遥感图像处理光学处理和校正
- 格式:ppt
- 大小:4.10 MB
- 文档页数:64
遥感数字图像处理——几何精校正1.实验原理、目的和内容1.1.实验原理遥感图像纠正是通过计算机对图像每个像素逐个地解析纠正处理完成的,所以能够较清晰地改正线性和非线性变形误差。
几何精纠正的基本原理是回避成像的空间几何过程,直接利用地面的控制点数据对遥感图像的几何畸变本身进行数学模拟,并且认为遥感图像的总体畸变可以看做是挤压、扭曲、缩放、偏移以及更高次的基本变形的综合作用的结果。
因此,校正前后的图像相应点的坐标关系可以用一个适当的数学模型来表示。
1.2.实验目的采用图像-地图纠正法,对TM遥感图像进行几何精纠正,即把不同传感器具有几何精度的图像和地图中的相同地物元素精确地彼此匹配、叠加在一起,以满足集成的需要。
1.3.实验内容对南京市TM图像AA进行几何精纠正。
2.实验过程2.1.地图投影信息的获取进行精校正之前,应该获取标准图像的投影信息,利用ArcGIS或MapInfo软件即可查看投影类型为:GK Zone 20(Pulkovo 1942)2.2.显示需要校正的图像利用Envi导入图像,RGB合成,选择4,3,2波段即可2.3.选择控制点本实验中采用图像-地图纠正,在图像窗口中选择地面控制点(GCP),然后在地图窗口中找到同名地物点,记录点位的坐标信息(见图1)。
首先,进行图像-地图纠正,Map——Registration——Select GCPs:Image to Map。
再在Image to Map Registration窗口中,根据参照的矢量地图选择Gk Zone 20(Pulkova 1942),确定后,弹出Ground Control Points Selection窗口。
在添加地面控制点:在图像窗口中移动光标,确定GCP的位置,然后在矢量地图窗口中确定同名地物点,并将其坐标拷贝到本窗口中的地图坐标文本框中。
确认合适后,单击Add Point产生一个同名地物点。
(见图2)依次进行下去,直到数量复合要求,一般需要6个以上,并且分布均衡(图3)选取控制点完毕后进行纠正,由于选取控制点数量较少,因此使用一阶多项式的方法,重采样方法为最临近采样。
遥感图像处理软件的使用教程与技巧分享导语:遥感图像处理软件是现代遥感技术的重要工具,能够从卫星或航空平台获取的遥感图像中提取出各种地物和环境信息。
本文将介绍遥感图像处理软件的使用教程与技巧,帮助读者更好地理解和应用这一工具。
一、遥感图像处理软件的基本功能1. 遥感图像查看:通过软件可以打开各类遥感图像文件,如Landsat、Sentinel 等,实现对图像的快速浏览和查看。
2. 遥感图像预处理:对图像进行预处理是使用遥感图像处理软件的第一步,包括图像校正、辐射校正、大气校正等,以保证后续处理的准确性和可靠性。
3. 遥感图像分类:遥感图像分类是遥感图像处理软件的核心功能之一,它可以对图像进行自动或半自动的分类、聚类等分析,在地表覆盖类型提取、资源管理等方面具有广泛应用。
4. 遥感图像变化检测:通过比较不同时刻的遥感图像,可以发现地表特征的变化情况,这对于环境监测、城市规划等具有重要价值。
5. 遥感图像融合:将多个不同波段或不同分辨率的遥感图像融合在一起,可以获得更丰富的信息和更高的图像分辨率。
二、遥感图像处理软件的实际应用1. 农业资源调查与管理:遥感图像处理软件可以通过对农田遥感图像的分类、变化检测等分析,实现对农作物种植面积、生长情况等的遥感监测和评估,为农业资源调查与管理提供科学依据。
2. 自然资源与环境保护:遥感图像处理软件可以对林地、湿地、水体等自然资源进行分类与监测,对环境保护和可持续发展具有重要意义。
比如,通过遥感图像变化检测可以及时发现并监测到森林砍伐、湿地退化等问题。
3. 城市规划与土地利用:遥感图像处理软件可以对城市及周边地区的遥感图像进行分类和分析,提供土地利用类型、建设用地变化等信息,为城市规划和土地管理决策提供依据。
4. 灾害监测与防控:遥感图像处理软件可以通过对地震、洪水、火灾等灾害事件的遥感图像分析,实现灾害监测、评估和预警,为防控工作提供技术支持。
三、遥感图像处理软件的使用技巧1. 选择合适的图像预处理方法:不同的遥感图像具有不同的特点和应用要求,因此在进行图像预处理时,要根据具体情况选择合适的方法,如大气校正模型、辐射校正方法等。
北京揽宇方圆信息技术有限公司遥感卫星影像辐射校正、几何校正、正射校正的方法a)辐射校正:进入传感器的辐射强度反映在图像上就是亮度值(灰度值)。
辐射强度越大,亮度值(灰度值)越大。
该值主要受两个物理量影像:一是太阳辐射照射到地面的辐射强度,二是地物的光谱反射率。
当太阳辐射相同时,图像上像元亮度值差异直接反映了地物目标光谱反射率的差异。
但实际测量时,辐射强度值还受到其他因素的影响而发生改变。
这一改变就是需要校正的部分,故称为辐射畸变。
引起辐射畸变有两个原因:一是传感器本身的误差;二是大气对辐射的影响。
仪器引起的误差是由于多个检测器之间存在的差异,以及仪器系统工作产生的误差,这导致了接收的图像不均匀,产生条纹和“噪声”。
一般来说,这种畸变在数据生产过程中已经由生产单位根据传感器参数进行了校正,不需要用户自行校正。
b)几何校正:当遥感图像在几何位置上发生了变化,产生诸如行列不均匀,像元大小与地面大小对应不准确,地物形状不规则变化等畸变时,即说明遥感影像发生了几何畸变。
遥感影像的总体变形(相对与地面真实形态而言)是平移、缩放、旋转、偏扭、弯曲及其他变形综合作用的结果。
产生畸变的图像给定量分析及位置配准造成困难,因此遥感数据接收后,首先由接收部门进行校正,这种校正往往根据遥感平台、地球、传感器的各种参数进行处理。
而用户拿到这种产品后,由于使用目的的不同或者投影及比例尺的不同,仍然需要作进一步的几何校正。
几何校正一般包括精校正和正射校正。
精校正:利用地面控制点对由于各种因素引起的遥感图像的几何畸变进行校正。
简单理解:和地形图的校正,校正后有准确的经纬度信息。
精校正适合于在地面平坦,不需要考虑高程信息,或地面起伏较大而无高程信息的情况。
有时根据遥感平台的各种参数已做过一次校正,但仍不能满足要求,就可以用该方法作遥感影像相对于地面坐标的配准校正,遥感影像相对于地图投影坐标系统的配准校正,以及不同类型或不同时相的遥感数据之间的几何配准和复合分析,以得到比较精确的结果。
第1篇一、实验背景与目的随着遥感技术的不断发展,遥感影像已成为获取地球表面信息的重要手段。
遥感影像处理是对遥感影像进行一系列技术操作,以提高影像质量、提取有用信息的过程。
本实验旨在通过实践操作,让学生掌握遥感影像处理的基本原理和常用方法,提高学生对遥感影像数据的应用能力。
二、实验内容与步骤本次实验主要包括以下内容:1. 数据准备:获取实验所需的遥感影像数据,包括光学影像、红外影像等。
2. 影像预处理:对原始遥感影像进行辐射校正、几何校正、图像增强等处理。
3. 影像分割:对预处理后的影像进行分割,提取感兴趣的目标区域。
4. 影像分类:对分割后的影像进行分类,识别不同的地物类型。
5. 结果分析:对分类结果进行分析,评估分类精度。
三、实验步骤1. 数据准备- 获取实验所需的遥感影像数据,包括光学影像、红外影像等。
- 确保影像数据具有较好的质量和分辨率。
2. 影像预处理- 辐射校正:对原始遥感影像进行辐射校正,消除大气、传感器等因素对影像辐射强度的影响。
- 几何校正:对原始遥感影像进行几何校正,消除地形起伏、地球曲率等因素对影像几何形状的影响。
- 图像增强:对预处理后的影像进行图像增强,提高影像对比度、清晰度等。
3. 影像分割- 选择合适的分割方法,如基于阈值分割、基于区域生长分割、基于边缘检测分割等。
- 对预处理后的影像进行分割,提取感兴趣的目标区域。
4. 影像分类- 选择合适的分类方法,如监督分类、非监督分类等。
- 对分割后的影像进行分类,识别不同的地物类型。
5. 结果分析- 对分类结果进行分析,评估分类精度。
- 分析分类结果中存在的问题,并提出改进措施。
四、实验结果与分析1. 影像预处理结果- 经过辐射校正、几何校正和图像增强处理后,遥感影像的质量得到显著提高,对比度、清晰度等指标明显改善。
2. 影像分割结果- 根据实验所采用的分割方法,成功提取了感兴趣的目标区域,分割效果较好。
3. 影像分类结果- 通过选择合适的分类方法,对分割后的影像进行分类,成功识别了不同的地物类型。
1技术路线DOM 技术流程图数据查询数据获取数据预处理质量检查整理提交 原始数据正射校正平面控制高程数据辐射校正辐射定标大气校正配准融合整体镶嵌范围裁切高景一号MUX 影像大气校正植被指数多样性选择NDVI/EVI/NDWI/...光谱特征影像集随机森林分类研究区作物分类结果精度评价训练样本验证样本影像预处理辐射定标影像融合纹理特征多样性选择Mean/Entropy/ASM/...GLCM 计算高景一号Pan 影像灰度级量化...纹理特征影像集影像集验证样本集训练样本集实地调查高分解译样本筛选样本数据影像数据分类土地利用分类技术流程遥感图像水体粗提取先验阈值区间ROI 区域图像分割阈值水陆二值图边界膨胀直方图统计图像分割最小连通区去除水体掩膜图像水体分布提取技术流程模块开发数据处理数据获取水面实测光谱数据光学遥感数据实测水质参数数据水体固有光学量数据光谱特征分析固有光学特性分析基于水面实测光谱的水质参数反演算法基于光学遥感数据的水质参数反演策略最优反演算法精度评价水质参数反演软件模块开发反演算法水体光学分类大气校正水体提取水质参数反演技术路线图建筑物提取提取技术路线图2影像正射校正方案2.1正射校正原理遥感影像获取的过程中会受到各种不定因素的影响,如:传感器的成像方式、地形起伏、地球曲率、大气折射等,导致图像本身的几何位置、形状、尺寸等与其对应的地物不一致,发生变形。
通过一定的数学模型来改正和消除遥感影像产生的变形的过程称为几何校正。
通常情况下,对影像进行粗略几何校正时,需要利用卫星等提供的一些轨道、姿态参数以及与地面系统相关的处理参数来进行校正。
当精度要求较高时需对影像进行几何精校正,即利用地面控制点及畸变模型对原始影像进行校正。
经过粗校正之后接收到的全色影像数据中的大部分地物已经实现了重叠,只有个别仍存在偏差。
此时,需要利用DEM 数据对全色影像做正射校正,生成全色影像的正射影像图。
正射校正是将中心投影的影像进行纠正形成正射投影影像的过程,先把影像化分为许多小区域,之后根据相关参数按照对应的中心投影构像方程或者特定的数学模型用控制点进行解算,得到解算模型后利用数字高程模型对原始遥感影像进行校正,最终获得数字正射影像。
遥感图像处理的基本原理遥感技术是通过获取地球表面的遥感图像信息来了解和分析地球表面的自然和人文现象。
遥感图像的处理是遥感应用中不可或缺的一环,它是将大量数据转化为可视化、可理解和可分析的图像的过程。
这篇文章将介绍遥感图像处理的基本原理。
一、遥感图像采集遥感图像的采集是第一步,主要有三种方式:航空遥感、卫星遥感和地面遥感。
其中,卫星遥感是最常用的方式。
它通过搭载在卫星上的遥感传感器对地球表面进行观测,获取图像数据。
由于卫星可以全天候、高频率、无间断地获取遥感图像数据,因此卫星遥感具有广阔的应用前景。
二、遥感图像预处理在获取遥感图像数据后,需要进行预处理操作。
常见的预处理方法包括辐射定标、大气校正和几何纠正。
辐射定标是将传感器采集的数字计数转换成地表反射率或辐射亮度温度等物理量。
大气校正是消除大气对遥感图像的影响。
几何纠正是将图像的像素位置从像素坐标系转换到地理坐标系,以便精确地定位图像中的物体。
三、遥感图像增强遥感图像增强是将遥感图像中潜在信息提取出来的一种方法。
常用的增强方法包括比例拉伸、直方图均衡、高斯滤波和维纳滤波等。
比例拉伸可以增强图像的对比度,使图像更加清晰。
直方图均衡可以使图像亮度分布更加均匀,从而提高图像细节的可见度。
高斯滤波和维纳滤波可以消除图像中的噪声。
四、遥感图像分类遥感图像分类是将遥感图像中不同的像素归为不同的类别的一种方法。
常见的分类方法包括最大似然分类、决策树分类和支持向量机分类等。
最大似然分类是一种统计学分类方法,将每个像素归为出现概率最大的类别。
决策树分类是一种基于特征选择的分类方法,通过不断地对数据集进行分割,逐层得到决策树。
支持向量机分类是一种基于最大间隔的分类方法,将不同类别的数据通过高维空间的超平面分割。
五、遥感图像分析遥感图像分析主要是在已经分类的图像上分析和提取图像中的空间信息和属性信息。
常用的分析方法包括目标检测和变化检测。
目标检测是指在遥感图像中检测出目标物体的位置、大小和形状等信息。