Deform-3d热处理模拟操作
- 格式:doc
- 大小:1.78 MB
- 文档页数:18
DEFORM-3D基本操作入门QianRF前言有限元法是根据变分原理求解数学物理问题的一种数值计算方法。
由于采用类型广泛的边界条件,对工件的几何形状几乎没有什么限制和求解精度高而得到广泛的应用。
有限元法在40年代提出,通过不断完善,从起源于结构理论、发展到连续体力学场问题,从静力分析到动力问题、稳定问题和波动问题。
随着计算机技术的发展与应用,为解决工程技术问题,提供了极大的方便。
现有的计算方法(解析法、滑移线法、上限法、变形功法等)由于材料的本构关系,工具及工件的形状和摩擦条件等复杂性,难以获得精确的解析解。
所以一般采用假设、简化、近似、平面化等处理,结果与实际情况差距较大,因此应用不普及。
有限元数值模拟的目的与意义是为计算变形力、验算工模具强度和制订合理的工艺方案提供依据。
通过数值模拟可以获得金属变形的规律,速度场、应力和应变场的分布规律,以及载荷-行程曲线。
通过对模拟结果的可视化分析,可以在现有的模具设计上预测金属的流动规律,包括缺陷的产生(如角部充不满、折叠、回流和断裂等)。
利用得到的力边界条件对模具进行结构分析,从而改进模具设计,提高模具设计的合理性和模具的使用寿命,减少模具重新试制的次数。
通过模具虚拟设计,充分检验模具设计的合理性,减少新产品模具的开发研制时间,对用户需求做出快速响应,提高市场竞争能力。
一、刚(粘)塑性有限元法基本原理刚(粘)塑性有限元法忽略了金属变形中的弹性效应,依据材料发生塑性变形时应满足的塑性力学基本方程,以速度场为基本量,形成有限元列式。
这种方法虽然无法考虑弹性变形问题和残余应力问题,但可使计算程序大大简化。
在弹性变形较小甚至可以忽略时,采用这种方法可达到较高的计算效率。
刚塑性有限元法的理论基础是Markov变分原理。
根据对体积不变条件处理方法上的不同(如拉格朗日乘子法、罚函数法和体积可压缩法),又可得出不同的有限元列式其中罚函数法应用比较广泛。
根据Markov变分原理,采用罚函数法处理,并用八节点六面体单元离散化,则在满足边界条件、协调方程和体积不变条件的许可速度场中对应于真实速度场的总泛函为:∏≈∑π(m)=∏(1,2,…,m)(1)对上式中的泛函求变分,得:∑=0(2)采用摄动法将式(2)进行线性化:=+Δun(3)将式(3)代入式(2),并考虑外力、摩擦力在局部坐标系中对总体刚度矩阵和载荷列阵,通过迭代的方法,可以求解变形材料的速度场。
DEFORM软件DEFORM简介Deform软件是一个高度模块化、集成化的有限元模拟系统,它主要包括前处理器、模拟器、后处理器三大模块。
前处理器:主要包括三个子模块(1)数据输入模块,便于数据的交互式输入。
如:初始速度场、温度场、边界条件、冲头行程及摩擦系数等初始条件;(2)网格的自动划分与自动再划分模块;(3)数据传递模块,当网格重划分后,能够在新旧网格之间实现应力、应变、速度场、边界条件等数据的传递,从而保证计算的连续性。
模拟器:真正的有限元分析过程是在模拟处理器中完成的,Deform运行时,首先通过有限元离散化将平衡方程、本构关系和边界条件转化为非线性方程组,然后通过直接迭代法和Newton-Raphson法进行求解,求解的结果以二进制的形式进行保存,用户可在后处理器中获取所需要的结果后处理器:后处理器用于显示计算结果,结果可以是图形形式,也可以是数字、文字混编形式,获取的结果可为每一步的有限元网格;等效应力、等效应变;速度场、温度场及压力行程曲线等DEFORM功能1. 成形分析冷、温、热锻的成形和热传导耦合分析(DEFORM所有产品)。
丰富的材料数据库,包括各种钢、铝合金、钛合金和超合金(DEFORM所有产品)。
用户自定义材料数据库允许用户自行输入材料数据库中没有的材料(DEFORM所有产品)。
提供材料流动、模具充填、成形载荷、模具应力、纤维流向、缺陷形成和韧性破裂等信息。
刚性、弹性和热粘塑性材料模型,特别适用于大变形成形分析(DEFORM所有产品)。
弹塑性材料模型适用于分析残余应力和回弹问题(DEFORM-Pro, 2D, 3D)。
烧结体材料模型适用于分析粉末冶金成形(DEFORM-Pro, 2D, 3D)。
完整的成形设备模型可以分析液压成形、锤上成形、螺旋压力成形和机械压力成形(DEFORM 所有产品)。
用户自定义子函数允许用户定义自己的材料模型、压力模型、破裂准则和其他函数(DEFORM-2D,3D)。
26 本章纲要:非等温锻造(完整模型) 引言打开旧问题(即已保留问题) 加载数据库设置模拟操纵概念平均应变速度设置边界条件设定主模的速度设定对象间的摩擦保留问题写数据库运行模拟进程后处置退出系统. 本章介绍非等温热传导计算问题,学会在同一数据库内持续运行求解不同进程。
本章是在第7 章基础上的继续。
一些用户希望同一温度问题内能多重操作,在本问题中,第6 章是第一次操作,本章是第二次操作。
利用户把握如何用两种操作运行一个问题。
以下步骤能够完成第6 和第7 章的内容。
打开DEFORM 3D System系统窗口,单击Pre-Processor 按钮打开窗口。
从已有数据库中保留的最后一步开始,继续后面的模拟进程,当Processor 窗口出现后会有以下信息框。
要了解世界最大液压机情形请访问27 单击Yes按钮加载数据库的步数,一个有可供选择的步数列表的Select Database Step窗口会弹出(图),从表当选择最后一步并单击OK按钮,从该步开始的有关对象和所有数据会输入到Pre-Processor。
- Select Database Step 单击Controls 窗口中的Simulation Controls...按钮,打开Simulation Controls窗口,选择单位制Units 为English英制,并逐次选中Deformation和Heat Transfer单项选择钮此刻单击Simulation Controls 窗口中的Stopping Step按钮。
在Stopping and StepControls窗口中设置Number of Simulation Steps (NSTEP) 为20。
设置Step Increment to Save (STPINC) 为2步,另外,注意第一步应为负(说明该步是之前处置中读入)。
此刻设置Primary Die (PDIE) 为2,选择操纵步Solution Step Controls 为行程操纵Steps by Stroke 设置Stroke per Step (DSMAX)为英寸。
热处理仪器实验室问题摘要热处理向导是设置复杂多操作的便利工具热处理问题。
本实验将演示如何使用此向导来准备钢部分渗碳淬火回火模拟。
本实验室还可以帮助用户了解DEFORM-HT相变计算方案的能力。
1.开始一个新的问题开始一个新的热处理向导问题与问题ID“GearHT”。
你可以做所以点击“新问题”按钮,选择“热处理”。
或者,您可以右键单击目录树以创建一个空目录,然后单击“加热”治疗“在主窗口的右侧.DEFORM GUI主窗口2.初始化在“初始化”对话框中,将“单位制”设置为SI。
打开“变形”,“扩散”和“相变”。
点击下一步热处理向导设置页3.导入几何在“几何”页面中,选择“从几何,KEY或DB文件导入”,然后单击“下一个”。
转到目录Labs /,并加载几何文件“GearTooth.STL”。
4.生成网格在“网格生成”页面中,对非结构化网格使用8000。
使用1层结构化表面层,将“厚度模式”设置为“与整体对比”尺寸“,层厚度为0.005(结构化表面网格有帮助提供更好的热和扩散解决方案精度,计算时间更少)点击下一步”网格生成窗口5.材质定义在“材质”页面中,选择“从.DB和.KEY导入”,然后单击“下一步”。
进口材料“Demo_Temper_Steel.KEY”来自目录实验室/。
您可以点击“Advance”按钮查看和编辑材料和转换数据。
请注意,这是一种具有七个成分(相)的复杂混合物,包括奥氏体(A),白铁矿(PB),马氏体(M),铁素体(F),低碳马氏体(LM),回火(TB),回火铁素体+水泥泥(TFC)。
转型两相之间的动力学包括A-> F,A-> PB,A-> TB,A-> M,PB-> A,M-> LM,M-> A,LM-> TFC,TB-> A和TFC-> A。
在这些动力学中,A-> F,A-> PB,A-> TB,M-LM和LM-> TFC是由TTT曲线定义的扩散控制。
DEFORM金属成形及热处理模拟解决方案1DEFORM锻造、拉拔模拟方案DEFORM锻压数值模拟可实现适热、冷、温状态下的自由锻、模锻、开坯、墩粗、拉拔、挤压等成形工艺的仿真分析,提供极有价值的工艺分析数据:➢通过锻造、拉拔全过程模拟,获得成形产品形状及尺寸,有助于分析锻件、管材、棒材等横向缺陷发生的原因;多工步成形过程模拟➢获得成形过程工件应力场、应变场及速度场分布;➢提高模内金属流动现象,分析材料流动规律;➢预测成形缺陷,包括裂纹、拉痕、凹坑、缩径、折叠、填充不足等;裂纹折叠➢可优化工艺参数,包括成形吨位、拉拔力、拉拔速度、润滑方案、锻造温度、拉坯截面形状等;➢分析及优化模具结构,包括模具内腔、模具孔径、孔型,入模锥角等;不同孔径及毛坯的优化➢获得模具应力场数据,分析模具强度,模具磨损。
模具主应力和等效应力2DEFORM轧制模拟方案DEFORM轧制模拟可以实现有色金属及钢等的管材、板材及其他型材的连轧、滚轧、扩孔等工艺,预测成形尺寸、成形缺陷等结果,提供快速全面的工艺优化模拟方案:➢根据工艺流程,实现冷轧、热轧的成形过程,预测成形产品形状及尺寸、有助于分析缺陷的产生。
➢预测轧制过程中出现的折叠、塔型卷曲、壁厚不均、变形扭曲、流线紊乱等轧制缺陷。
➢获得成形过程金属应力、应变、速度、损伤、温度等场变量数据。
应力云图及板型尺寸变化➢分析轧制过程金属流动规律,有助于成形方式的控制。
➢优化工艺参数,包括轧制速度、轧制道次、轧制厚度等。
➢耦合模具应力分析,可判断轧辊发生弹性变形对轧制效果的影响。
➢可模拟复合材料的轧制过程,研究复合材料的成形特型。
3DEFORM微观组织模拟方案DEFORM采用元胞自动机及蒙特卡洛法实现微观组织相图及演变过程的可视化模拟,通过耦合结构及温度,获得成形过程及热处理过程中微观组织的模拟分析,提供多方面的分析方案:➢模拟微观组织在锻造、轧制、自由锻等成形过程、热处理过程及加热、冷却过程的演变;自由锻过程晶粒细化分布(红色为细化部分)➢ 模拟晶粒生长,分析整个过程的晶粒尺寸变化;➢ 计算成形及热处理过程中的回复再结晶现象,包括动态再结晶、中间动态再结晶及静态再结晶;➢ 通过微观演变预测总体性能,避免缺陷;➢ 模拟微观组织相的转变,提供转变时间、转变温度及任一时刻的微观演变结果;马氏体转变率分布云图及残余应力云图 ➢ 用户可二次开发自己的晶粒演变模型用于微观组织计算,验证新的演变模型的可行性;➢ 具有元胞自动机法、蒙特卡洛法等计算方法,可现实微观组织相图、晶粒尺寸、晶界及晶向,实现微观组织演变的可视化观测;➢ 分析成形过程中晶粒织构的变化情况,有助于优化成形工艺;ε =0 ε = 0.01 ε = 0.3 ε = 1.24 DEFORM 热处理模拟方案金属的热处理工艺,主要包括钢的奥氏体化,渗碳,淬火,回火,有色金属的金相固溶沉淀、应力松弛。
DEFORM 3D模拟控制(五):网格重画分标准网格重划分标准(自动划分)是在坯料产生大塑性变形时能很方便处理网格重划分的一种方式。
网格重画分网格标准可以通过改变参数来控制物体网格中划分的时机和频率。
网格重划分的设置除了可以在模拟控制窗口进行之外,还能在网格划分命令窗口设置。
2D网格设置和3D网格设置略有不同,下面进行分类讨论。
1 2D网格设置对于2D网格设置来说,总共有4个参数可以控制重划分网格的触发。
即Interference Depth、Maximum Stroke Increment、Maximum Time Increment和Maximum Step Increment,以上任意条件满足或者原来的网格不可用(负的Jacobian值),网格即会重新划分。
而原来的求解信息会插入到新的网格中。
1.1 最大穿透深度(Maximum interference depth)当主对象(master object,一般是指上下模)穿透从对象(slave object, 一般指坯料)的深度超过最大穿透深度的时候,网格重划分开启。
穿透深度指的是从对象的单元边界穿过主对象表面的深度,而网格重划分的对象必须是从对象,也就是坯料。
穿透深度参数在坯料有非常尖锐的拐角的情况下使用,意即拐角半径与相邻元素边缘长度几乎相同的情况。
重划分网格的穿透深度值应设置为单元边长的一半。
穿透深度值太大可能会导致坯料体积损失过多,值太小可能会导致重划分网格次数太多,从而导致运行时间变慢和求解信息插入误差过大。
在人为网格划分时,首先应该手动把容易发生网格穿透的区域画密一点,如果网格穿透问题仍然存在,再设置穿透深度值。
1.2 最大行程增量(Maximum stroke increment)任何时候主模的行程增量超过了所设值,新的网格重划分就会发生。
1.3 最大时间增量(Maximum step increment)从上次网格重划分步骤开始算起,只要模拟计算进行的时间达到了此设的最大时间增量,就会启动新的重新网格化步骤。
武汉理工大学学生实验报告书实验课程名称材料成型数值模拟开课学院材料学院指导老师姓名朱春东、钱东升学生姓名学生专业班级成型0901 2011—2012学年第二学期实验课程名称材料成型数值模拟图1.1单击Simulation control”窗口。
在该窗口中选择系统单位为“SI”按钮退出窗口,如图2.1所示。
图2.1增加新对象选择图3.1图3.2标签下将网格数量设置为20000,在Detailed settings图4.15. 单击“Workpiece”选择General按钮,再点击材料选择窗口,选择Steel,选择材料AISI-1025[1800-2200F(1000-1200C)],单击Load按钮,将所选材料导入到Workpiece中,如图所示。
图5.模拟控制设定单击图6凸模运动参数的设置Top die”,待其高亮显示后单击Movement图标,设定凸模的运动参数,图7Workpiece”、“Top Die”、“Bottom Die”中的general图标,在“按钮,输入温度值1200,单击图8.设置对象间的位置关系单击图9.19.2按钮,进入过盈对象关系设定窗口,如图10.1所示。
单击,其他为系统默认设置即可,如图10.2所示,单击Close。
单击为第二个关系设置相同的摩擦系数。
接着单击图标,系统会为毛坯与凸模、图10.1图10.2 图10.3单击图1112.退出前处理窗口单击保存按钮,关闭前处理窗口。
二.Deform求解1.打开一个预保存的问题2.求解,单击Run,开始模拟,如图2.1所示:图2.1图3.1单击按钮正方向视图,测量工件尺寸,如图图3.2单击图标,按图图3.3(b)在模型基础上,分别改变上模压下速度(5、10、15)进行模拟,测量四种温度和速度下,最。
DEFORM-3D的简介Deform(Design Enviroment for Forming)有限元分析系统是美国SFTC公司开发的一套专门用于金属塑性成形的软件。
通过在计算机上模拟整个加工过程,可减少昂贵的现场试验成本,提高工模具设计效率,降低生产和材料成本,缩短新产品的研究开发周期。
Deform软件是一个高度模块化、集成化的有限元模拟系统,它主要包括前处理器、模拟器、后处理器三大模块。
前处理器:主要包括三个子模块(1)数据输入模块,便于数据的交互式输入。
如:初始速度场、温度场、边界条件、冲头行程及摩擦系数等初始条件;(2)网格的自动划分与自动再划分模块;(3)数据传递模块,当网格重划分后,能够在新旧网格之间实现应力、应变、速度场、边界条件等数据的传递,从而保证计算的连续性。
模拟器:真正的有限元分析过程是在模拟处理器中完成的,Deform运行时,首先通过有限元离散化将平衡方程、本构关系和边界条件转化为非线性方程组,然后通过直接迭代法和Newton-Raphson法进行求解,求解的结果以二进制的形式进行保存,用户可在后处理器中获取所需要的结果后处理器:后处理器用于显示计算结果,结果可以是图形形式,也可以是数字、文字混编形式,获取的结果可为每一步的有限元网格;等效应力、等效应变;速度场、温度场及压力行程曲线等DEFORM软件操作流程(1)导入几何模型在DEFORM-3D软件中,不能直接建立三维几何模型,必须通过其他CAD/CAE软件建模后导入导DEFORM系统中,目前,DEFORM-3D的几何模型接口格式有: ①STL:几乎所有的CAD软件都有这个接口。
它由一系列的三角形拟合曲面而成。
②UNV:是由SDRC公司(现合并到EDS公司)开发的软件IDEAS制作的三维实体造型及有限元网格文件格式,DEFOEM接受其划分的网格。
③PDA:MSC公司的软件Patran的三维实体造型及有限元网格文件格式。
Deform操作流程1.导入几何模型在DEFORM-3D软件中,不能直接建立三维几何模型,必须通过其他CAD/CAE软件建模后导入导DEFORM系统中,目前,DEFORM-3D的几何模型接口格式有:①STL:几乎所有的CAD软件都有这个接口。
它由一系列的三角形拟合曲面而成。
②UNV:是由SDRC公司(现合并到EDS公司)开发的软件IDEAS制作的三维实体造型及有限元网格文件格式,DEFOEM接受其划分的网格。
③PDA:MSC公司的软件Patran的三维实体造型及有限元网格文件格式。
④AMG:这种格式DEFORM存储己经导入的几何实体。
2.网格划分在DEFORM-3D中,如果用其自身带的网格剖分程序,只能划分四面体单元,这主要是为了考虑网格重划分时的方便和快捷。
但是它也接收外部程序所生成的六面体(砖块)网格。
网格划分可以控制网格的密度,使网格的数量进一步减少,有不至于在变形剧烈的部位产生严重的网格畸变。
DEFORM-3D的前处理中网格划分有两种方式,一种是用户指定单元数量,系统默认划分方式,用户指定的网格单元数量只是网格划分的上限约数,实际划分的网格单元数量不会超过这个值。
用户可以通过拖动滑块修改网格单元数,也可以直接输入指定数值,该数值和系统计算时间有着密切的关系,该数值越大,所需要的计算量越大,计算时间越长。
另一种手动设置网格使用的是Detailed settings下的Absolute方式,该方式允许用户指定最小或最大的网格尺寸和最大与最小网格尺寸的比值。
该值设置完成在网格单元数量中可以看到网格的大概数目,但无法在那里修改,只能通过修改最大或最小单元尺寸来修改网格数目。
3.初始条件有些加工过程是在变温环境下进行的,比如热轧,在轧制过程中,工件,模具与周围环境介质之间存在热交换,工件内部因大变形生成的热量及其传导都对产品的成形质量产生主要的影响,对此问题,仿真分析应按照瞬态热一机祸合处理。
DEFORM材料库可以提供各个温度下材料的特性。
Deform软件介绍Deform系列软件介绍一、概述DEFORM是一套基于有限元的工艺仿真系统,用于分析金属成形及其相关工业的各种成形工艺和热处理工艺。
通过在计算机上模拟整个加工过程,帮助工程师和设计人员:设计工具和产品工艺流程,减少昂贵的现场试验成本。
提高工模具设计效率,降低生产和材料成本。
缩短新产品的研究开发周期。
二、Deform系列软件1. DEFORM-2D(二维)适用于各种常见的UNIX工作站平台(HP,SGI,SUN,DEC,IBM)和Windows-NT 微机平台。
可以分析平面应变和轴对称等二维模型。
它包含了最新的有限元分析技术,既适用于生产设计,又方便科学研究。
2. DEFORM-3D(三维)适用于各种常见的UNIX工作站平台(HP,SGI,SUN,DEC,IBM)和Windows-NT 微机平台。
可以分析复杂的三维材料流动模型。
用它来分析那些不能简化为二维模型的问题尤为理想。
3. DEFORM-PC(微机版)适用于运行Windows 95,98和NT的微机平台。
可以分析平面应变问题和轴对称问题。
适用于有限元技术刚起步的中小企业。
4. DEFORM-PC Pro(Pro版)适用于运行Windows 95,98和NT的微机平台。
比DEFORM-PC功能强大,它包含了DEFORM-2D的绝大部分功能。
5. DEFORM-HT(热处理)附加在DEFORM-2D和DEFORM-3D之上。
除了成形分析之外,DEFORM-HT还能分析热处理过程,包括:硬度、晶相组织分布、扭曲、残余应力、含碳量等。
三、Deform功能模块1. 成形分析模块冷、温、热锻的成形和热传导耦合分析(DEFORM所有产品);丰富的材料数据库,包括各种钢、铝合金、钛合金和超合金(DEFORM所有产品);用户自定义材料数据库允许用户自行输入材料数据库中没有的材料(DEFORM所有产品);提供材料流动、模具充填、成形载荷、模具应力、纤维流向、缺陷形成和韧性破裂等信息(DEFORM所有产品);刚性、弹性和热粘塑性材料模型,特别适用于大变形成形分析(DEFORM所有产品);弹塑性材料模型适用于分析残余应力和回弹问题(DEFORM-Pro, 2D, 3D);烧结体材料模型适用于分析粉末冶金成形(DEFORM-Pro, 2D, 3D);完整的成形设备模型可以分析液压成形、锤上成形、螺旋压力成形和机械压力成形(DEFORM所有产品);用户自定义子函数允许用户定义自己的材料模型、压力模型、破裂准则和其他函数(DEFORM-2D,3D);网格划线(DEFORM-2D,PC,Pro)和质点跟踪(DEFORM所有产品)可以分析材料内部的流动信息及各种场量分布;温度、应变、应力、损伤及其他场变量等值线的绘制使后处理简单明了(DEFORM 所有产品);自我接触条件及完美的网格再划分使得在成形过程中即便形成了缺陷,模拟也可以进行到底(DEFORM-2D,Pro);多变形体模型允许分析多个成形工件或耦合分析模具应力(DEFORM-2D,Pro,3D);基于损伤因子的裂纹萌生及扩展模型可以分析剪切、冲裁和机加工过程(DEFORM-2D)。
Deform-3D(version6.1)使用步骤Deform—3D是对金属体积成形进行模拟分析的优秀软件,最近几年的工业实践证明了其在数值模拟方面的准确性,为实际生产提供了有效的指导。
Deform—3D的高度模块化、友好的操作界面、强大的处理引擎使得它在同类模拟软件中处于领先地位。
以下将分为模拟准备、前处理、求解器、后处理四部分简要介绍Deform—3D的使用步骤。
一、模拟准备模拟准备阶段主要是为模拟时所用的上模、下模、坯料进行实体造型,装配,并生成数据文件。
实体造型可通过UG、Pro-e、Catia、Solidworks等三维作图软件进行设计,并按照成形要求进行装配,最后将装配体保存为STL格式的文件。
该阶段需要注意的是STL格式的文件名不能含有中文字符;另外对于对称坯料,为了节省求解过程的计算时间并在一定程度上提高模拟精度(增加了网格数量),可把装配体剖分为1/4,1/8或更多后再进行保存。
二、前处理前处理是整个数值模拟的重要阶段,整个模拟过程的工艺参数都需要在该阶段设置,各参数设置必须经过合理设置后才能保证模拟过程的高效性和模拟结果的准确性。
首先打开软件,新建(new problem)→选择前处理(Deform-3D preprocessor)→在存放位置(Problem location)选项卡下选择其他(other location)并浏览到想要存放deform模拟文件的文件夹→下步的problem name可任意填写。
注意:所有路径不能含有中文字符。
之后会打开新的界面,点击模拟控制(simulation controls)→改变单位(units)为SI,接受弹出窗口默认值;选中模式(mode)选项卡下热传导(heat transfer)。
导入坯料、模具并设置参数:∙导入毛坯:∙general:通常采用刚塑性模型即毛坯定义为塑性(plastic),之后导入的模具定义为刚性(rigid);温度(temperature):根据成形要求设定坯料预热温度(温热成形时一定注意);材料(material):点击load选择毛坯材料,若材料库中没有对应的材料可选择牌号相近的。
第一章挤压模具尺寸及工艺参数的制定1.1实验任务已知:空心坯料Φ90×25mm,材料是黄铜(DIN-CuZn40Pb2),内径与挤压针直径相同。
所要完成成品管直径26mm,模孔工作带直径36mm,模孔出口带直径46mm。
完成如下操作:(1)根据所知参数设计挤压模具主要尺寸和相关工艺参数,并运用AUTOCAD(或Pro/E)绘制坯料挤压过程平面图。
(2)根据所绘出的平面图形,在三维空间绘出三维图。
并以STL格式分别输出各零件图形,并保存。
(3)运用DEFORM-3D模拟该三维造型,设置模拟参数,生成数据库,最终完成模拟过程。
1.2挤压温度的选取挤压温度对热加工状态的组织、性能的影响极大,挤压温度越高,制品晶粒越粗大,挤制品的抗拉强度、屈服强度和硬度的值下降,延伸率增大。
由于黄铜在730℃时塑性最高,而在挤压过程中由于变形、摩擦产热使配料温度升高,若把黄铜预热到730℃,坯料可能超过最佳塑性成型温度,所以选取坯料初始温度为500℃。
挤压筒、挤压模具也要预热,以防止过大的热传递导致金属温度分布不均,影响制品质量,预热温度与坯料温度不能相差太大,故选取为300℃。
挤压速度的选取挤压速度对制品组织与性能的影响,主要通过改变金属热平衡来实现。
挤压速度低,金属热量逸散较多,致使挤压制品尾部出现加工组织;挤压速度高,锭坯与工具内壁接触时间短,能量传递来不及,有可能形成变形区内的绝热挤压过程,使金属的速度越来越高,导致制品表面裂纹。
而且在保证产品质量和设备能量允许的前提下尽可能提高挤压速度。
根据挤压流程可计算得挤压比为λ=13,故挤压垫速度为为1.5 mm/s。
第二章工模具尺寸2.1挤压筒尺寸确定2.1.1考虑坯料挤压过程中的热膨胀,取挤压筒内径为mm;2.2.2挤压筒外径为,故挤压筒外径为mm;2.2.3挤压筒长度(2-1)式中:—锭坯最大长度,对重金属管材为;—锭坯穿孔时金属增加的长度;—模子进入挤压筒的深度;—挤压垫厚度。
Deform-3d热处理模拟操作 热处理工艺在机械制造中占有十分重要的地位。随着机械制造现代化和热处理质量管理现代化的发展,对热处理工艺提出了更高的要求。热处理工艺过程由于受到加热方式、冷却方式、加热温度、冷却温度、加热时间、冷却时间等影响,金属内部的组织也会发生不同的变化,因此是个十分复杂的过程,同时工艺参数的差异,也会造成热处理加工对象硬度过高过低、硬度不均匀等现象。Deform-3d软件提供一种热处理模拟模块,可以帮助热处理工艺员,通过有限元数值模拟来获得正确的热处理参数,从而来指导热处理生产实际。减少批量报废的质量事故发生。 热处理模拟,涉及到热应力变形、热扩散和相变等方面,因此计算很复杂,软件采用牛顿迭代法,即牛顿-拉夫逊法进行求解。它是牛顿在17世纪提出的一种在实数域和复数域上近似求解方程的方法。多数方程不存在求根公式,因此求精确根非常困难,甚至不可能,从而寻找方程的近似根就显得特别重要。方法使用函数f(x)的泰勒级数的前面几项来寻找方程f(x) = 0的根。牛顿迭代法是求方程根的重要方法之一,其最大优点是在方程f(x) = 0的单根附近具有平方收敛,而且该法还可以用来求方程的重根、复根等。 但由于目前Deform-3d软件的材料库只带有45钢、15NiCr13和GCr15等三种材料模型,而且受到相变模型的局限,因此只能做淬火和渗碳淬火分析,更多分析需要进行二次开发。 本例以45钢热处理淬火工艺的模拟过程为例,通过应用Deform-3d 热处理模块,让读者基本了解热处理工艺过程有限元模拟的基本方法与步骤。
1 、问题设置 点击“文档”(File)或“新问题”(New problem),创建新问题。在弹出的图框中,选择“热处理导向”(heat treatment wizard),见图1。
图1 设置新问题 2、初始化设置 完成问题设置后,进入前处理设置界面。首先修改公英制,将默认的英制(English)修改成公制(SI),同时选中“形变”(Deformation)、“扩散”(Diffusion)和“相变”(Phase transformation),见图2。
图2 初始化设置 3、输入几何体 在工件几何体输入对话框内,选择从数据库或关键文件夹(Import from a geometry,. Key or DB file)中输入,见图3。输入的文件必须是STL格式的,见图4。
图3 输入几何体 图4 选择几何体文件 4、网格划分 工件输入后,可以进行网格划分。这里取网格数8000;表面网格结构(Structured surface mesh)中,层的数量取1;层厚度(Layer thickness)为0.005;厚度模式(Thickness mode)取与外形尺寸成比例(Ratio to overall dimension),见图5。 *其实层厚度是默认好的,点击图标,就会显示默认的数据,然后点击“OK”,完成设置,见图6。网格生成后的工件三维图形见图7。
图5 网格划分 图6 层厚度设置 图7 网格生成后的工件三维图形 5、材料设置 1)选择从数据库或关键文件夹(Import from .DB or .KEY files)中输入,见图8。由于数据库和关键文件夹尚未建立,因此在选择从数据库或关键文件夹选项后,不要直接点下一步,而是点击高级(Advanced),这时会弹出材料设置对话框,见图9。
图8 材料输入 图9 材料设置 2)在材料设置对话框中点击从材料库中加载(Load from lib.)。并在弹出的对话框中选择“Steel”,“AISI-1045_Heat Treatment”,类似国产45钢,并加载,见图10。加载后,材料列表中会显示材料型号以及相变名称,这里显示的是45号钢以及奥氏体、珠光体和马氏体,见图11。
图10 选择钢号 图11 加载后的材料列表 3)输出材料保存到关键文件夹。点击输出(Export),在关键文件夹中选择材料并保存,见图12。
图12 保存到关键文件夹 4)打开保存到关键文档中的材料并加载,完成材料的设置,见图13。
图13 完成材料设置 (to be continued) 6、工件初始化设置 在工件初始化对话框中,将温度(Temperature)、原子(Atom)、相体积分数(Phase volume fraction) 均选择为均匀(Uniform)。并将温度设置为“20”;原子为“0.44”;将马氏体(Martensite)的体积分数设置为“1”,见图14。 *原子百分比设置这里指含碳量。可以从材料性能表中的描述(Description)一栏中查到,见图10。
图14 初始化设置 7、介质的详细设置 介质设置的界面见图15,这里的介质主要有加热炉和水。
图15 介质设置界面 1)加热炉设置: 点击“加号”,在弹入的框中用英语填写“Heating Furnace”,然后点击“OK”完成设置,见图16。 图16 加热炉设置 2)加热炉参数设置: 点击“减号”,去掉“Media 1”,将热传递系数(Heat transfer coefficient)改成0.1,选中辐射“Radiation”见图17。
图17 加热炉参数设置 3)添加介质水: 点击“加号”,在弹出的图框中填写“water”,将默认的热传递系数修改为“7”,取消选择辐射,见图18。
图18 介质水的设置 4)添加区域1(Zone1) 在区域设置栏中,点击“添加”,会自动生成“Zone1”,见图19。
图19 添加区域1 5)写入对流系数 在常数(Constant)项的下拉菜单中,选择与温度关联“f(temp.)”,见图20。写入对流系数(Convection coefficient),具体见图21。
图20 选择f(Temp) 图21 温度与对流系数设置 Temperorature Convection Coefficient 20 2.1 250 2.8 500 6.8 750 4.0 1000 2.5 8、工艺程序设置 工艺程序设置包括,持续加热(冷却)时间、介质、温度等参数设置。这里设置了三个阶段,分别为预热阶段升温阶段和冷却淬火阶段,其中预热和升温介质为加热炉(Heating furnace),冷却淬火介质为水(Water)。 1)预热阶段:温度550°C,持续加热时间1800秒; 2)升温阶段:温度900°C,持续加热时间7200秒; 3)冷却阶段:温度20°C,持续冷却时间600秒。 同时在开始操作(Start operation)栏目中,选择“2”。详见图22。 图22 工艺程序设置 9、模拟控制设置 模拟控制对话框见图23。按默认好的步数定义为“自动”,每步温度变化为“5”,每步时间最大最小为“0.001”和“10”,步数增量为“10”。附加边界条件中由于没有考虑对称设置,因此栏目保存空白,见图23。在固定节点边界条件设置中,选择点击“自动设置(Auto)”,这时会出现固定节点边界条件已添加的回答,点击“OK”、完成固定节点边界条件设置,见图24。然后再点击“Finish”,出现图25的回答,大意是数据库、关键文件等已成功创建,请退出并回到主窗口进行模拟运行。
图23 模拟控制 图24 固定节点边界条件已经添加提示 图25 创建数据库文件已经成功提示 (to be continued) 10、模拟和后处理 在主窗口课题目录(Directory)中,选择需要模拟的文件,然后在模拟器(Simulator)栏目中,点击运行(Run),开始模拟。模拟进行状况可以从信息(Message)窗口观察到。
图26 模拟运行 模拟达到指定的步数或时间后模拟停止,这时点击退出图标,退出模拟。再次打开主窗口,在目录栏中选中课题,然后在后处理器中点击“Deform-3d Post”进入后处理窗口。 热处理模拟的后处理窗口应包括以下内容: (1)图形显示窗口 (2)步数选择和动画播放器 (3)图形状态选择按钮 (4)图形位置控制按钮 (5)状态变量选择与分析按钮 热处理模拟的后处理分析: 1、加热和冷却过程动画播放 为了播放加热和冷却过程的动画,应先在状态变量选择菜单内,选择温度(Temperature),然后再点击播放器,在显示窗口观察加热和冷却的变化过程。见图27。
图27 加热和冷却过程模拟 2、加热和冷却温度分布均匀度分析 1)剖切零件 为了分析温度分布均匀度,需要将工件剖切。可以应用剖切(Slicing)分析工具,将对话框中的模式选为“1Point+Normal”,在输入栏内,将P行的X坐标值修改成“1”,点击“OK”完成零件的剖切。 * 如果要尽可能在圆柱体的中心位置进行剖切,就需要进行中心点的坐标。默认的P点Y、Z轴的坐标为“0”,因此只要计算X轴的坐标点就可以了,一种方法采用拉动图标下方的滑标,大致放在中间位置即可。要精确定位,需要通过计算,可以根据滑尺两端的数字相加后除2。 本例计算如下: (-35.934+16.054)/2 = -9.94,见图28、图29。
图28 剖切设置