钛合金3D打印技术的应用及研究现状
- 格式:pdf
- 大小:1.37 MB
- 文档页数:8
钛合金材料及其新技术在C919飞机上的应用引言:C919飞机作为中国自主研发的大飞机项目,其设计理念和技术水平在不断提升,其中钛合金材料的广泛应用是C919飞机成为世界一流大飞机的重要因素之一、本文将主要探讨钛合金材料及其新技术在C919飞机上的应用。
一、钛合金材料的特点钛合金是一种具有低密度、高强度、良好的耐腐蚀性和耐高温性能的金属材料。
其具有优秀的比强度和比刚度,比重仅为4.5g/cm³左右,约为钢的一半。
此外,钛合金材料还有较高的熔点、良好的可焊性和机械加工性能等优点。
二、C919飞机上的钛合金材料应用1.结构件C919飞机利用钛合金制造部分机身结构件,如前压舱壁、机轮舱盖以及飞机尾翼等。
由于钛合金具有优异的强度和刚度,能够承受大气压力和飞行时的动力负荷,因此能够确保飞机的结构稳定性和安全性。
2.引擎部件C919飞机的发动机部件中,也广泛使用了钛合金材料。
钛合金由于抗高温性能好,可以用于制造发动机叶片、涡轮盘等关键部件,提高了发动机的工作效率和寿命,提升了飞机的整体性能。
3.内饰装饰件1.热成形技术C919飞机上采用了钛合金热成形技术,通过控制合金的变形温度和速率,实现了复杂形状的零部件制造。
这种技术能够提高零部件的加工效率和质量,降低成本,并且节约了材料。
2.焊接技术C919飞机钛合金的焊接技术也得到了大幅度提升。
传统的钛合金焊接存在焊接热裂纹和变形等问题,而新技术中采用了激光焊接和等离子焊接等先进方法,使焊接接头更加牢固,提高了结构的强度和可靠性。
3.三维打印技术随着三维打印技术的发展,C919飞机也在钛合金零部件制造中开始应用。
三维打印技术能够将设计数据直接转化为实体零件,减少了加工工序,提高了制造效率。
同时,三维打印技术还能够制造复杂形状的零部件,实现更好的结构优化和性能集成。
结论:钛合金材料及其新技术在C919飞机上的应用可以显著提升其性能和舒适度。
随着钛合金材料应用技术的不断创新和发展,C919飞机将继续在设计理念和技术水平上不断突破,成为国际市场竞争力强的大型客机。
试析钛合金技术发展现状以及趋势钛合金技术是一种重要的金属材料的开发和应用领域,具有广泛的应用前景。
本文将从钛合金技术的发展现状和趋势两个方面进行探讨,以期给读者带来全面的了解。
我们来看一下钛合金技术的发展现状。
钛合金是一种具有优异性能的金属材料,它具有高强度、低密度、耐腐蚀、耐高温等优点,并且具有良好的可塑性和可焊性。
因此,钛合金被广泛应用于航空航天、汽车、医疗器械等领域。
目前,钛合金的生产工艺和加工技术已经取得了显著的进展。
采用粉末冶金法、熔模铸造法、等离子熔化沉积法等先进工艺,可以制备出具有复杂形状和高性能的钛合金制品。
此外,钛合金的表面处理技术也得到了快速发展,如阳极氧化、化学镀、电镀等方法可以改善钛合金的表面性能,提高其耐腐蚀性和装饰性。
钛合金技术的发展是一个不断推陈出新的过程。
在未来的发展中,钛合金技术将继续朝着以下几个方向发展。
钛合金的合金化技术将得到进一步改进。
通过添加不同的合金元素,可以改变钛合金的组织结构和性能,从而满足不同领域的需求。
例如,添加铝元素可以提高钛合金的强度和耐热性能,添加锆元素可以提高钛合金的耐腐蚀性能。
因此,钛合金的合金化技术将成为未来的研究重点。
钛合金的制备工艺将更加先进和高效。
随着科学技术的不断进步,制备钛合金的工艺也在不断革新。
新的制备工艺可以提高钛合金的制备效率和质量,并且可以实现对钛合金材料的精确控制。
例如,等离子熔化沉积技术可以实现高精度的三维打印,大大提高了钛合金制品的制造效率和质量。
钛合金的应用领域将进一步扩展。
随着科技的不断发展,钛合金的应用领域将越来越广泛。
例如,在航空航天领域,钛合金可以用于制造飞机的结构件、发动机部件等;在汽车领域,钛合金可以用于制造汽车的车身、发动机等;在医疗器械领域,钛合金可以用于制造人工关节、牙科植入物等。
因此,钛合金的应用前景非常广阔。
钛合金技术是一种具有巨大潜力和广泛应用前景的技术。
通过不断发展和创新,钛合金技术将在材料科学领域发挥重要作用,为人类社会的发展做出更大的贡献。
3D打印技术的现状与未来发展I. 绪论3D打印技术(也称为添加制造技术)是一种快速成型技术,它通过将数字模型转化为实体物体,通过多次堆积或材料加工来创建具有复杂结构和形状的物体。
近年来,这种技术已经进入了许多领域,包括汽车制造、医疗技术、航空航天等等。
本文将会探讨3D打印技术的现状和未来发展。
II. 3D打印技术的现状3D打印技术在过去的几年中得到了迅速发展,这得益于其在各个领域中的应用。
例如,在医疗领域,3D打印技术已经被用于创建定制化和复杂的医疗器械、假肢和人工关节。
汽车制造商也开始使用该技术来生产各种零部件,以及测试不同材料组合的成品。
在建筑行业中,3D打印技术正在被用来打印建筑模型和原型,为建筑师提供更加高精度和逼真的设计工具。
此外,这种技术还被用于创造极其复杂的结构形状,如通风道和壳体。
III. 3D打印技术的未来发展尽管3D打印技术在各个领域中的使用已经普及,但其未来的发展前景仍然十分广阔。
以下是一些可预见的发展方向:1. 材料创新将来,我们可以期待看到各种新材料的推出,这些材料将会是3D打印技术的一个非常重要的驱动力。
例如,类似于水泥或混凝土的建筑材料,或者细胞培养材料,这些都将有望被3D打印技术所运用。
2. 产业自动化3D打印技术的进一步自动化将为制造业提供更大的潜力。
目前,由于3D打印是一种基于文件的技术,因此大批量生产尚不可行。
未来,随着技术的进步,我们可以期待看到这种限制变得越来越少。
3. 生物打印生物打印是一个将人体器官和组织打印出来的医疗领域的新兴技术,这将为全球缺乏器官移植资源的国家和地区提供巨大的帮助。
此外,它还可以用于培养更好的肉类替代品,以减少对环境的影响。
4. 远程定制化生产3D打印技术可以使生产变得更加定制化,它可以根据用户需求打印出符合个性化需求的产品,同时还可以节省成本和时间。
随着网络和技术的不断进步,未来的生产可以实现远程定制化生产,这意味着我们可以在世界的任何角落订购产品,并将其打印到当地。
3D打印技术的现状和发展趋势随着科技的不断发展,3D打印技术已经不再是那种神秘的新科技,而是被越来越多的人所了解和关注。
3D打印技术可以制造出具有高精度和形态复杂性的零件,甚至可以制造出全新的产品,已经在医疗、航空航天、建筑等领域大放异彩。
本文将探讨3D打印技术的现状和发展趋势。
一、3D打印技术的现状3D打印技术是一种通过叠加材料来构建物体的制造方法。
3D打印技术的原理可以简单概括为:在计算机辅助设计软件中设计模型,并将模型切分成微薄的图层;将每一层设计的截面信息传输给打印机,打印机将塑料、金属等材料按一定层次叠加在一起,直到构造出一个完整的零件或物体。
3D打印技术的制造精度高,能够制造出复杂多样化的产品,在科技创新、医疗治疗等领域有着广泛的应用。
目前,3D打印技术已经应用到了许多领域,例如医学领域。
医学学界已经使用3D打印技术生产出了手术器械、医学模型,使得医务人员可以更加方便的进行手术,提高了手术的安全度和效率。
二、3D打印技术的未来发展趋势未来,随着技术的不断发展,3D打印技术的趋势也将不断向前发展。
以下是3D打印技术的未来发展趋势:1. 软件的发展将会变得更加智能化3D打印技术作为一种制造技术,其制造流程十分复杂。
因此,未来新型的软件将会不断发展,取代原来的软件,更加智能化,使得3D打印制造流程变得更加高效化、便捷化。
2. 3D打印技术将用于更多的领域未来,3D打印技术将会用于更多的领域,例如对于太空产业、土木工程等。
3D打印技术在太空产业中的应用不仅可以大大提高空间站的修建和维护的效率,而且使得宇航员能够更好地适应宇宙环境。
3.材料将不断增加随着科技的不断进步,制造出各种新材料的技术将会不断诞生。
因此,未来,3D打印技术将会使用更多的新材料,例如传导材料、柔性材料等。
结语3D打印技术作为一种制造技术,将会在未来的各个领域中不断发挥其潜力。
随着3D打印技术的不断发展,新型材料、新制造技术、智能软件等将会不断推进3D打印技术的发展。
材料工程Journal of Materials Engineering第4 9卷 第4期2021年4月第52-62页Vol. 4 9 No. 4Apr. 2021 pp. 52―62金属激光3D 打印过程数值 模拟应用及研究现状Application and research status of numerical simulation of metallaser 3D printing process杨 鑫1,王 犇】,谷文萍2,张兆洋】,刘世锋3,武 涛1(1西安理工大学材料科学与工程学院,西安710048;2长安大学材料科学与工程学院,西安710061 ;3西安建筑科技大学冶金学院,西安710055) YANG Xin 1, WANG Ben 1 ,GU Wen-ping 2 , ZHANG Zhao-yang 1 , LIU Shi-feng 3 ,WU Tao 1(1 Department, of Materials Science and Engineering ,Xi ?an University ofTechnology, Xi an 71 0048, China ; 2 Department, of Materials Scienceand Engineering , Chang ? an University , Xi ? an 710061 , China ;3 School of Metallurgical and Engineering ,Xi ?an Universityof Architecture & Technology, Xi an 71 0055, China)摘要:数值模拟可以高效、有针对性地对金属激光选区熔化成型过程中的温度场、熔池形状、残余应力和变形、凝固过程 微观组织演变等过程建立相应的模型并对成形件的相关性能做出准确预测,为工艺优化提供科学的依据,显著降低工艺开发成本和缩短工艺开发周期,有力推动金属增材制造向工业级应用的转变。
3D打印技术的现状和未来发展趋势1. 介绍3D打印技术3D打印技术,也被称为增材制造技术,是一种将数字模型转化为实物模型的先进制造技术。
该技术使用计算机辅助设计软件将数字模型转换为可供3D打印机处理的可读格式。
然后使用3D 打印机将数字模型打印成物理模型。
3D打印技术已经成为当今制造业中最先进的技术之一,其应用范围非常广泛。
2. 3D打印技术的现状目前,3D打印技术已经迅速成为现实。
该技术主要用于工业和制造业的领域,如航空、汽车、医疗设备、机械等行业。
在医疗设备方面,3D打印技术已经用于制造人工器官和传感器,这些器官可以与人体互动,从而极大地改善医疗保健。
在航空领域,3D打印技术已经应用于制造飞机零部件。
这种技术可以生成更轻、更强的零部件,减轻了飞机的重量并提高了飞机的燃油效率。
在汽车行业方面,3D打印技术已经被用于制造汽车零部件。
使用这种技术,公司可以简化制造过程,降低成本并提高汽车的性能。
3. 3D打印技术的未来发展趋势未来将出现更多的3D打印材料。
目前,3D打印技术使用的材料种类很少,但预计未来将开发出更多的材料。
这些材料将包括金属材料、生物可降解材料、能够承受高温和高压的材料等,这将使3D打印技术能够应用于更多的领域。
3D打印设备将更加便宜。
如今,3D打印机价格仍然很高,但是随着技术的不断发展,未来的3D打印机将简化制造过程并降低成本。
将出现更多的应用程序。
与日俱增的3D打印材料和3D打印机将使3D打印技术得到更多的应用。
这将包括制造更多的医疗设备、汽车和航空零部件,此外,3D打印技术还可以用于建筑和制造工艺方面。
4. 结论总之,3D打印技术已经成为制造业的重要领域,其应用范围非常广泛,将来有望得到更广泛的应用。
预计未来3D打印材料将不断增加,3D打印设备将更加便宜,并且将出现更多的应用程序。
3D打印用钛合金粉末制备技术分析唐超兰;张伟祥;陈志茹;周德敬;李龙;楚瑞坤【摘要】钛合金是3D打印中使用最广泛的金属材料,具有密度小、比强度高、耐热性好、耐蚀性优异、生物相容性好等优点.不同于传统制造技术,3D打印技术对粉末材料有着极高的要求,粉末的质量会直接影响3D打印零件的性能.本文从粉末性能入手,阐述了杂质含量、流动性、松装密度等因素对3D打印过程的影响;然后综述了氢化脱氢法、气体雾化法、离心雾化法、等离子雾化法等钛合金粉末制备技术的原理和优缺点;最后结合国内外研究现状,对改善钛合金粉末的方法进行探讨.【期刊名称】《广东工业大学学报》【年(卷),期】2019(036)003【总页数】8页(P91-98)【关键词】钛合金;粉末性能;制备技术;优化方法【作者】唐超兰;张伟祥;陈志茹;周德敬;李龙;楚瑞坤【作者单位】广东工业大学机电工程学院,广东广州510006;广东工业大学机电工程学院,广东广州510006;银邦金属复合材料股份有限公司,江苏无锡214145;银邦金属复合材料股份有限公司,江苏无锡214145;银邦金属复合材料股份有限公司,江苏无锡214145;飞而康快速制造科技有限责任公司,江苏无锡214145【正文语种】中文【中图分类】TF123.233D打印技术又被称为“快速成形技术”“增材制造技术”,是20世纪80年代发展起来的一种先进制造技术[1]. 该技术采用离散-堆积的思想,将设计好的三维零件模型按照一定厚度离散成二维层状切片,由激光或电子束沿特定轨迹扫描加工层状切片,逐层增加材料完成整个三维零件的制造[2-3]. 相比传统制造技术,3D打印技术无需复杂的工艺、大型的加工设备,便可完成复杂结构零部件的加工,有效地节约了原材料、简化了生产工序、缩短了设计制造时间、降低了制造成本和风险[4-5]. 目前,3D打印的常用材料主要有高分子材料(树脂、塑料、橡胶等)、金属材料(铝合金、钛合金、不锈钢等)和非金属材料(陶瓷、石膏、纸张等)[6-7],其中高分子材料和非金属材料3D打印技术起步较早、研究较多,技术相对成熟,而金属材料3D打印技术起步较晚,仍具备巨大的发展潜力. 有专家预测,金属材料3D 打印技术未来将会逐渐占据整个快速成形制造领域的主导地位[8].钛合金是3D打印中最常用的金属材料,具有密度小、比强度高、耐热性好、耐蚀性优异、生物相容性好等特点,被广泛应用于航空航天、工业、国防、医疗、汽车、电子等领域[9-11]. 但由于其导热系数小、弹性模量低、化学性质活泼等原因,传统制造加工钛合金时,加工工艺复杂,材料利用率低,成本较高[12].而3D打印技术采用增材制造的加工方法,有效避免了上述问题,相比传统加工方法有着极大的优势. 目前国内钛合金3D打印的研究集中在成型设备及加工工艺等方面,在粉末原材料的制备方面的研究较少;加上起步时间较晚,国内的制粉企业在生产规模和产品质量上都与国外先进水平有一定差距. 现阶段在航空航天等高端领域,3D打印使用的高品质钛合金粉末还主要依赖进口,国内自产的钛合金粉末还存在粒径较大、氧含量高、不同批次粉末质量不稳定等问题,难以满足关键部件3D打印要求. 国外市场抓住我国高品质3D打印金属粉末依赖进口这一短板,采用原材料和相关设备捆绑式销售模式,极大地增加了国内相关企业的制造成本. 面对广阔的市场前景,打破国外高端粉末的垄断局面,提高钛合金粉末制备技术已势在必行.1 粉末性能对3D打印的影响钛合金3D打印过程是一个高能瞬态冶金过程,过程中材料的熔化、凝固和冷却都是在极短的时间内完成,若粉末或者工艺参数选择不当,成形件中容易出现球化、裂纹、孔隙以及翘曲变形等缺陷,严重影响其成形精度和力学性能[13]. 目前,几种主流的高性能钛合金3D打印加工技术(包括激光选区熔化成型技术(SLM),激光近净成型技术(LENS)和电子束选区熔化成型技术(EBSM)等)均是以粉末为原材料,其中LENS技术采用同轴送粉方式,EBSM和SLM技术则是采用均匀铺粉方式进行加工[14]. 不管采用哪种方式,钛合金粉末质量都会直接影响3D打印零件的性能.1.1 杂质含量杂质含量是3D打印粉末材料的基础指标,是保证3D打印成形件力学性能的关键因素. 钛合金粉末中常见的杂质元素有氮、氧、氢等非金属元素. 钛合金粉末化学性质活泼,极易吸附环境中的氮、氧、氢等杂质元素,导致零件的延伸率、韧性大幅下降. 杨光等[15]研究发现,随着成形环境中氧含量的增加,激光沉积成形TA15合金强度提高,但塑性大幅下降;当氧含量体积分数从5×10-5增加到1.9×10-4时,合金的屈服强度增长了8%,单延伸率却下降的了31%. 刘宏宇等[16]研究发现,氧、氮、氢3种气体元素都对ZTC4钛合金表现出较强的亲和力,钛合金吸附3种元素后,强度有一定程度提升,但塑性却有所下降. 研究还发现,氧、氮元素在钛合金中具有较大的溶解度,主要形成间隙固溶体;氢元素的溶解度较小,仅为0.002%,但钛、氢元素之间极易发生反应生成脆性的氢化钛化合物. 李远睿等[17]研究发现,氢化钛对近α钛合金的塑形、韧性均有着严重影响,当环境中氢含量体积分数超过0.007 5%时,合金冲击韧性随着氢含量的增加几乎呈直线下降,当体积分数达到0.014 5%以上时,钛合金直接处于脆性状态. 此外,空心粉的存在也会加大粉末中的杂质含量,其引入的杂质主要为制粉过程中的稀有气体. 这些稀有气体杂质不能与钛合金形成固溶体或化合物,在快速熔化和凝固的过程中会残留形成气孔,从而降低成形件的力学性能[18].1.2 流动性流动性是3D打印粉末材料的关键性能之一,是保证3D打印过程顺利进行的关键因素. 粉末流动性常用一定量粉末流过规定孔径的标准漏斗所需要的时间来表示,时间越少,粉末的流动性越好[19]. 流动性主要受粉末表面形貌、粒径大小、水分含量等因素影响. 在3D打印加工前,粉末需进行烘干处理,因此水分含量对流动性的影响可以不予考虑.粉末形貌是粉末的流动性的决定性因素,主要包括球形度和“卫星粉”两部分. 在常见的球形、树枝形、针状、粒状、片状粉末形貌中,球形无疑拥有最好的流动性[13]. 而粉末的流动性与粒径大小呈负相关关系:粉末粒径减小时,粉体之间分子引力、静电引力作用就会逐渐增大,粉末容易聚集成团,黏结性增大,从而导致粉末流动性降低[20]. 此外,粒径小的粉末容易形成紧密堆积,使得粉末之间的透气率下降,降低粉末的流动性.对于SLM和EBSM这一类工艺而言,粉末流动性不好,会导致铺粉不均匀,粉末平整度变差,从而增加打印件的内部缺陷,影响其力学性能. 对于LENS这一类工艺而言,粉末流动性不好,会影响送粉过程的连续性和稳定性,从而导致成形缺陷增加,成形件力学性能降低. 此外,球形度不好的粉末聚焦性差,焦点分散,不仅会降低粉末的利用率,也会增加孔隙、未熔合等缺陷的形成概率.1.3 松装密度松装密度是3D打印粉末材料的另一项重要指标,是保证3D打印件成形质量的关键因素. 松装密度是指只受重力作用时颗粒自然堆积的填充体的表观密度,主要受粉末表面形貌、粒径大小和水分含量等因素影响. 由于粉末在3D打印前要进行烘干处理,水分含量的影响可以忽略不计.粉末松散堆积时,球形粉末之间的堆积间隙要小于不规则粉末,且粉末球形度越高,其堆积间隙越小. 但即使是球形度很高的粉末,若粉末粒径相同,松散堆积时粉末之间的空隙仍然较大. 因此想获得更高的松装密度,必需合理进行不同粒径球形粉末的配比. 不同粒径粉末进行松散堆积时,粉末之间的间隙会随着粉末尺寸比的减小而减小. 需要注意的是:粉末的粒径要尽量避免在10 μm以下. 这是因为此时粉末粒径接近临界值,粉末颗粒之间作用力的影响不能忽略不计,粉末受到分子引力、静电引力等作用容易团聚,导致粉末之间的堆积间隙变大,松装密度变小. 此外,粒径太小的粉末在成形过程中,容易被高能激光或电子束击溃,造成“球化”缺陷[21].在SLM和SEBM工艺中,松装密度的大小直接决定着铺粉层的密度大小. 当粉末的松装密度较小时,铺粉层中粉末之间的空隙变大,层与层之间的连接性变差,导致零件成形过程中形成孔隙,内部致密度变差. 此外,铺粉层的松装密度小还会导致成形过程中,熔融金属凝固收缩的高度差变大,“台阶效应”更加严重,成形尺寸偏差变大,成形时产生裂纹、翘曲等缺陷的几率增大. 在LENS工艺中,以送粉代替铺粉过程,松装密度的影响相对有所减弱,但金属凝固收缩高度差变大导致的成形尺寸偏差变大,裂纹、翘曲等成形缺陷几率增加的情况依旧存在.2 钛合金粉末制备技术现阶段国内外制备钛粉的方法有很多,但3D打印技术对粉末原料的杂质含量、流动性、松装密度等方面都有着较高的要求,因此仅有少数几种制备方法制备的粉末能适用于3D打印技术. 常见的3D打印用钛合金粉末的制备方法有4种:氢化脱氢法、气体雾化法、离心雾化法和等离子雾化法.2.1 氢化脱氢法氢化脱氢法(HDH)是美国科学家发明的经典钛粉制备方法[22]. 该方法最早是用于解决钛合金难以机械粉碎的问题[23]. 氢化脱氢法利用氢元素固溶后钛合金的冲击韧性会大幅降低和钛氢反应的可逆特性[24],将高纯氢气与钛合金在加热条件下充分反应生成脆性的氢化钛,接着采用球磨等机械手段将其粉碎成氢化钛粉末,最后将氢化钛粉末置于高温真空条件中,使其充分分解生成氢气脱去氢元素,得到钛合金粉末[25-26]. HDH法制备的钛合金粉末粒径一般在5 μm以上,平均粒径在100 μm左右,粒径分布较广,形状不规则,氮、氧含量较高. 此方法的主要优点是成本低,工艺较易实现以及对原料形态要求不高,缺点是制备粉末的球形度差,杂质元素含量较高.2.2 气体雾化法气体雾化法是利用雾化喷嘴喷射的高速气流来击碎金属液流,使其冷却凝固形成粉末,其本质是将高温气体的动能转化为金属液滴表面能的过程[27].根据棒材原料熔炼方式的不同,气体雾化法可分为惰性气体雾化法和电极感应熔炼气体雾化法. 惰性气体雾化法是采用水冷铜坩埚熔化合金棒材,再利用高速惰性气体冲击合金液流使其粉碎雾化,随后冷却凝固制备合金粉末. 惰性气体雾化法的核心是控制气体与金属液流之间的相互作用. 雾化喷嘴结构是这一过程的关键,它直接影响制粉的效率和制备粉末的性能. 喷嘴结构又可分为“限制式”和“自由降落式”两种. 其中“自由降落式”是早期气雾化工艺中所使用的喷嘴结构,这种喷嘴具有结构简单,不易堵塞等优点,但其雾化效率较低,后被效率更高的“限制式”喷嘴结构所取代[28]. 常见的“限制式”喷嘴结构有紧耦合雾化喷嘴、超声气雾化喷嘴、高压气雾化喷嘴和层流气雾化喷嘴等4种[29],如图1所示. 其中:紧耦合气雾化喷嘴是通过缩短气流到熔体通道口的距离,减少气流能量的损失,来到达提高雾化效率的目的;超声气雾化喷嘴是利用声音的高频振动,使喷出的超音速气流获得一定频率的高频脉冲,从而获得更细的液滴和更高的雾化效率;高压气雾化喷嘴则是通过提高气流的压力,在熔体通道口处形成一个负压,从而达到提高雾化效率的效果;层流气雾化喷嘴一改气流冲击液体雾化的模式,利用平行气流在液体表面产生的压力和剪切力,使金属液流纤维化破碎形成粉末,不仅有效地减小了气流的效率消耗量,也极大提高了雾化效率.电极感应熔炼气雾化法是采用电极感应线圈加热熔化合金棒材,再利用高速惰性气体雾化粉碎合金液流制备合金粉末的方法. 相比于采用水冷铜坩埚熔化,电极感应熔炼能避免熔化过程中合金与坩埚和导流管的接触,从而能有效减少制备过程中杂质的渗入,提高雾化粉末的纯度[30]. 由于没有了坩埚对熔融液流的盛积作用,如何保证熔炼过程中形成持续稳定的合金液流成为此方法的技术关键. 此外由于缺少导流管的引流作用,熔融金属熔滴将直接从棒材尖端滴下,很难保证相同滴落的位置,这也导致电极感应熔炼气雾化法中无法采用“限制式”喷嘴结构,雾化效率和雾化稳定性相对惰性气体雾化法会略有下降.图1 几种典型的气雾化喷嘴结构Fig.1 Several typical gas atomizing nozzles气体雾化法制备的粉末粒径分布较广,从0~300 μm不等,但100 μm以下粉末约占70%,细粉收得率较高;此外该方法制备钛合金粉末还具有冷却速度快、球形度较高、杂质含量低、成本较低等优点. 但该方法也存在一些问题:卫星粉和空心粉. 卫星粉的形成是由于雾化室中气体的循环,部分较细颗粒会飞回与熔融的粒子发生碰撞;而空心粉的形成则是因为高压气体在雾化的液流的同时,有一小部分被困在熔融金属中,冷却后形成粉末中的气孔或气泡 [31].2.3 离心雾化法离心雾化法是另一种广泛使用的雾化方法,该方法是通过电极旋转所产生的离心力将熔融的金属粉碎成液滴甩出,之后液滴冷却凝固形成球形粉末.如图2所示,根据熔炼方式的不同,离心雾化法也可分为旋转电极法(REP)、电子束旋转盘法(EBRD)和等离子旋转电极法(PREP)3种. 其中,旋转电极法是将合金制成自耗电极,利用固定钨电极上激发的电弧产生高温熔化电极的端面,再借助电极旋转的离心力雾化液滴制备球形粉末[32];电子束旋转盘法是采用电极感应加热将合金材料熔化,通过导流管将熔化的金属液均匀滴落到下方高速旋转的圆盘上,利用转盘的离心力雾化液滴制备球形粉末[33];等离子旋转电极法与旋转电极法类似,以合金制成自耗电极,再通过稀有气体等离子体加热熔化其端面形成金属液膜,最后利用电极旋转的离心力雾化制备粉末[34]. 等离子旋转电极法采用等离子体作为热源,大大减少了制备粉末的杂质,因此其他两种离心雾化法已逐渐被其替代. 与气体雾化法相比,等离子旋转电极法因为没有高压气体的冲击以及气体循环的影响,粉末中基本不存在空心粉,卫星粉含量也大幅减少. 等离子旋转电极法制备的钛合金粉末粒径分布在50~300 μm不等,100 μm以下粉末约占20%,粉末平均粒径较大. 此方法主要优点是制备粉末的球形度高,表面形貌良好,杂质含量低,且粉末粒径分布可通过转速和电极直径调节;但由于电极转速会受到动密封问题的限制[35],此方法制备粉末的平均粒径较大.2.4 等离子雾化法图2 几种典型的离心雾化法原理图Fig.2 Several typical centrifugal atomization methods schematic diagram等离子雾化法(PA)是一种利用等离子热源雾化金属液滴制备球形粉末的方法. 此方法最早由M.EntezaRian等[36]提出,后于1998年申请专利[37],现被加拿大AP&C公司所垄断. 该方法是借助高温的等离子体火炬加热合金丝材,熔化、蒸发成金属蒸汽,随后通过气淬冷却技术,让饱和的金属蒸汽快速团聚、形核、长大,得到超细合金粉末[38]. 不同于其他两种雾化方法,等离子雾化法中原料的熔化和雾化是同时进行的,这样的模式不仅有效地提高了雾化效率,同时也避免了雾化过程中喷嘴材料混入熔融金属液流中而形成杂质[39]. 等离子体雾化法制备的钛合金粉末粒径分布较窄,在10~150 μm不等,50 μm以下粉末约占40%,细粉收得率极高;此外,PA法制备的粉末也具有较高的球形度和较低的杂质含量. 此方法主要缺点是丝材原料的制造成本较高,且制粉效率相对较低,每小时产量仅为0.75 kg[39].2.5 制备技术对比表1为几种常见钛合金粉末制备技术的比较. 综合对比,等离子雾化法是未来最具发展前景的3D打印钛合金粉末制备技术:(1) 制备粉末的粒径分布范围与3D打印用钛合金粉末粒径要求基本一致,粉末浪费率最低;(2) 具有和PREP法制备粉末相当的球形度和表面形貌,但可以制备细粒径的粉末;(3) 具有和EIGA法相当的细粉收得率,但卫星粉含量很少.表1 常见钛合金粉末制备技术比较Tab.1 Comparison of preparation techniques for common titanium alloy powders制备技术原材料粒径分布/μm 优点缺点HDH 海绵钛>5 工艺简单,成本低粉末球形度低,氧含量高EIGA 棒材 0~300 粒径分布较广,细粉末收得率高有空心粉和卫星粉PREP 棒材50~300 球形度高,无卫星粉和空心粉粉末粒径较大,细粉收得率低PA 丝材10~150 细粉收得率高,少卫星粉原材料昂贵,有空心粉3 粉末性能的优化途径现有的氢化脱氢法、气体雾化法、离心雾化法和等离子雾化法等方法都能成功制备出3D打印用钛合金粉末,但仍存在粉末粒径大、杂质含量高、制粉效率低等问题. 针对这些问题,国内外学者进行大量研究,发现改进工艺方法、调整工艺参数、等离子球化处理等手段都能一定程度改善粉末缺陷,提高粉末性能.3.1 改进工艺方法合理地改进原有制备工艺方法,能有效地降低粉末中的杂质含量,减小粉末的粉末粒径大小,改善表面形貌从而提高粉末的质量. 刘立新等[40]研究发现在粉碎后的氢化钛粉末中,加入适量高活性的金属还原剂与之均匀混合,再进行高温脱氢工序制备钛合金粉末,可有效地降低粉末的氧含量,提高粉末的纯度. 何薇等[41]采用NaCl溶液包覆粉碎后的氢化钛粉末,在其表面形成5~10 nm的隔离层,再对其进行球磨、脱氢,可制备出中径为6.16 μm的超细不规则粉末. 这一改进虽微量增加了钛粉中的氧含量,但成功抑制了脱氢过程中因加热而导致的粉末长大.盛艳伟等[42]将传统的HDH法与等离子球化技术相结合,以高频等离子体对不规则TiH2粉末进行脱氢、球化处理,得到粒径为20~50 μm的表面形貌良好的球形钛粉. 这一改进有效减小了粉末的粒径大小及分布,大大提高了粉末的球形度. 聂祚仁等[43]改变传统HDH法的球磨粉碎方式,通过电弧电解熔化、蒸发钛原料,同时通入氢气与之反应生成氢化钛纳米颗粒,再通过离心造粒得到微米级氢化钛粉末,最后加热脱氢制得平均粒径在30~80 μm的低氧球形钛合金粉末. 这一改进成功地降低粉末的粒径大小和粒径分布,提高了粉末的表面形貌.3.2 调整工艺参数工艺参数是钛合金粉末制备技术中的一个关键因素,合理地调整工艺参数能在一定程度上优化粉末的性能. 魏明炜等[44]研究发现熔炼功率对EIGA法制备的TA15钛合金粉末的粒度大小、表面形貌、氧含量、空心粉比率等均有影响,合理设置工艺参数将功率参数从53 kW改为62 kW,可以让粉末平均粒径从141.8 μm降至103.5 μm,同时能减少粉末中的卫星粉比率,提高粉末的球形度. 戴煜等[45]研究发现,增大电极棒的直径和极限转速都能降低PREP法制备钛合金粉末的平均粒径,且二者同时增大时,效果可以叠加,最大可将粉末平均粒径从161.83 μm降至63.01 μm. W. Kreklewetz等[46]研究等离子雾化法制粉装置发现,改变丝材的直径、进给速度、入口气体压力、等离子体与丝材的距离和角度等因素,均可以有效提高粉末产量和细粉比率;此外,预热丝材原料也可以有效提高生产效率. F. Larouche等[47]研究发现,改变气体金属比G/M(从8.7增加到12.9)以及等离子枪与原料丝材的距离(从25 mm减到19 mm),可以将PA法制备的TC4粉末细粉率从39.9%提高到59.6%.3.3 等离子球化处理等离子球化处理是利用高温等离子体火炬将送入其中的粉末加热熔化,随后熔融的液滴在表面张力的作用下重新凝固形成球形粉末. 该技术主要用于改善粉末的表面形貌,也能一定程度上减少原粉末颗粒的孔隙和裂缝. 古忠涛等[48]研究发现,采用射频等离子技术对不规则的钛粉进行球化处理,可大幅提升粉末的表面形貌,同时使粉末的平均粒径小幅下降. 刘立新等[40]对HDH法制备的不规则粉末进行等离子球化处理发现,处理后的粉末表面形貌和松装密度大幅提升,粉末球形度达98%以上,粉末松装密度从1.383 g/cm3提升至3.09 g/cm3,同时粉末中的氧、氮、氢等杂质的含量均有所下降.4 结语经过几十年的努力,我国在氢化脱氢法、电极感应熔炼雾化法、等离子旋转电极法等制备技术方面已积累大量经验,但在等离子雾化技术方面还处于初级研发阶段. 总的来说,国内生产的钛合金粉末已能初步满足使用粗中粒径粉末的3D打印要求,但在细粒径钛合金粉末制备上仍存在氧含量高、不同批次粉末质量不稳定等问题. 未来钛合金粉末制备工作的重点是:(1) 加大对等离子雾化制粉技术的研究,突破国外的技术封锁;(2) 深入研究工艺和设备结构对制粉末过程的影响,解决不同批次粉末稳定性问题;(3) 研发拥有自主知识产权的制粉设备,降低现有粉末的生产成本.参考文献:【相关文献】[1]BHUSHAN B, CASPERS M. An overview of additive manufacturing (3D printing) for microfabrication [J]. Microsystem Technologies, 2017, 23(4): 1117-1124.[2]FRAZIER W E. Metal additive manufacturing: A review [J].Journal of Materials Engineering & Performance, 2014,23(6): 1917-1928.[3]BUSACHI A, ERKOYUNCU J, COLEGROVE P, et al. A review of additive manufacturing technology and cost estimation techniques for the defence sector [J]. CIRP Journal of Manufacturing Science and Technology, 2017, 19: 117-128.[4]YAKOUT M, ELBESTAWI M A, VELDHUIS S C. A review of metal additive manufacturing technologies [J]. Solid State Phenomena, 2018, 278: 1-14.[5]MURR L E, MARTINEZ E, AMATO K N, et al. Fabrication of metal and alloy components by additive manu-facturing: examples of 3D materials science [J]. Journal of Materials Research & Technology, 2012, 1(1): 42-54.[6]王延庆,沈竞兴,吴海全. 3D打印材料应用和研究现状[J]. 航空材料学报, 2016, 36(4):89-98.WANG Y Q, SHEN J X, WU H Q. Application and research status of alternative materials for 3D printing technology [J]. Journal of Aeronautical Materials, 2016, 36(4):89-98.[7]NGO T D, KASHANI A, IMBALZANO G, et al. Additive manufacturing (3D printing):a review of materials, methods,applications and challenges [J]. Composites Part B Engineering, 2018, 143: 172-196.[8]王华明. 高性能金属构件增材制造技术开启国防制造新篇章[J]. 国防制造技术, 2013(3): 5-7.[9]KARLSSON J, SNIS A, ENGQVIST H, et al. Characterization and comparison of materials produced by electron beam melting (EBM) of two different Ti-6Al-4V powder fractions[J]. Journal of Materials Processing Tech, 2013, 213(12):2109-2118.[10]BANERJEE D, WILLIAMS J C. Perspectives on titanium science and technology [J]. Acta Materialia, 2013, 61(3):844-879.[11]CUI C, HU B M, ZHAO L, et al. Titanium alloy production technology, market prospects and industry development [J].Materials & Design, 2011, 32(3): 1684-1691. [12]赵霄昊,左振博,韩志宇,等. 粉末钛合金3D打印技术研究进展[J]. 材料导报, 2016,30(23): 120-126.ZHAO X H, ZUO Z B, HAN Z Y, et al. A Review on Powder Titanium Alloy 3D Printing Technology [J]. Materials Review, 2016, 30(23): 120-126.[13]杨启云,吴玉道,仲守亮. 3D打印专用金属粉末的特性研究[C]// 全国粉末冶金学术会议暨海峡两岸粉末冶金技术研讨会. 武汉: [出版者不详], 2015.[14]汤慧萍,王建. 金属3D打印中的材料问题及对策[C]//全国粉末冶金学术会议暨海峡两岸粉末冶金技术研讨会.武汉: [出版者不详], 2015.[15]杨光,冯志国,钦兰云,等. 成形气氛中氧含量对激光沉积TA15钛合金组织及力学性能的影响[J]. 稀有金属材料与工程, 2017, 46(6): 1650-1655.YANG G, FENG Z G, QIN L Y,et al. Effects of oxygen content in the argon shielding gas on microstructure and mechanical properties of laser deposition manufactured ta15 titanium alloy [J]. Rare Metal Materials and Engineering,2017, 46(6): 1650-1655.。
3D打印技术发展现状与未来趋势随着科技的不断进步和日新月异的创新,各行业都在不断寻找新的突破和发展机会。
而3D打印技术作为一项颠覆性的技术,正在改变着各个行业的生产方式和模式。
本文将探讨3D打印技术的现状以及未来的发展趋势。
一、3D打印技术的现状3D打印技术最早出现于20世纪80年代,但直到近年来才逐渐为人所熟知和应用。
目前,3D打印技术已经被广泛应用于诸多领域,包括医疗、汽车、航空航天、制造业等。
在医疗领域,3D打印技术已经成功应用于个性化医疗器械、人体器官的重建以及手术模拟等方面。
在汽车制造领域,3D打印技术可以实现快速、精准地制造零部件,提高生产效率和产品质量。
在航空航天领域,3D打印技术可以打印出复杂的结构件,减轻了航空器的重量,提高了飞行性能。
然而,目前的3D打印技术还存在一些限制和挑战。
首先是打印速度较慢,尤其在打印大型复杂零部件时,时间成本较高。
其次是材料选择受限,目前可用的3D打印材料种类有限,无法满足一些特殊需求。
再次是设备成本较高,对于一些中小企业来说,经济实力有限。
这些问题使得3D打印技术在某些行业中应用受到限制。
二、3D打印技术的未来趋势尽管存在一些问题,但随着科技的进步和研究的深入,3D打印技术有着广阔的发展前景。
首先,打印速度将会得到提升。
目前,研究人员正在致力于开发更快速的3D打印技术,以满足大规模生产的需求。
利用高效的打印头和更快的打印方法,打印速度将会得到显著提升。
其次,材料选择将会更加丰富。
随着材料科学的发展,研究人员正在不断开发出适用于3D打印的新材料。
例如,金属3D打印技术已经取得了重大突破,可以打印出金属零件,扩大了应用领域。
此外,生物材料和可降解材料的研究也在不断推进,有望在医疗领域实现更多的应用。
再次,设备成本将会逐渐下降。
随着3D打印技术的普及和市场竞争的加剧,设备价格将会逐渐降低。
这将使得更多的中小企业能够负担得起3D打印设备,推动技术在各个行业中的广泛应用。
高性能钛合金在医疗器械中的应用高性能钛合金在医疗器械中的应用钛合金作为一种具有优异性能的金属材料,在医疗器械中有着广泛的应用。
其具有低密度、高强度、优良的生物相容性和抗腐蚀性等特点,使其成为医疗器械制造领域的首选材料之一。
本文将重点介绍高性能钛合金在医疗器械中的应用,并探讨其在医疗器械领域中的优势和前景。
一、高性能钛合金的特点1. 低密度和高强度:高性能钛合金的密度相对较低,约为4.5g/cm³,比一般的钢材低约40%。
尽管密度低,但其强度却相当高,通常具有超过1000MPa的抗拉强度,远超其他金属材料。
2. 优良的生物相容性:钛合金在人体内有良好的生物相容性,能够减少刺激和反应,不会引起排异反应或过敏。
这使得钛合金成为制造骨科和牙科植入物等医疗器械的理想材料。
3. 抗腐蚀性能好:由于钛合金具有优良的抗腐蚀性,不易生锈或腐蚀,适用于长期接触体液和体内组织的医疗器械制造。
4. 方便加工与成型:高性能钛合金具有良好的可塑性,在制造过程中可以进行锻造、轧制、拉伸等加工工艺,成型性能好,可以制造出复杂形状的医疗器械。
二、高性能钛合金在医疗器械中的应用1. 非成骨植入物:由于高性能钛合金具有优良的生物相容性和抗腐蚀性,可以用于制造骨盆、髋关节和骨板等骨科植入物。
其低密度和高强度使其成为人工关节或骨修复装置的理想选材之一。
此外,由于钛合金的可塑性和成型性能好,还能够制造出适合于不同患者的个性化植入物,提高手术成功率和患者的生活质量。
2. 成骨植入物:钛合金也可以用于制造牙科植入物,如种植体和骨替代物。
具有高强度和抗腐蚀性的钛合金可以在口腔环境下长期应用,不会引起炎症或导致牙周疾病,可以提供牙齿稳定和美观的效果。
3. 外科器械:钛合金在外科器械制造中也有广泛应用,如手术刀、镊子、针线、植骨针等。
相对于传统的不锈钢器械,钛合金器械不仅具有更轻的重量,还具有更好的生物相容性和抗腐蚀性,不会对人体组织造成损伤。
Material Sciences 材料科学, 2017, 7(3), 275-282 Published Online May 2017 in Hans. http://www.hanspub.org/journal/ms https://doi.org/10.12677/ms.2017.73038
文章引用: 王沛, 黄正华, 戚文军, 周永欣, 徐春杰, 刘建业, 胡高峰. 钛合金3D打印技术的应用及研究现状[J]. 材料科学, 2017, 7(3): 275-282. https://doi.org/10.12677/ms.2017.73038
Application and Research Progress on Titanium Alloy Printed by 3D Technology
Pei Wang1,2, Zhenghua Huang2*, Wenjun Qi2, Yongxin Zhou1, Chunjie Xu1, Jianye Liu3,4, Gaofeng Hu3,4
1School of Materials Science and Engineering, Xi’an University of Technology, Xi’an Shaanxi
2Guangdong Provincial Key Laboratory for Technology and Application of Metal Toughening, Guangdong
Institute of Materials and Processing, Guangzhou Guangdong 3Guangdong Hantang Quantum Photoelectric Technology Co. Ltd, Zhongshan Guangdong
4Guangdong Hanbang Laser Technology Co. Ltd, Zhongshan Guangdong
Received: Apr. 27th, 2017; accepted: May 17th, 2017; published: May 22nd, 2017
Abstract First, the principle of 3D printing technology of metal is described in the paper. Then, the applica-tion fields of titanium alloy printed by 3D technology in recent years including dental and ortho-pedics, prototype and mould, aerospace and so on are introduced. Afterwards, the research progress on titanium alloy printed by 3D technology all over the world is summarized. Finally, its future is looked forward to.
Keywords Titanium Alloy, 3D Printing Technology, Application Field, Research Progress
钛合金3D打印技术的应用及研究现状 王 沛1,2,黄正华2*,戚文军2,周永欣1,徐春杰1,刘建业3,4,胡高峰3,4 1西安理工大学 材料科学与工程学院,陕西 西安
2广东省材料与加工研究所 广东省金属强韧化技术与应用重点实验室,广东 广州
3广东汉唐量子光电科技有限公司,广东 中山
4广东汉邦激光科技有限公司,广东 中山
收稿日期:2017年4月27日;录用日期:2017年5月17日;发布日期:2017年5月22日 *通讯作者。 王沛 等 276 摘 要 本文首先阐述了金属3D打印技术的原理,接着介绍了近年来3D打印钛合金的应用领域,包括牙科和骨科、手板和模具、航空航天等领域,然后综述了国内外钛合金3D打印研究现状,最后展望未来。
关键词 钛合金,3D打印技术,应用领域,研究现状
Copyright © 2017 by authors and Hans Publishers Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/
1. 引言 近年来,3D打印技术成为一种新兴制造方式,其基本原理为“分层制造、逐层叠加”[1]。与传统制造不同,3D打印制造过程是将数字化信息技术与制造技术相融合,根据任意零件三维模型快速制造任意复杂形状3D物体,无需专用模具,在金属成形过程中发挥着不可替代的作用。3D打印的应用优势主要体现在:1) 易用性高;2) 工艺周期短、精度高,实现零件的近净成形,解决传统制造开模耗费时间长的问题;3) 成本低。3D打印材料包括金属材料和高分子材料等,而目前国内外金属材料中钛合金的3D打印研究与应用最为广泛。为此,本文将综述3D打印钛合金的应用领域和近年来国内外钛合金3D打印的研究现状,并展望未来。
2. 金属3D打印技术的概述 3D打印又叫增材制造、快速成型等,其中光固化成型(Stereo Lithography Apparatus, SLA) [2]、叠成实体制造(Laminated Object Manufacturing, LOM) [3]、激光选区烧结(Selective Laser Sintering, SLS) [4]和熔融沉积制造(Fused Deposition Modeling, FDM) [5]等技术较为成熟。近年来,随着激光选区熔化(Selective Laser Melting, SLM)制造和电子束选区熔化(Electron Beam Selective Melting, EBSM)制造等金属直接制造技术的迅速发展,定制化功能件的直接制造技术亦越来越成熟,定制化功能件成型材料、工艺和设备已成为研究热点。 选区激光熔化SLM是指在氩气或氮气保护下用激光束照射金属粉末,粉末在吸收激光能量之后快速熔化并凝固,以此冶金结合、致密组织、高精度的金属功能件,是目前国内外研究和生产最常用的3D打印方法[6]。选区激光熔化原理如图1(a)所示。选区激光熔化技术是一种冷加工工艺,后期需进行热处理提高制件性能,加工件在加工时需有与所打印材料膨胀率和导热性相似的材料作为基板[7]。电子束选区熔化EBSM是指在真空条件下使电子枪中产生的电子经加速、聚集,形成高能量大密度的电子束并轰击被加工部位粉末,使该部位的粉末熔化与凝固的制件工艺。电子束选区熔化原理如图1(b)所示。电子束选区熔化是一种热加工工艺,大多数材料无需热处理,且加工件可自由脱离加工底板,一般用于加工简单及小型的零件[8]。 在技术应用领域方面,金属3D打印近年来在医学领域有着快速的发展,应用最多的科室主要集中在牙科和骨科。材料主要以钛合金、不锈钢等与人体组织相容性较好的生物材料。直接生产零件更是在 王沛 等 277 (a) (b) Figure 1. Principle diagrams of selective laser melting (a) and electron beam selective melting (b) 图1. 选区激光熔化(a)和电子束选区熔化(b)的原理图
3D打印领域飞速发展,使用金属粉末SLM设备直接制造零件是全世界在3D打印领域最为重视的领域,因其可以加工传统方法难以加工、甚至无法加工的较为复杂的零部件,所以在直接生产零件方面更具备无与伦比的优越性。
2. 钛合金3D打印技术的应用领域 2.1. 牙科和骨科领域 钛合金具有耐高温、高耐腐蚀性、高强度、低密度、生物相容性等优点[9] [10] [11]。在用于人体硬组织修复的金属材料中,Ti的弹性模量与人体硬组织最接近,约80~110 GPa,这可减轻金属种植体与骨组织之间的机械不适应性[12]。因此,钛合金在医疗领域有着广泛的应用前景,越来越受到医师和患者的重视。 最初应用于临床的钛合金主要以纯Ti和Ti6Al4V为代表。20世纪中期,美国和英国首先将纯Ti应用于生物体中,中国于70年代初开始把人工钛髋关节应用于临床[13]。纯Ti在生理环境中具有良好的耐腐蚀性能,但其强度和耐磨损性能较差,从而限制了其在承力部位的应用,主要用于口腔修复及承力较小部位的骨替换[14]。与纯Ti相比,Ti-6Al-4V合金具有较高的强度和较好的加工性能,最初是为航天应用设计,到20世纪70年代后期被广泛用作外科修复材料,如颅骨修复片、骨板等(见图2)。长期以来,国内外的研究主要以Ti6Al4V为主,但因Al、V等是对人体有害的元素,因而研究方向转至不含Al和V的新型β型钛合金,如TiZrNbSn [15]、Ti24Nb4Zr7.6Sn [16]等。 现今,骨科适合3D技术的有骨科手术辅助和骨置换体[17]。手术辅助是指根据病患损伤或需要去除部分数据打印出假骨和辅助导板,使用假骨和导板模拟手术研究切割位、打孔位、打孔深度等,大幅度提高手术质量降低手术风险和难度,缩减手术时间,减轻病患痛苦。骨假体利用3D打印技术直接制造成轻量化多孔骨,利于假骨活体化,可在空隙内再生人体组织细胞,且定制的假体假骨跟患者身体所长形态相同,最终手术完成后达到接近人体真骨的效果[18]。2014年4月,第四军医大学西京医院骨科郭征教授带领的团队完成亚洲首例钛合金3D打印骨盆肿瘤假体植入术,使患者巨大肿瘤切除后的缺失骨盆得到精细化完美重建,解决了复杂部位骨肿瘤切除后骨缺损个体化重建的临床难题[19]。2015年7月,第四军医大学唐都医院胸腔外科为一名胸骨肿瘤患者成功实施了3D打印钛合金胸骨植入手术,术后患者恢复良好,无任何并发症出现,这也成为世界首例3D打印钛合金胸骨植入术[20]。