项是符合
题目要求的。
1.210sin的值为( )
A.21 B. 23 C. 21 D. 23
2. 18sin27cos18cos27sin的值为( )
A.22 B. 23 C. 21 D. 1
3. 已知集合}821|{xxA,集合}1log0|{2xxB,则ABI( )
A.}31|{xx B. }21|{xx C. }32|{xx D. }20|{xx
4. 已知80sina,1)21(b,3log21c,则( )
A.cba B. cab C. bac D. acb
5. 一扇形的圆心角为60,所在圆的半径为6 ,则它的面积是( )
A.6 B. 3 C. 12 D. 9
6. 若),0(,且 31tan,21tan,则( )
A.4 B. 43 C. 45 D. 47
7. )32sin(3xy的一条对称轴是( )
A.32x B. 2x C. 3x D. 38x
8. 要得到)32cos(3xy的图象,只需将xy2cos3的图象( )
A.右移3 B. 左移3 C. 右移6 D. 左移6
9. 函数1)2sin(2xy的定义域为( )
A.},65262|{Zkkxkx
B.},656|{Zkkxkx
C. },32232|{Zkkxkx
D. },12512|{Zkkxkx
10. 函数xxycossin的值域是( )
A.]2,2[ B. ]1,1[ C. ]2,2[ D. ]2,0[
11. 下列函数中既是偶函数,最小正周期又是的是( )
A.xy2sin B. xycos C. xytan D. |tan|xy
12. 函数1ln)(2axxxf有唯一的零点在区间),1(e内,则实数a的取值范围是
( )
A.)0,(2e B. )1,(2e C. ),1(e D. ),1(2e
第Ⅱ卷
二、填空题:本题共4小题,每小题5分。
13. 若2tan,则cossincossin的值为________________;
14. 函数)1(log221xy的单调递增区间是_____________________;
15. )32sin(21xy的对称中心是__________________________;
16. 若4 ,则)tan1)(tan1(_________________.
三、解答题:本题共6小题,17题10分,18——22每小题12分。
17.已知集合}054|{2xxxA,}7123|{xxB,设全集RU,
求(1)ABU;
18.化简)cos()2cos()cos()sin()2cos()sin()cos()sin(xxxxxxxx.
19.已知函数)sin(xAy其中2||,0,0A,若函数的最小正周期为,
最大值为2,且过(0,1)点,
(1)求函数的解析式;
(2)求函数的单调递减区间.
20.已知函数xxxxxf22cossincossin32)(,
(1)求)(xf的值域;
(2)说明怎样由xysin的图象得到)(xf的图象.
21.已知),2(,,且135sin,54cos,
(1)求)cos(),sin( 的值;
(2)求)2tan(的值.
22.已知函数1coscossin3)(222axxaxxf,
(1)判断)(xf的奇偶性,并加以证明;
(2)求)(xf的最大值.