毕业设计模板(正文)外文翻译正文
- 格式:doc
- 大小:130.00 KB
- 文档页数:5
金融体制、融资约束与投资——来自OECD的实证分析R.SemenovDepartment of Economics,University of Nijmegen,Nijmegen(荷兰内梅亨大学,经济学院)这篇论文考查了OECD的11个国家中现金流量对企业投资的影响.我们发现不同国家之间投资对企业内部可获取资金的敏感性具有显著差异,并且银企之间具有明显的紧密关系的国家的敏感性比银企之间具有公平关系的国家的低.同时,我们发现融资约束与整体金融发展指标不存在关系.我们的结论与资本市场信息和激励问题对企业投资具有重要作用这种观点一致,并且紧密的银企关系会减少这些问题从而增加企业获取外部融资的渠道。
一、引言各个国家的企业在显著不同的金融体制下运行。
金融发展水平的差别(例如,相对GDP的信用额度和相对GDP的相应股票市场的资本化程度),在所有者和管理者关系、企业和债权人的模式中,企业控制的市场活动水平可以很好地被记录.在完美资本市场,对于具有正的净现值投资机会的企业将一直获得资金。
然而,经济理论表明市场摩擦,诸如信息不对称和激励问题会使获得外部资本更加昂贵,并且具有盈利投资机会的企业不一定能够获取所需资本.这表明融资要素,例如内部产生资金数量、新债务和权益的可得性,共同决定了企业的投资决策.现今已经有大量考查外部资金可得性对投资决策的影响的实证资料(可参考,例如Fazzari(1998)、 Hoshi(1991)、 Chapman(1996)、Samuel(1998)).大多数研究结果表明金融变量例如现金流量有助于解释企业的投资水平。
这项研究结果解释表明企业投资受限于外部资金的可得性。
很多模型强调运行正常的金融中介和金融市场有助于改善信息不对称和交易成本,减缓不对称问题,从而促使储蓄资金投着长期和高回报的项目,并且提高资源的有效配置(参看Levine(1997)的评论文章)。
因而我们预期用于更加发达的金融体制的国家的企业将更容易获得外部融资.几位学者已经指出建立企业和金融中介机构可进一步缓解金融市场摩擦。
编号:毕业设计(论文)外文翻译(原文)院(系):桂林电子科技大学职业技术学院专业:工商企业管理学生姓名:方智立学号:010*********指导教师单位:桂林电子科技大学职业技术学院姓名:朱芸芸职称:讲师2016年 4 月 1 日Marketing Strategy Analysis of SportsAbstractSports market is a special industry market, which for provide exchange of sports tangible products and services market. Sports market including fixed type, such as sports facilities, sports goods market, Mobile market, such as all kinds of sports service provided by the fitness club. Sports tourism and advertising business, sports goods should be consumers to accept, and occupy a larger market. If success of the sports marketing involves many factors. According to the specific characteristics of sports marketing, develop and implement appropriate marketing strategy is very important. Sports marketing strategy is to the sports business units within a certain period or stage marketing campaign's overall development plan of decision making.This paper argues that the marketing strategy can be further subdivided into market positioning strategy, market timing strategy, market entry strategy, market development strategy, market competition strategy, Choose a strategy, must conform to the enterprise's own competitive position, product status, to grasp the market opportunity, determined according to the demands of consumers. In this paper, the sports market segmentation marketing strategy for the market positioning strategy, market timing strategy, market entry strategy, market development strategy, market competition strategy, and discusses the sports marketing how to carry out strategic choice.Keywords: Sports bazaar ; Sports marketing; Marketing strategy1.Sports marketing strategy and characteristics1.1Sports marketing strategyStrategy refers to the planning of overall and profound things. Sports marketing strategy refers to the commodity business units under the guidance of modern marketing concept, to achieve its economic goal for enterprise in a certain period of the overall design and planning of marketing development.Inan increasingly competitive market circumstances, sports business units in order to effectively carry out business activities, to achieve its business objectives, must understand and based on the characteristics of marketing concepts and strategies, and Target the demand of the market, comprehensive analysis and marketing of various environmental factors, choose effective market strategy in the background.1.2The characteristics of the sports marketing strategySports marketing strategy has sports business units within a certain period or stage marketing campaign's overall development plan of decision making. It has the characteristics of the following.(1) Overall importance.Sports marketing strategy is a matter of the global business units, including two aspects the meaning of this global:on the one hand, Sports marketing strategy is the overall design, the development of the business units, including overall planning and the overall strategy and means.On the other hand, Sports marketing strategy decision is a matter of global business units and their all-round development in the future.(2)Secular.Sports marketing strategy is really about the future of sports business units: to achieve the goals of sports marketing strategy, will make the sports business units to produce qualitative leap, but this is not usually that can be done in the short term.Important, sports business units of marketing strategy on the strategic period not only very important to enterprise's survival and development, but also to the long-term development of enterprises play an important role.(3) Systematicness.Sports systemic marketing refers to business units, each part of the work of each link is a contact each other, are closely related to the organic unity of the whole.System have layers, the size and the primary and secondary division, at the next lower level to obey and serve at the next higher level.For a certain sports and business operation entity, the strategy of the whole enterprise as a whole system engineering to overall arrangement, the pursuit of the overall development of the biggest benefits.(4)Adaptability.Sports marketing adaptability, refers to the sports marketing and business operation entity is easily affected by external and internal environment, when the environment changes, sports business units made to adapt themselves to the new environment of the characteristics of rapid response.Sports marketing of the external environment including the market demand, political or economic situation changes, policy and law changes. Similarly, sports business entities internal conditions change will impact on marketing.(5)Risk.Due to sports marketing strategy is the business unit for the marketing activities during the period development collection of expected decision, and this decision is absolutely impossible in various conditions fully mature and information fully, make and sports market, especially the intangible product variety and complexity of the market, make sports marketing strategy has the characteristics of uncertainty and instantaneity, many market opportunities tend to be a passes, no longer to, opportunity and risk coexist.2.Sports marketing strategy comprisedand choiceSports marketing strategies mainly include market positioning strategy, market timing strategy, market entry strategy, market development strategy, market competition strategy.2.1 Market orientation strategyMarket positioning refers to the sports business units according to the condition of market competition situation and its own resources, establish and develop differentiated competitive advantage, to make their own products in the consumer formed in the difference between each product unique image and is superior to the competition.This unique image can be tangible or intangible.Enterprise after analyzing the market environment, should highlight its own market advantage, establish market position, Which companies need to know on a certain level of paper generalizes, consumers mind what is the best sports products as expected.2.2 Market entry policyMarket entry strategy is the sports business units at the right time to capture the target market, how to appropriately in the two aspects of production capacity and sales ability to make reliable measures and guarantee, to ensure the decision-making of sports products successfully enter the market.Its content mainly includes the production capacity of decision-making and sales ability to form two aspects.(1) Capacity Decision. In the necessary time, sports business entities formtargetmarket capacity, is one of the important conditions to achieve market goal.Regardless of whether they are sports tangible products and intangible products, generally there are two alternative strategies.①Independent development strategy refers to both tangible products, the development of sports and development of sports intangible products. All on its own strength to expand production scale, enhance the comprehensive production capacity or adjust the structure of the comprehensive production capacity of enterprise, to adapt the demand of product combination structure. ②Comprehensive development strategy, mainly depend on the sports business units of the external forces, namely, through joint, collaboration, subcontract, form a new comprehensive production capacity. Due to participating in planning, control, coordination, etc, are more difficult. Therefore, sports business units must be good at optimizing collaborator, deal with the various cooperation of responsibility, right and benefit, to maintain good relations of cooperation.(2) Sales ability decision. A sports product to enter and occupy the market, production enterprise must have the necessary sales ability and the ability to penetrate the market.Sales ability decision-making main consideration circulation channels and sales, product should be considered when making decisions, market, enterprise, social environment and the factors such as economic effect.2.3 Market development strategyMarket development strategy refers to the perspective of market prospects, the choice of market development means, usually includes two kinds of intensive development and diversified development main form.(1)Intensive development.When some kind of sports products in the market has the potential of further development, the choice of market penetration, product development and market development of three kinds of intensive development form. As the tangible products market, in sports and intangible products are common market and applicable.①Market penetration. on the basis of the existing market scale, increase the sales of existing products. Can use a variety of measures, consolidate old customers, increase the new user. ②Product development Is through developing and improving existing products, make its have some new properties and USES, meet the social demand more. ③market development. Refers to an enterprise that open up new product sales market, in order to increase sales.(2) Diversified development.Diversity is also called the diversification, basically have concentricity scattered scattered, horizontal dispersion and the integrityof three. ①Concentricity is sports business unit USES the original dispersed development technology and the characteristics, with its as the core, the development use different structure similar products. ②Scattered level of sexual development.Was used in the original market advantage, has occupied the market development of technology, nature and purpose of different products. For example, Sports club olicy makers, can through the player transfer channels, to sell players, profit.Others use their sports club or the player's social awareness to participate in the sales promotion of goods, in order to obtain profits. ③Integrity of dispersed development. Refers to the sports business units to expand the business into its original business, technology, market and the product has no connection in the industry. Such as the sports department construction and run a catering and service hotels, hotels, entertainment city, charge for parking lot, etc., is the form of scattered holistic development. Implement the diversification development, can improve the ability of sports business units to adapt to the environment, reduce the risk of a single business, at the same time, may be more fully use of all kinds of resources within the enterprise, make its have more potential development opportunities. However, the development of decentralized often leads to complication of operation and management, and business operation entities such as diversifying some problems.2.4Strategic Marketing CompetitionThe rules of the development of the market is superior bad discard, its characteristic is the petition can promote the economic development of the enterprise and the improvement of economic benefits.Enterprises should establish a clear concept of competition, flexible use of price and non-price competition means, take a man without I have, people have my good, good people knew, new I cheap, cheap I turn the principle and method of making enterprise competitive strategy, must accomplish know fairly well the competition environment and competition situation, can with ease.Enterprise competition environment factors mainly refers to the enterprise in addition to the social and cultural environment stress factors of various aspects, such as management scientist professor Michael porter of Harvard University famous the competitive offer slightly above, an enterprise usually exist competition pressure from five aspects, namely the industry competition pressure, potential to join the pressure from the industry, suppliers forward pressure (by providing raw materials or semi-finished products, to develop into their production products), buyers.(1) The overall competitive strategy. Under different conditions, the enterprise facing the pressure of competition is different, the analysis of the pressure of competition is to understand the purpose of each kind of competition situation of power, so as to make effective competition strategy.Under normal circumstances, the sports business units of competition strategy in general have a low cost strategy, product differentiation strategy and intensive strategy. ①low-cost strategy. Low cost strategy is to point to in under the premise of guarantee the quality of products and services, efforts to reduce the cost of production and sales so that the enterprise product prices lower than competitors' prices, with rapidly expanding sales increase market share. ②Product differentiation strategies. Product differentiation strategy is to point to create a unique characteristic of the enterprise products, to develop unique products or marketing programs, for in such aspects as product or service than competitors are unique. Thus to obtain the difference advantage.The United States, for example, "NIKE" brand sports shoes, NIKE production due to the appearance of novel design, the innovation of the use function and unique, and exquisite packaging, etc., although the price is surprisingly expensive, but occupies considerable market in China, the teenagers are very loving. ③Intensive strategy. Intensive strategy refers to the enterprises focus on one or several market segments provide the most effective service, better meet certain customers with different needs, so as to strive for the local competitive advantage. It is little different from the above three kinds of overall competition strategy, successfully implement these three strategies need different resources and decision-making, also should have different requirements on organization and management.(2) The competitive strategy of enterprises of different competitive position. Where the status of enterprise in market competition, the enterprise can be divided into: market leader, market challenger, market follower. Different competitive position of enterprises, should choose different market competitive strategy.①Dominant market competition strategy. Market power refers to the related products has the highest market share. Such as the current market position and stable dominated by clothing JinMeiLong, "ADIDAS", they are price changes, new product development, sales channel width and promotional efforts in a dominant position, recognized by other sports enterprises. ②The challenger market competition strategy. Market challenger refers to those in a secondary position in the market of the enterprise, such as "lining" brand garment enterprises .Market challenger to choosechallenge object is closely related to the strategic target, for a same object has different goals and strategies Such as attack market leader to gain the market share and product advantage ;Attack power with yourself quite seize its market position; Attacking small businesses taking their customers even small business itself."Lining" to win market price advantage to the international brand, with product quality advantages to gain "anta" challenger "peak" brand's market share. ③Followers of the market competition strategy. Market followers is to point to in a secondary position, under the conditions of "coexistence" market for as much as possible the benefit of the enterprise. Market followers don't need a lot of money, less risky and can obtain high profits, so many enterprises adopt this strategy, especially the sort of small or no fame and status of sports clothing enterprises. As the current sports "philharmonic" brand clothing enterprise in the enterprise.Reference[1] LiJianJun,WangCuiHua:The Research on Marketing Environment Enterprise of Things for Sports Use in China[J] Journal of NanJing institute of sport (social science edition) 2013.(10),36 ~ 48.[2] Discuss Sports market, products and marketing characteristics. [J] journal of xi ' an institute of physical education,2012.(3)101 ~109.[3] HuZhengMing Ed. Marketing Management[M].Shandong people's publishing house,2012.302 ~325.[4] [US]Kotler write. YuLiJun translate. Introduction to Marketing[M].Huaxia Publishing House,2011.333~389.[5] ZhangTongYao.Application areas to promote the marketing advantage analysis of third party logistics[J].Market of China,2010(3)128 ~136.[6] WangHuaiShu.The influence of the logistics quality of marketing[J].Teacher's Journal,2010(3)31 ~38.[7] WangChenWen.Shallow theory of logistics strategy in the role of marketing management[J].Chemical Enterprise Management,2009(7)175 ~178.。
A Design and Implementation of Active NetworkSocket ProgrammingK.L. Eddie Law, Roy LeungThe Edward S. Rogers Sr. Department of Electrical and Computer EngineeringUniversity of TorontoToronto, Canadaeddie@, roy.leung@utoronto.caAbstract—The concept of programmable nodes and active networks introduces programmability into communication networks. Code and data can be sent and modified on their ways to destinations. Recently, various research groups have designed and implemented their own design platforms. Each design has its own benefits and drawbacks. Moreover, there exists an interoperability problem among platforms. As a result, we introduce a concept that is similar to the network socket programming. We intentionally establish a set of simple interfaces for programming active applications. This set of interfaces, known as Active Network Socket Programming (ANSP), will be working on top of all other execution environments in future. Therefore, the ANSP offers a concept that is similar to “write once, run everywhere.” It is an open programming model that active applications can work on all execution environments. It solves the heterogeneity within active networks. This is especially useful when active applications need to access all regions within a heterogeneous network to deploy special service at critical points or to monitor the performance of the entire networks. Instead of introducing a new platform, our approach provides a thin, transparent layer on top of existing environments that can be easily installed for all active applications.Keywords-active networks; application programming interface; active network socket programming;I. I NTRODUCTIONIn 1990, Clark and Tennenhouse [1] proposed a design framework for introducing new network protocols for the Internet. Since the publication of that position paper, active network design framework [2, 3, 10] has slowly taken shape in the late 1990s. The active network paradigm allows program code and data to be delivered simultaneously on the Internet. Moreover, they may get executed and modified on their ways to their destinations. At the moment, there is a global active network backbone, the ABone, for experiments on active networks. Apart from the immaturity of the executing platform, the primary hindrance on the deployment of active networks on the Internet is more on the commercially related issues. For example, a vendor may hesitate to allow network routers to run some unknown programs that may affect their expected routing performance. As a result, alternatives were proposed to allow active network concept to operate on the Internet, such as the application layer active networking (ALAN) project [4] from the European research community. In the ALAN project, there are active server systems located at different places in the networks and active applications are allowed to run in these servers at the application layer. Another potential approach from the network service provider is to offer active network service as the premium service class in the networks. This service class should provide the best Quality of Service (QoS), and allow the access of computing facility in routers. With this approach, the network service providers can create a new source of income.The research in active networks has been progressing steadily. Since active networks introduce programmability on the Internet, appropriate executing platforms for the active applications to execute should be established. These operating platforms are known as execution environments (EEs) and a few of them have been created, e.g., the Active Signaling Protocol (ASP) [12] and the Active Network Transport System (ANTS) [11]. Hence, different active applications can be implemented to test the active networking concept.With these EEs, some experiments have been carried out to examine the active network concept, for example, the mobile networks [5], web proxies [6], and multicast routers [7]. Active networks introduce a lot of program flexibility and extensibility in networks. Several research groups have proposed various designs of execution environments to offer network computation within routers. Their performance and potential benefits to existing infrastructure are being evaluated [8, 9]. Unfortunately, they seldom concern the interoperability problems when the active networks consist of multiple execution environments. For example, there are three EEs in ABone. Active applications written for one particular EE cannot be operated on other platforms. This introduces another problem of resources partitioning for different EEs to operate. Moreover, there are always some critical network applications that need to run under all network routers, such as collecting information and deploying service at critical points to monitor the networks.In this paper, a framework known as Active Network Socket Programming (ANSP) model is proposed to work with all EEs. It offers the following primary objectives.• One single programming interface is introduced for writing active applications.• Since ANSP offers the programming interface, the design of EE can be made independent of the ANSP.This enables a transparency in developing andenhancing future execution environments.• ANSP addresses the interoperability issues among different execution environments.• Through the design of ANSP, the pros and cons of different EEs will be gained. This may help design abetter EE with improved performance in future.The primary objective of the ANSP is to enable all active applications that are written in ANSP can operate in the ABone testbed . While the proposed ANSP framework is essential in unifying the network environments, we believe that the availability of different environments is beneficial in the development of a better execution environment in future. ANSP is not intended to replace all existing environments, but to enable the studies of new network services which are orthogonal to the designs of execution environments. Therefore, ANSP is designed to be a thin and transparent layer on top of all execution environments. Currently, its deployment relies on automatic code loading with the underlying environments. As a result, the deployment of ANSP at a router is optional and does not require any change to the execution environments.II. D ESIGN I SSUES ON ANSPThe ANSP unifies existing programming interfaces among all EEs. Conceptually, the design of ANSP is similar to the middleware design that offers proper translation mechanisms to different EEs. The provisioning of a unified interface is only one part of the whole ANSP platform. There are many other issues that need to be considered. Apart from translating a set of programming interfaces to other executable calls in different EEs, there are other design issues that should be covered, e.g., • a unified thread library handles thread operations regardless of the thread libraries used in the EEs;• a global soft-store allows information sharing among capsules that may execute over different environmentsat a given router;• a unified addressing scheme used across different environments; more importantly, a routing informationexchange mechanism should be designed across EEs toobtain a global view of the unified networks;• a programming model that should be independent to any programming languages in active networks;• and finally, a translation mechanism to hide the heterogeneity of capsule header structures.A. Heterogeneity in programming modelEach execution environment provides various abstractions for its services and resources in the form of program calls. The model consists of a set of well-defined components, each of them has its own programming interfaces. For the abstractions, capsule-based programming model [10] is the most popular design in active networks. It is used in ANTS [11] and ASP [12], and they are being supported in ABone. Although they are developed based on the same capsule model, their respective components and interfaces are different. Therefore, programs written in one EE cannot run in anther EE. The conceptual views of the programming models in ANTS and ASP are shown in Figure 1.There are three distinct components in ANTS: application, capsule, and execution environment. There exist user interfaces for the active applications at only the source and destination routers. Then the users can specify their customized actions to the networks. According to the program function, the applications send one or more capsules to carry out the operations. Both applications and capsules operate on top of an execution environment that exports an interface to its internal programming resources. Capsule executes its program at each router it has visited. When it arrives at its destination, the application at destination may either reply it with another capsule or presents this arrival event to the user. One drawback with ANTS is that it only allows “bootstrap” application.Figure 1. Programming Models in ASP and ANTS.In contrast, ASP does not limit its users to run “bootstrap” applications. Its program interfaces are different from ANTS, but there are also has three components in ASP: application client, environment, and AAContext. The application client can run on active or non-active host. It can start an active application by simply sending a request message to the EE. The client presents information to users and allows its users to trigger actions at a nearby active router. AAContext is the core of the network service and its specification is divided into two parts. One part specifies its actions at its source and destination routers. Its role is similar to that of the application in ANTS, except that it does not provide a direct interface with the user. The other part defines its actions when it runs inside the active networks and it is similar to the functional behaviors of a capsule in ANTS.In order to deal with the heterogeneity of these two models, ANSP needs to introduce a new set of programming interfaces and map its interfaces and execution model to those within the routers’ EEs.B. Unified Thread LibraryEach execution environment must ensure the isolation of instance executions, so they do not affect each other or accessThe authors appreciate the Nortel Institute for Telecommunications (NIT) at the University of Toronto to allow them to access the computing facilitiesothers’ information. There are various ways to enforce the access control. One simple way is to have one virtual machine for one instance of active applications. This relies on the security design in the virtual machines to isolate services. ANTS is one example that is using this method. Nevertheless, the use of multiple virtual machines requires relatively large amount of resources and may be inefficient in some cases. Therefore, certain environments, such as ASP, allow network services to run within a virtual machine but restrict the use of their services to a limited set of libraries in their packages. For instance, ASP provides its thread library to enforce access control. Because of the differences in these types of thread mechanism, ANSP devises a new thread library to allow uniform accesses to different thread mechanisms.C. Soft-StoreSoft-store allows capsule to insert and retrieve information at a router, thus allowing more than one capsules to exchange information within a network. However, problem arises when a network service can execute under different environments within a router. The problem occurs especially when a network service inserts its soft-store information in one environment and retrieves its data at a later time in another environment at the same router. Due to the fact that execution environments are not allowed to exchange information, the network service cannot retrieve its previous data. Therefore, our ANSP framework needs to take into account of this problem and provides soft-store mechanism that allows universal access of its data at each router.D. Global View of a Unified NetworkWhen an active application is written with ANSP, it can execute on different environment seamlessly. The previously smaller and partitioned networks based on different EEs can now be merging into one large active network. It is then necessary to advise the network topology across the networks. However, different execution environments have different addressing schemes and proprietary routing protocols. In order to merge these partitions together, ANSP must provide a new unified addressing scheme. This new scheme should be interpretable by any environments through appropriate translations with the ANSP. Upon defining the new addressing scheme, a new routing protocol should be designed to operate among environments to exchange topology information. This allows each environment in a network to have a complete view of its network topology.E. Language-Independent ModelExecution environment can be programmed in any programming language. One of the most commonly used languages is Java [13] due to its dynamic code loading capability. In fact, both ANTS and ASP are developed in Java. Nevertheless, the active network architecture shown in Figure 2 does not restrict the use of additional environments that are developed in other languages. For instance, the active network daemon, anted, in Abone provides a workspace to execute multiple execution environments within a router. PLAN, for example, is implemented in Ocaml that will be deployable on ABone in future. Although the current active network is designed to deploy multiple environments that can be in any programming languages, there lacks the tool to allow active applications to run seamlessly upon these environments. Hence, one of the issues that ANSP needs to address is to design a programming model that can work with different programming languages. Although our current prototype only considers ANTS and ASP in its design, PLAN will be the next target to address the programming language issue and to improve the design of ANSP.Figure 2. ANSP Framework Model.F. Heterogeneity of Capsule Header StructureThe structures of the capsule headers are different in different EEs. They carries capsule-related information, for example, the capsule types, sources and destinations. This information is important when certain decision needs to be made within its target environment. A unified model should allow its program code to be executed on different environments. However, the capsule header prevents different environments to interpret its information successfully. Therefore, ANSP should carry out appropriate translation to the header information before the target environment receives this capsule.III. ANSP P ROGRAMMING M ODELWe have outlined the design issues encountered with the ANSP. In the following, the design of the programming model in ANSP will be discussed. This proposed framework provides a set of unified programming interfaces that allows active applications to work on all execution environments. The framework is shown in Figure 2. It is composed of two layers integrated within the active network architecture. These two layers can operate independently without the other layer. The upper layer provides a unified programming model to active applications. The lower layer provides appropriate translation procedure to the ANSP applications when it is processed by different environments. This service is necessary because each environment has its own header definition.The ANSP framework provides a set of programming calls which are abstractions of ANSP services and resources. A capsule-based model is used for ANSP, and it is currently extended to map to other capsule-based models used in ANTSand ASP. The mapping possibility to other models remains as our future works. Hence, the mapping technique in ANSP allows any ANSP applications to access the same programming resources in different environments through a single set of interfaces. The mapping has to be done in a consistent and transparent manner. Therefore, the ANSP appears as an execution environment that provides a complete set of functionalities to active applications. While in fact, it is an overlay structure that makes use of the services provided from the underlying environments. In the following, the high-level functional descriptions of the ANSP model are described. Then, the implementations will be discussed. The ANSP programming model is based upon the interactions between four components: application client , application stub , capsule , and active service base.Figure 3. Information Flow with the ANSP.•Application Client : In a typical scenario, an active application requires some means to present information to its users, e.g., the state of the networks. A graphical user interface (GUI) is designed to operate with the application client if the ANSP runs on a non-active host.•Application Stub : When an application starts, it activates the application client to create a new instance of application stub at its near-by active node. There are two responsibilities for the application stub. One of them is to receive users’ instructions from the application client. Another one is to receive incoming capsules from networks and to perform appropriate actions. Typically, there are two types of actions, thatare, to reply or relay in capsules through the networks, or to notify the users regarding the incoming capsule. •Capsule : An active application may contain several capsule types. Each of them carries program code (also referred to as forwarding routine). Since the application defines a protocol to specify the interactions among capsules as well as the application stubs. Every capsule executes its forwarding routine at each router it visits along the path between the source and destination.•Active Service Base : An active service base is designed to export routers’ environments’ services and execute program calls from application stubs and capsules from different EEs. The base is loaded automatically at each router whenever a capsule arrives.The interactions among components within ANSP are shown in Figure 3. The designs of some key components in the ANSP will be discussed in the following subsections. A. Capsule (ANSPCapsule)ANSPXdr decode () ANSPXdr encode () int length ()Boolean execute ()New types of capsule are created by extending the abstract class ANSPCapsule . New extensions are required to define their own forwarding routines as well as their serialization procedures. These methods are indicated below:The execution of a capsule in ANSP is listed below. It is similar to the process in ANTS.1. A capsule is in serial binary representation before it issent to the network. When an active router receives a byte sequence, it invokes decode() to convert the sequence into a capsule. 2. The router invokes the forwarding routine of thecapsule, execute(). 3. When the capsule has finished its job and forwardsitself to its next hop by calling send(), this call implicitly invokes encode() to convert the capsule into a new serial byte representation. length() isused inside the call of encode() to determine the length of the resulting byte sequence. ANSP provides a XDR library called ANSPXdr to ease the jobs of encoding and decoding.B. Active Service Base (ANSPBase)In an active node, the Active Service Base provides a unified interface to export the available resources in EEs for the rest of the ANSP components. The services may include thread management, node query, and soft-store operation, as shown in Table 1.TABLE I. ACTIVE SERVICE BASE FUNCTION CALLSFunction Definition Descriptionboolean send (Capsule, Address) Transmit a capsule towards its destination using the routing table of theunderlying environment.ANSPAddress getLocalHost () Return address of the local host as an ANSPAddress structure. This isuseful when a capsule wants to check its current location.boolean isLocal (ANSPAddress) Return true if its input argument matches the local host’s address andreturn false otherwise.createThread () Create a new thread that is a class ofANSPThreadInterface (discussed later in Section VIA “Unified Thread Abstraction”).putSStore (key, Object) Object getSStore (key) removeSStore (key)The soft-store operations are provided by putSStore(), getSSTore(), and removeSStore(), and they put, retrieve, and remove data respectively. forName (PathName) Supported in ANSP to retrieve a classobject corresponding to the given path name in its argument. This code retrieval may rely on the code loading mechanism in the environment whennecessary.C. Application Client (ANSPClient)boolean start (args[])boolean start (args[],runningEEs) boolean start (args[],startClient)boolean start (args[],startClient, runningEE)Application Client is an interface between users and the nearby active source router. It does the following responsibilities.1. Code registration: It may be necessary to specify thelocation and name of the application code in some execution environments, e.g., ANTS. 2. Application initialization: It includes selecting anexecution environment to execute the application among those are available at the source router. Each active application can create an application client instance by extending the abstract class, ANSPClient . The extension inherits a method, start(), to automatically handle both the registration and initialization processes. All overloaded versions of start() accept a list of arguments, args , that are passed to the application stub during its initialization. An optional argument called runningEEs allows an application client to select a particular set of environment variables, specified by a list of standardized numerical environment ID, the ANEP ID, to perform code registration. If this argument is not specified, the default setting can only include ANTS and ASP. D. Application Stub (ANSPApplication)receive (ANSPCapsule)Application stubs reside at the source and destination routers to initialize the ANSP application after the application clients complete the initialization and registration processes. It is responsible for receiving and serving capsules from the networks as well as actions requested from the clients. A new instance is created by extending the application client abstract class, ANSPApplication . This extension includes the definition of a handling routine called receive(), which is invoked when a stub receives a new capsule.IV. ANSP E XAMPLE : T RACE -R OUTEA testbed has been created to verify the design correctnessof ANSP in heterogeneous environments. There are three types of router setting on this testbed:1. Router that contains ANTS and a ANSP daemonrunning on behalf of ASP; 2. Router that contains ASP and a ANSP daemon thatruns on behalf of ANTS; 3. Router that contains both ASP and ANTS.The prototype is written in Java [11] with a traceroute testing program. The program records the execution environments of all intermediate routers that it has visited between the source and destination. It also measures the RTT between them. Figure 4 shows the GUI from the application client, and it finds three execution environments along the path: ASP, ANTS, and ASP. The execution sequence of the traceroute program is shown in Figure 5.Figure 4. The GUI for the TRACEROUTE Program.The TraceCapsule program code is created byextending the ANSPCapsule abstract class. When execute() starts, it checks the Boolean value of returning to determine if it is returning from the destination. It is set to true if TraceCapsule is traveling back to the source router; otherwise it is false . When traveling towards the destination, TraceCapsule keeps track of the environments and addresses of the routers it has visited in two arrays, path and trace , respectively. When it arrives at a new router, it calls addHop() to append the router address and its environment to these two arrays. When it finally arrives at the destination, it sets returning to false and forwards itself back to the source by calling send().When it returns to source, it invokes deliverToApp() to deliver itself to the application stub that has been running at the source. TraceCapsule carries information in its data field through the networks by executing encode() and decode(), which encapsulates and de-capsulates its data using External Data Representation (XDR) respectively. The syntax of ANSP XDR follows the syntax of XDR library from ANTS. length() in TraceCapsule returns the data length, or it can be calculated by using the primitive types in the XDRlibrary.Figure 5. Flow of the TRACEROUTE Capsules.V. C ONCLUSIONSIn this paper, we present a new unified layered architecture for active networks. The new model is known as Active Network Socket Programming (ANSP). It allows each active application to be written once and run on multiple environments in active networks. Our experiments successfully verify the design of ANSP architecture, and it has been successfully deployed to work harmoniously with ANTS and ASP without making any changes to their architectures. In fact, the unified programming interface layer is light-weighted and can be dynamically deployable upon request.R EFERENCES[1] D.D. Clark, D.L. Tennenhouse, “Architectural Considerations for a NewGeneration of Protocols,” in Proc. ACM Sigcomm’90, pp.200-208, 1990. [2] D. Tennenhouse, J. M. Smith, W. D. Sicoskie, D. J. Wetherall, and G. J.Minden, “A survey of active network research,” IEEE Communications Magazine , pp. 80-86, Jan 1997.[3] D. Wetherall, U. Legedza, and J. Guttag, “Introducing new internetservices: Why and how,” IEEE Network Magazine, July/August 1998. [4] M. Fry, A. Ghosh, “Application Layer Active Networking,” in ComputerNetworks , Vol.31, No.7, pp.655-667, 1999.[5] K. W. Chin, “An Investigation into The Application of Active Networksto Mobile Computing Environments”, Curtin University of Technology, March 2000.[6] S. Bhattacharjee, K. L. Calvert, and E. W. Zegura, “Self OrganizingWide-Area Network Caches”, Proc. IEEE INFOCOM ’98, San Francisco, CA, 29 March-2 April 1998.[7] L. H. Leman, S. J. Garland, and D. L. Tennenhouse, “Active ReliableMulticast”, Proc. IEEE INFOCOM ’98, San Francisco, CA, 29 March-2 April 1998.[8] D. Descasper, G. Parulkar, B. Plattner, “A Scalable, High PerformanceActive Network Node”, In IEEE Network, January/February 1999.[9] E. L. Nygren, S. J. Garland, and M. F. Kaashoek, “PAN: a high-performance active network node supporting multiple mobile code system”, In the Proceedings of the 2nd IEEE Conference on Open Architectures and Network Programming (OpenArch ’99), March 1999. [10] D. L. Tennenhouse, and D. J. Wetherall. “Towards an Active NetworkArchitecture”, In Proceeding of Multimedia Computing and Networking , January 1996.[11] D. J. Wetherall, J. V. Guttag, D. L. Tennenhouse, “ANTS: A toolkit forBuilding and Dynamically Deploying Network Protocols”, Open Architectures and Network Programming, 1998 IEEE , 1998 , Page(s): 117 –129.[12] B. Braden, A. Cerpa, T. Faber, B. Lindell, G. Phillips, and J. Kann.“Introduction to the ASP Execution Environment”: /active-signal/ARP/index.html .[13] “The java language: A white paper,” Tech. Rep., Sun Microsystems,1998.。
本科生毕业设计(论文)外文翻译外文原文题目:Real-time interactive optical micromanipulation of a mixture of high- and low-index particles中文翻译题目:高低折射率微粒混合物的实时交互式光学微操作毕业设计(论文)题目:阵列光镊软件控制系统设计姓名:任有健学院:生命学院班级:06210501指导教师:李勤高低折射率微粒混合物的实时交互式光学微操作Peter John Rodrigo Vincent Ricardo Daria Jesper Glückstad丹麦罗斯基勒DK-4000号,Risø国家实验室光学和等离子研究系jesper.gluckstad@risoe.dkhttp://www.risoe.dk/ofd/competence/ppo.htm摘要:本文论证一种对于胶体的实时交互式光学微操作的方法,胶体中包含两种折射率的微粒,与悬浮介质(0n )相比,分别低于(0L n n <)、高于(0H n n >)悬浮介质的折射率。
球形的高低折射率微粒在横平板上被一批捕获激光束生成的约束光势能捕获,捕获激光束的横剖面可以分为“礼帽形”和“圆环形”两种光强剖面。
这种应用方法在光学捕获的空间分布和个体几何学方面提供了广泛的可重构性。
我们以实验为基础证实了同时捕获又独立操作悬浮于水(0 1.33n =)中不同尺寸的球形碳酸钠微壳( 1.2L n ≈)和聚苯乙烯微珠( 1.57H n =)的独特性质。
©2004 美国光学学会光学分类与标引体系编码:(140.7010)捕获、(170.4520)光学限制与操作和(230.6120)空间光调制器。
1 引言光带有动量和角动量。
伴随于光与物质相互作用的动量转移为我们提供了在介观量级捕获和操作微粒的方法。
过去数十年中的巨大发展已经导致了在生物和物理领域常规光学捕获的各种应用以及下一代光学微操作体系的出现[1-5]。
毕业设计英文作文范文Title: The Importance of the Graduation Project in Academic Development。
The graduation project holds a pivotal role in the academic journey of students. It serves as a culmination of years of learning, a platform to showcase acquired skills, and an opportunity to delve deep into a specific subject matter. In this essay, I will elaborate on the significance of the graduation project and its impact on academic development.Firstly, the graduation project fosters independent learning and critical thinking skills. Unlike regular coursework where the parameters are often well-defined, the graduation project requires students to identify a research question or a problem statement independently. This process necessitates thorough literature review, data collection, and analysis, thereby honing research and analytical abilities. Moreover, formulating hypotheses, designingexperiments, or proposing solutions demand creativethinking and problem-solving skills, which are essentialfor academic and professional success.Secondly, the graduation project encourages interdisciplinary learning and collaboration. Many projects involve aspects from various fields, prompting students to integrate knowledge acquired from different courses. This interdisciplinary approach not only enriches the project but also broadens students' perspectives, enabling them to appreciate the interconnectedness of different subjects. Furthermore, collaboration with peers, mentors, or industry professionals enhances teamwork, communication, and project management skills, which are indispensable in any academic or professional setting.Additionally, the graduation project cultivates resilience and perseverance. Research, by its nature, is fraught with challenges, setbacks, and uncertainties. Students encounter obstacles ranging from experimental failures to data inconsistencies, requiring them to adapt, troubleshoot, and persist in the face of adversity.Overcoming these hurdles instills resilience and fortitude, attributes that are invaluable not only in academia but also in life.Moreover, the graduation project offers a platform for personal and intellectual growth. It provides students with the autonomy to explore topics of their interest, delveinto uncharted territories, and push the boundaries of knowledge. This journey of self-discovery not only enhances academic curiosity but also fosters a sense of ownership and accomplishment. Furthermore, presenting findings, defending arguments, and receiving feedback during project evaluations contribute to the development of presentation, communication, and critical evaluation skills, which are essential for academic and professional success.In conclusion, the graduation project is a cornerstone of academic development, offering students a unique opportunity to apply theoretical knowledge to real-world problems, fostering independent learning, interdisciplinary collaboration, resilience, and personal growth. By engaging in this endeavor, students not only demonstrate theiracademic prowess but also equip themselves with essential skills and attributes for future endeavors. Therefore, the graduation project stands as a testament to the culmination of academic journey and the beginning of a new chapter in students' intellectual and professional pursuits.。
毕业小作文排版模板## 英文回答:Introduction。
Graduation is a significant milestone in one's academic journey. It marks the culmination of years of hard work, dedication, and perseverance. As I stand at this transformative moment, I am overwhelmed with emotions of gratitude, accomplishment, and anticipation.Reflecting on my university experience, I am grateful for the invaluable knowledge and skills I have acquired. Through rigorous coursework, thought-provoking discussions, and hands-on research, I have developed a deep understanding of my chosen field. This intellectual foundation will serve as a cornerstone for my future endeavors.Beyond the classroom, university life has provided mewith a wealth of personal and social experiences. I have forged lifelong friendships, worked collaboratively on projects, and actively engaged in extracurricular activities. These experiences have fostered my critical thinking, communication, and leadership skills, preparing me for the challenges and opportunities that lie ahead.Challenges and Growth。
华南理工大学广州学院本科生毕业设计(论文)翻译英文原文名Review of Vibration Analysis Methods for Gearbox Diagnostics and Prognostics中文译名对变速箱振动分析的诊断和预测方法综述学院汽车工程学院专业班级车辆工程七班学生姓名刘嘉先学生学号201130085184指导教师李利平填写日期2015年3月15日英文原文版出处:Proceedings of the 54th Meeting of the Society for Machinery Failure Prevention Technology, Virginia Beach,V A, May 1-4,2000,p. 623-634译文成绩:指导教师(导师组长)签名:译文:简介特征提取技术在文献中有描述;然而,大多数人似乎掩盖所需的特定的预处理功能。
一些文件没有提供足够的细节重现他们的结果,并没有一个全面的比较传统的功能过渡齿轮箱数据。
常用术语,如“残差信号”,是指在不同的文件不同的技术.试图定义了状态维修社区中的常用术语和建立所需的特定的预处理加工特性。
本文的重点是对所使用的齿轮故障检测功能。
功能分为五个不同的组基于预处理的需要。
论文的第一部分将提供预处理流程的概述和其中每个特性计算的处理方案。
在下一节中,为特征提取技术描述,将更详细地讨论每一个功能。
最后一节将简要概述的宾夕法尼亚州立大学陆军研究实验室的CBM工具箱用于齿轮故障诊断。
特征提取概述许多类型的缺陷或损伤会增加机械振动水平。
这些振动水平,然后由加速度转换为电信号进行数据测量。
原则上,关于受监视的计算机的健康的信息被包含在这个振动签名。
因此,新的或当前振动签名可以与以前的签名进行比较,以确定该元件是否正常行为或显示故障的迹象。
在实践中,这种比较是不能奏效的。
由于大的变型中,签名的直接比较是困难的。
相反,一个涉及从所述振动署名数据特征提取更多有用的技术也可以使用。
CLUTCHThe engine produces the power to drive the vehicle. The drive line or drive train transfers the power of the engine to the wheels. The drive train consists of the parts from the back of the flywh eel to the wheels. These parts include the clutch, th e transmission, the drive shaft, and the final drive assembly (Figure 8-1).The clutch which includes the flywheel, clutch disc, pressure plate, springs, pressure plate cover and the linkage necessary to operate the clutch is a rotating mechanism between t he engine and the transmission (Figure 8-2). It operates through friction which comes from contact between the parts. That is the reason why the clutch is called a friction mechanism. After engagement, the clutch must continue to transmit all the engine torque to the transmission depending on the friction without slippage. The clutch is also used to disengage the engine from the drive train whenever the gears in the transmission are being shifted from one gear ratio to another.To start the engine or shift the gears, the driver has to depress the clutch pedal with the purpose of disengagement the transmission from the engine. At that time, the driven members connected to the transmission input shaft are either stationary or rotating at a speed that is slower or faster than the driving members connected to the engine crankshaft. There is no spring pressure on the clutch assembly parts. So there is no friction between the driving members and driven members. As the driver lets loose the clutch pedal, spring pre ssure increases on the clutch parts. Friction between the parts also increases. The pressure exerted by the springs on the driven members is controlled by the driver through the clutch pedal and linkage. The positive engagement of the driving and driven members is made possible by the friction between the surfaces of the members. When full spring pressure is applied, the speed of the driving and driven members should be the same. At themoment, the clutch must act as a solid coupling device and transmit al l engine power to the transmission, without slipping.However, the transmission should be engaged to the engine gradually in order to operate the car smoothly and minimize torsional shock on the drive train because an engine at idle just develops little power. Otherwise, the driving members are connected with the driven members too quickly and the engine would be stalled.The flywheel is a major part of the clutch. The flywheel mounts to the engine’s crankshaft and transmits engine torque to the clutch assembly. The flywheel, when coupled with the clutch disc and pressure plate makes and breaks the flow of power from the engine to the transmission.The flywheel provides a mounting location for the clutch assembly as well. When the clutch is applied, the flyw heel transfers engine torque to the clutch disc. Because of its weight, the flywheel helps to smooth engine operation. The flywheel also has a large ring gear at its outer edge, which engages with a pinion gear on the starter motor during engine cranking.The clutch disc fits between the flywheel and the pressure plate. The clutch disc has a splined hub that fits over splines on the transmission input shaft. A splined hub has grooves that match splines on the shaft. These splines fit in the grooves. Thus, t he two parts are held together. However, back-and-forth movement of the disc on the shaft is possible. Attached to the input shaft, At disc turns at the speed of the shaft.The clutch pressure plate is generally made of cast iron. It is round and about the same diameter as the clutch disc. One side of the pressure plate is machined smooth. This side will press the clutch disc facing are against the flywheel. The outer side has various shapes to facilitate attachment of spring and release mechanisms. The two primary types of pressure plate assemblies are coil spri ng assembly and diaphragmspring (Figure 8-3).In a coil spring clutch the pressure plate is backed by a number of coil springs and housed with them in a pressed-steel cover bolted to the flywheel. The springs push against the cover. Neither the driven plate nor the pressure plate is connected rigidly to the flywh eel and both can move either towards it or away. When the clutch pedal is depressed a thrust pad riding on a carbon or ball thrust bearing i s forced towards the flywheel. Levers pivoted so that they engage with the thrust pad at one end and the pressure plate at the other end pull the pressure plate ba ck against its springs. This releases pressure on the driven plate disconnecting the gearbox from the engine (Figure 8-4).Diaphragm spring pressure plate assemblies are widely used in most modern cars. The diaphragm spring is a single thin sheet of metal which yields when pressure is applied to it. When pressure is removed the metal springs back to its original shape. The centre portion of the diaphragm spring is slit into numerous fingers that act as release levers. When the clutch assembly rotates with the engine these weights are flung outwards by centrifugal forces and cause the levers to pre ss against the pressure plate. During disengagement of the clutch the fingers are moved forward by the release bearing. The spring pivots over the fulcrum ring and its outer rim moves away from the flywheel. The retracting spring pulls the pressure plate a way from the clutch plate thus disengaging the clutch (Figure 8-5).When engaged the release bearing and the fingers of the diaphragm spring move towards the transmission. As the diaphragm pivots over the pivot ring its outer rim forces the pressure plate against the clutch disc so that the clutch plate is engaged to the flywheel.The advantages of a diaphragm type pres sure plate assembly are its compactness, lower weight, fewer moving parts, less effort to engage, reduces rotational imbalance by providin g a balanced force around the pressure plate and less chances of clutch slippage.The clutch pedal is connected to the disengagement mechanism either by a cable or, more com monly, by a hydraulic system. Either way, pushing the pedal down operates the dise ngagement mechanism which puts pressure on the fingers of the clutch diaphragm via a release bearing and causes the diaphragm to release the clutch plate. With a hydraulic mechanism, the clutch pedal arm operates a piston in the clutch master cylinder. Thi s forces hydraulic fluid through a pipe to the clutch release cylinder where another piston operates the clutch disengagement mechanism. The alternative is to link the clutch pedal to the disengagement mechanism by a cable.The other parts including the cl utch fork, release bearing, bell-housing, bell housing cover, and pilot bushing are needed to couple and uncouple the transmission. The clutch fork, which connects to the linkage, actually operates the clutch. The release bearing fits between the clutch fork and the pressure plate assembly. The bell housing covers the clutch assembly. The bell housing c over fastens to the bottom of the bell housing. This removable cover allows a mechanic to inspect the clutch without removing the transmission and bell housing. A pilot bushing fits into the back of th e crankshaft and holds the transmission input shaft.A Torque ConverterThere are four components inside the very strong housing of the torque converter:1. Pump;2. Turbine;3. Stator;4. Transmission fluid.The housing of the torque converter is bolted to the flywheel of the engine, so it turns at what ever speed the engine is running at. The fins that make up the pump of the torque converter are at tached to the housing, so they also turn at the same speed a s the engine. The cutaway below shows how everything is connected inside the torque converter (Figure 8-6).The pump inside a torque converter is a type of centrifugal pump. As it spins, fluid is flung to the outside, much as the spin cycle of a washing machine flings water and clothes to the outside of the wash tub. As fluid is flung to the outside, a vacuum is created that draws more fluid in at the center.The fluid then enters the blades of the turbine, which is connected to the transmission. The turbin e causes the transmission to spin, which basically moves the car. The blades of the turbine are curved. This means that the fluid, which enters the turbine from the outside, has to change direction before it exits the center of the turbine. It is this directional change that causes the turbine to spin.The fluid exits the turbine at the center, moving in a different direction than when it entered. The fluid exits the turbine moving opposite the direction that the pump (and engine) is turning. If the fluid were allowed to hit the pump, it would slow the engine down, wasting power. This is why a torque converter has a stator.The stator resides in the very center of the torque converter. Its job is to redirect the fluid returning from the turbine before it hits the pump again. This dramatically increases the efficiency of the torque converter.The stator has a very aggressive blade design that almost completely reverses the direction of the fluid. A one-way clutch (inside the stator) connects the stator to a fixed shaft in the transmission. Because of this arrangement, the stator cannot spin with the fluid - i tc a n s p i n o n l y i n t h e o p p o s i t ed i re c t i o n,f o r c i ng th e f l ui d t oc h a n g ed i re c t i o n a s i t h i t s t h e s t a t o r b l a d e s.Something a little bit tricky happens when the car gets moving. There is a point, around 40 mph (64 kph), at which both the pump and the turbine are spinning at almost the same speed (the pump alwaysspins slightly faster). At this point, the fluid returns from the turbine, entering the pump already moving in the same direction as the pump, so the stator is not needed.Even though the turbine changes the direction of the fluid and flings it out the back, the fluid still ends up moving in the direction that the turbine is spinning because the turbin e is spinning faster in one direction than the fluid is being pumped in the other direction. If you were standing in the back of a pickup moving at 60 mph, and you threw a ball out the back of that pickup at 40 mph, the ball would still be going forward at 20 mph. This is similar to what happens in the tur bine: The fluid is being flung out the back in one direction, but not as fast as it was going to start with in the other direction.At these speeds, the fluid actually strikes the back sides of the stator blades, causing the stator to freewheel on its one-way clutch so it doesn’t hinder the fluid moving through it.Benefits and Weak PointsIn addition to the very important job of allowing a car come to a complete stop without stalling the engine; the torqu e converter actually gives the car more torque when you accelerate out of a Stop. Modern torque converters can multiply the torque of the engine by two to three times. This effect only happens when the engine is turning much faster than the transmission.At higher speeds, the transmission catches up to the engine, eventually moving at almost the same speed. Ideally, though, the transmission would move at exactly the same speed as the engine, because this difference in speed wastes power. This is part of th e reason why cars with automatic transmissions get worse gas mileage than cars with manual transmissions.To counter this effect, some cars have a torque converter with alockup clutch. When the two halves of the torque converter get up to speed, this clutch locks them together, eliminating the slip page and improving efficiency.。
毕业设计外文资料翻译学院:信息科学与工程学院专业:软件工程姓名: XXXXX学号: XXXXXXXXX外文出处: Think In Java (用外文写)附件: 1.外文资料翻译译文;2.外文原文。
附件1:外文资料翻译译文网络编程历史上的网络编程都倾向于困难、复杂,而且极易出错。
程序员必须掌握与网络有关的大量细节,有时甚至要对硬件有深刻的认识。
一般地,我们需要理解连网协议中不同的“层”(Layer)。
而且对于每个连网库,一般都包含了数量众多的函数,分别涉及信息块的连接、打包和拆包;这些块的来回运输;以及握手等等。
这是一项令人痛苦的工作。
但是,连网本身的概念并不是很难。
我们想获得位于其他地方某台机器上的信息,并把它们移到这儿;或者相反。
这与读写文件非常相似,只是文件存在于远程机器上,而且远程机器有权决定如何处理我们请求或者发送的数据。
Java最出色的一个地方就是它的“无痛苦连网”概念。
有关连网的基层细节已被尽可能地提取出去,并隐藏在JVM以及Java的本机安装系统里进行控制。
我们使用的编程模型是一个文件的模型;事实上,网络连接(一个“套接字”)已被封装到系统对象里,所以可象对其他数据流那样采用同样的方法调用。
除此以外,在我们处理另一个连网问题——同时控制多个网络连接——的时候,Java内建的多线程机制也是十分方便的。
本章将用一系列易懂的例子解释Java的连网支持。
15.1 机器的标识当然,为了分辨来自别处的一台机器,以及为了保证自己连接的是希望的那台机器,必须有一种机制能独一无二地标识出网络内的每台机器。
早期网络只解决了如何在本地网络环境中为机器提供唯一的名字。
但Java面向的是整个因特网,这要求用一种机制对来自世界各地的机器进行标识。
为达到这个目的,我们采用了IP(互联网地址)的概念。
IP以两种形式存在着:(1) 大家最熟悉的DNS(域名服务)形式。
我自己的域名是。
所以假定我在自己的域内有一台名为Opus的计算机,它的域名就可以是。
南京理工大学紫金学院毕业设计(论文)外文资料翻译系:机械系专业:车辆工程专业姓名:宋磊春学号:070102234外文出处:EDU_E_CAT_VBA_FF_V5R9(用外文写)附件:1。
外文资料翻译译文;2.外文原文.附件1:外文资料翻译译文CATIA V5 的自动化CATIA V5的自动化和脚本:在NT 和Unix上:脚本允许你用宏指令以非常简单的方式计划CATIA。
CATIA 使用在MS –VBScript中(V5.x中在NT和UNIX3。
0 )的共用部分来使得在两个平台上运行相同的宏。
在NT 平台上:自动化允许CATIA像Word/Excel或者Visual Basic程序那样与其他外用分享目标。
ATIA 能使用Word/Excel对象就像Word/Excel能使用CATIA 对象。
在Unix 平台上:CATIA将来的版本将允许从Java分享它的对象。
这将提供在Unix 和NT 之间的一个完美兼容。
CATIA V5 自动化:介绍(仅限NT)自动化允许在几个进程之间的联系:CATIA V5 在NT 上:接口COM:Visual Basic 脚本(对宏来说),Visual Basic 为应用(适合前:Word/Excel ),Visual Basic。
COM(零部件目标模型)是“微软“标准于几个应用程序之间的共享对象。
Automation 是一种“微软“技术,它使用一种解释环境中的COM对象。
ActiveX 组成部分是“微软“标准于几个应用程序之间的共享对象,即使在解释环境里。
OLE(对象的链接与嵌入)意思是资料可以在一个其他应用OLE的资料里连结并且可以被编辑的方法(在适当的位置编辑).在VBScript,VBA和Visual Basic之间的差别:Visual Basic(VB)是全部的版本。
它能产生独立的计划,它也能建立ActiveX 和服务器。
它可以被编辑。
VB中提供了一个补充文件名为“在线丛书“(VB的5。
附录G:英文翻译参考(要求学生完成与论文有关的外文资料中文字数5000字左右的英译汉,旨在培养学生利用外文资料开展研究工作的能力,为所选课题提供前沿参考资料。
)毕业设计(英文翻译)题目系别:专业:班级:学生姓名:学号:指导教师:一位从事质量管理的人约瑟夫·朱兰出生于圣诞夜,1904 在罗马尼亚的喀尔巴阡山脉山中。
他青年时期的村庄中贫穷、迷信和反犹太主义甚是猖獗。
1912年朱兰家搬到了明尼阿波尼斯州,虽然充满了危险,但是它却让一个男孩充满信心和希望。
从如此多了一个在质量观念的世界最好改革者之一。
在他90年的生活中,朱兰一直是一个精力充沛的思想者倡导者,推动着传统的质量思想向前走。
因为九岁就被雇用,朱兰表示在他的生活工作上永不停止。
记者:技术方面如何讲质量?朱兰:技术有不同方面:一、当然是精密。
物的对精密的需求像电子学、化学…我们看来它们似乎需要放大来说,和重要的原子尘的有关于质量。
要做到高精密具有相当大的挑战,而且我们已经遇见非常大的挑战。
另外的一个方面是可信度-没有失败。
当我们举例来说建立一个系统,同类空中交通管制的时候,我们不想要它失败。
我们必须把可信度建入系统。
因为我们投入很大的资金并依赖这些系统,系统非常复杂,这是逐渐增加的。
除此之外,有对公司的失败费用。
如果事物在领域中意外失败,可以说,它影响民众。
但是如果他们失败在内部,然后它影响公司的费用,而且已经试着发现这些费用在哪里和该如何免除他们。
因此那些是相当大的因素:精密、可信度和费用。
还有其它的,当然,但是我认为这些是主要的一些。
记者:据说是质量有在美国变成一种产业的可能?朱兰:资讯科技当然有。
已经有大的变化。
在世纪中初期当质量的一个想法到一个检验部门的时候,这有了分开的工作,东西被做坏之后。
检验是相当易错的程序,实际上。
而且无论如何,资讯科技在那天中相当花时间,直到某事已经被认为是否资讯科技是正确的。
应该强调计划,如此它不被错误首先订定。
华南理工大学广州学院本科生毕业设计(论文)翻译外文原文名Agency Cost under the Restriction of Free Cash Flow中文译名自由现金流量的限制下的代理成本学院管理学院专业班级会计学3班学生姓名陈洁玉学生学号200930191100指导教师余勍讲师填写日期2015年5月11日外文原文版出处:译文成绩:指导教师(导师组长)签名:译文:自由现金流量的限制下的代理成本摘要代理成本理论是资本结构理论的一个重要分支。
自由现金流代理成本有显着的影响。
在这两个领域相结合的研究,将有助于建立和扩大理论体系。
代理成本理论基础上,本研究首先分类自由现金流以及统计方法的特点。
此外,投资自由现金流代理成本的存在证明了模型。
自由现金流代理成本理论引入限制,分析表明,它会改变代理成本,进而将影响代理成本和资本结构之间的关系,最后,都会影响到最优资本结构点,以保持平衡。
具体地说,自由现金流增加,相应地,债务比例会降低。
关键词:资本结构,现金流,代理成本,非金钱利益1、介绍代理成本理论,金融契约理论,信号模型和新的啄食顺序理论,新的资本结构理论的主要分支。
财务con-道的理论侧重于限制股东的合同行为,解决股东和债权人之间的冲突。
信令模式和新的啄食顺序理论中心解决投资者和管理者之间的冲突。
这两种类型的冲突是在商业组织中的主要冲突。
代理成本理论认为,如何达到平衡这两种类型的冲突,资本结构是如何形成的,这是比前两次在一定程度上更多的理论更全面。
……Agency Cost under the Restriction of Free Cash FlowAbstractAgency cost theory is an important branch of capital structural theory. Free cash flow has significant impact on agency cost. The combination of research on these two fields would help to build and extend the theoretical system. Based on agency cost theory, the present study firstly categorized the characteristics of free cash flow as well as the statistical methodologies. Furthermore, the existence of investing free cash flow in agency cost was proved by a model. Then free cash flow was introduced into agency cost theory as restriction, the analysis shows that it will change agency cost, in turn, will have an impact on the relationship between agency cost and capital structure, finally, will influence the optimal capital structure point to maintain the equilibrium. Concretely, with the increasing free cash flow, correspondingly, debt proportion will decrease.Keywords:Capital Structure,Free Cash Flow,Agency Cost,Non-Pecuniary Benefit1. IntroductionAgency cost theory, financial contract theory, signaling model and new pecking order theory are the main branches of new capital structure theory. Financial con-tract theory focuses on restricting stockholders’ behavior by contract and solving the conflict between stockholders and creditors. Signaling model and new pecking order theory center on solving the conflict between investors and managers. These two types of conflict are the main conflict in business organizations. Agency cost theory considers how equilibrium is reached in both types of conflict and how capital structure is formed, which is more theory is more comprehensive than the previous two to some degree.……。
毕业设计(论文)外文资料翻译系别:专业:班级:姓名:学号:外文出处:附件: 1. 原文; 2。
译文2013年03月附件一:A Rapidly Deployable Manipulator SystemChristiaan J。
J。
Paredis, H. Benjamin Brown,Pradeep K. KhoslaAbstract:A rapidly deployable manipulator system combines the flexibility of reconfigurable modular hardware with modular programming tools,allowing the user to rapidly create a manipulator which is custom-tailored for a given task. This article describes two main aspects of such a system,namely,the Reconfigurable Modular Manipulator System (RMMS)hardware and the corresponding control software。
1 IntroductionRobot manipulators can be easily reprogrammed to perform different tasks, yet the range of tasks that can be performed by a manipulator is limited by mechanicalstructure。
Forexample,a manipulator well-suited for precise movement across the top of a table would probably no be capable of lifting heavy objects in the vertical direction. Therefore,to perform a given task,one needs to choose a manipulator with an appropriate mechanical structure.We propose the concept of a rapidly deployable manipulator system to address the above mentioned shortcomings of fixed configuration manipulators。
Bid Compensation Decision Model for Projectswith Costly Bid PreparationS.Ping Ho,A.M.ASCE 1Abstract:For projects with high bid preparation cost,it is often suggested that the owner should consider paying bid compensation to the most highly ranked unsuccessful bidders to stimulate extra effort or inputs in bid preparation.Whereas the underlying idea of using bid compensation is intuitively sound,there is no theoretical basis or empirical evidence for such suggestion.Because costly bid preparation often implies a larger project scale,the issue of bid compensation strategy is important to practitioners and an interest of study.This paper aims to study the impacts of bid compensation and to develop appropriate bid compensation strategies.Game theory is applied to analyze the behavioral dynamics between competing bidders and project owners.A bid compensation model based on game theoretic analysis is developed in this study.The model provides equilibrium solutions under bid compensation,quantitative formula,and quali-tative implications for the formation of bid compensation strategies.DOI:10.1061/(ASCE )0733-9364(2005)131:2(151)CE Database subject headings:Bids;Project management;Contracts;Decision making;Design/build;Build/Operate/Transfer;Construction industry .IntroductionAn often seen suggestion in practice for projects with high bid preparation cost is that the owner should consider paying bid compensation,also called a stipend or honorarium,to the unsuc-cessful bidders.For example,according to the Design–build Manual of Practice Document Number 201by Design–Build In-stitute of America (DBIA )(1996a ),it is suggested that that “the owner should consider paying a stipend or honorarium to the unsuccessful proposers”because “excessive submittal require-ments without some compensation is abusive to the design–build industry and discourages quality teams from participating.”In another publication by DBIA (1995),it is also stated that “it is strongly recommended that honorariums be offered to the unsuc-cessful proposers”and that “the provision of reasonable compen-sation will encourage the more sought-after design–build teams to apply and,if short listed,to make an extra effort in the prepara-tion of their proposal.”Whereas bid preparation costs depend on project scale,delivery method,and other factors,the cost of pre-paring a proposal is often relatively high in some particular project delivery schemes,such as design–build or build–operate–transfer (BOT )contracting.Plus,costly bid preparation often im-plying a large project scale,the issue of bid compensation strat-egy should be important to practitioners and of great interest of study.Existing research on the procurement process in constructionhas addressed the selection of projects that are appropriate for certain project delivery methods (Molenaar and Songer 1998;Molenaar and Gransberg 2001),the design–build project procure-ment processes (Songer et al.1994;Gransberg and Senadheera 1999;Palaneeswaran and Kumaraswamy 2000),and the BOT project procurement process (United Nations Industrial Develop-ment Organization 1996).However,the bid compensation strat-egy for projects with a relatively high bid preparation cost has not been studied.Among the issues over the bidder’s response to the owner’s procurement or bid compensation strategy,it is in own-er’s interest to understand how the owner can stimulate high-quality inputs or extra effort from the bidder during bid prepara-tion.Whereas the argument for using bid compensation is intuitively sound,there is no theoretical basis or empirical evi-dence for such an argument.Therefore,it is crucial to study under what conditions the bid compensation is effective,and how much compensation is adequate with respect to different bidding situa-tions.This paper focuses on theoretically studying the impacts of bid compensation and tries to develop appropriate compensation strategies for projects with a costly bid preparation.Game theory will be applied to analyze the behavioral dynamics between com-peting bidders.Based on the game theoretic analysis and numeric trials,a bid compensation model is developed.The model pro-vides a quantitative framework,as well as qualitative implica-tions,on bid compensation strategies.Research Methodology:Game TheoryGame theory can be defined as “the study of mathematical models of conflict and cooperation between intelligent rational decision-makers”(Myerson 1991).Among economic theories,game theory has been successfully applied to many important issues such as negotiations,finance,and imperfect markets.Game theory has also been applied to construction management in two areas.Ho (2001)applied game theory to analyze the information asymme-try problem during the procurement of a BOT project and its1Assistant Professor,Dept.of Civil Engineering,National Taiwan Univ.,Taipei 10617,Taiwan.E-mail:spingho@.twNote.Discussion open until July 1,2005.Separate discussions must be submitted for individual papers.To extend the closing date by one month,a written request must be filed with the ASCE Managing Editor.The manuscript for this paper was submitted for review and possible publication on March 5,2003;approved on March 1,2004.This paper is part of the Journal of Construction Engineering and Management ,V ol.131,No.2,February 1,2005.©ASCE,ISSN 0733-9364/2005/2-151–159/$25.00.D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y N A N J I N G U N I VE R S I T Y OF o n 01/06/14. C o p y r i g h t A S C E . F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .implication in project financing and government policy.Ho and Liu (2004)develop a game theoretic model for analyzing the behavioral dynamics of builders and owners in construction claims.In competitive bidding,the strategic interactions among competing bidders and that between bidders and owners are com-mon,and thus game theory is a natural tool to analyze the prob-lem of concern.A well-known example of a game is the “prisoner’s dilemma”shown in Fig.1.Two suspects are arrested and held in separate cells.If both of them confess,then they will be sentenced to jail for 6years.If neither confesses,each will be sentenced for only 1year.However,if one of them confesses and the other does not,then the honest one will be rewarded by being released (in jail for 0year )and the other will be punished for 9years in jail.Note that in each cell,the first number represents player No.1’s payoff and the second one represents player No.2’s.The prisoner’s dilemma is called a “static game,”in which they act simultaneously;i.e.,each player does not know the other player’s decision before the player makes the decision.If the payoff matrix shown in Fig.1is known to all players,then the payoff matrix is a “common knowledge”to all players and this game is called a game of “complete information.”Note that the players of a game are assumed to be rational;i.e.,to maximize their payoffs.To answer what each prisoner will play/behave in this game,we will introduce the concept of “Nash equilibrium ,”one of the most important concepts in game theory.Nash equilibrium is a set of actions that will be chosen by each player.In a Nash equilib-rium,each player’s strategy should be the best response to the other player’s strategy,and no player wants to deviate from the equilibrium solution.Thus,the equilibrium or solution is “strate-gically stable”or “self-enforcing”(Gibbons 1992).Conversely,a nonequilibrium solution is not stable since at least one of the players can be better off by deviating from the nonequilibrium solution.In the prisoner’s dilemma,only the (confess,confess )solution where both players choose to confess,satisfies the stabil-ity test or requirement of Nash equilibrium.Note that although the (not confess,not confess )solution seems better off for both players compared to Nash equilibrium;however,this solution is unstable since either player can obtain extra benefit by deviating from this solution.Interested readers can refer to Gibbons (1992),Fudenberg and Tirole (1992),and Myerson (1991).Bid Compensation ModelIn this section,the bid compensation model is developed on the basis of game theoretic analysis.The model could help the ownerform bid compensation strategies under various competition situ-ations and project characteristics.Illustrative examples with nu-merical results are given when necessary to show how the model can be used in various scenarios.Assumptions and Model SetupTo perform a game theoretic study,it is critical to make necessary simplifications so that one can focus on the issues of concern and obtain insightful results.Then,the setup of a model will follow.The assumptions made in this model are summarized as follows.Note that these assumptions can be relaxed in future studies for more general purposes.1.Average bidders:The bidders are equally good,in terms oftheir technical and managerial capabilities.Since the design–build and BOT focus on quality issues,the prequalification process imposed during procurement reduces the variation of the quality of bidders.As a result,it is not unreasonable to make the “average bidders”assumption.plete information:If all players consider each other tobe an average bidder as suggested in the first assumption,it is natural to assume that the payoffs of each player in each potential solution are known to all players.3.Bid compensation for the second best bidder:Since DBIA’s(1996b )manual,document number 103,suggests that “the stipend is paid only to the most highly ranked unsuccessful offerors to prevent proposals being submitted simply to ob-tain a stipend,”we shall assume that the bid compensation will be offered to the second best bidder.4.Two levels of efforts:It is assumed that there are two levelsof efforts in preparing a proposal,high and average,denoted by H and A ,respectively.The effort A is defined as the level of effort that does not incur extra cost to improve quality.Contrarily,the effort H is defined as the level of effort that will incur extra cost,denoted as E ,to improve the quality of a proposal,where the improvement is detectable by an effec-tive proposal evaluation system.Typically,the standard of quality would be transformed to the evaluation criteria and their respective weights specified in the Request for Pro-posal.5.Fixed amount of bid compensation,S :The fixed amount canbe expressed by a certain percentage of the average profit,denoted as P ,assumed during the procurement by an average bidder.6.Absorption of extra cost,E :For convenience,it is assumedthat E will not be included in the bid price so that the high effort bidder will win the contract under the price–quality competition,such as best-value approach.This assumption simplifies the tradeoff between quality improvement and bid price increase.Two-Bidder GameIn this game,there are only two qualified bidders.The possible payoffs for each bidder in the game are shown in a normal form in Fig.2.If both bidders choose “H ,”denoted by ͑H ,H ͒,both bidders will have a 50%probability of wining the contract,and at the same time,have another 50%probability of losing the con-tract but being rewarded with the bid compensation,S .As a re-sult,the expected payoffs for the bidders in ͑H ,H ͒solution are ͑S /2+P /2−E ,S /2+P /2−E ͒.Note that the computation of the expected payoff is based on the assumption of the average bidder.Similarly,if the bidders choose ͑A ,A ͒,the expected payoffswillFig.1.Prisoner’s dilemmaD o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y N A N J I N G U N I VE R S I T Y OF o n 01/06/14. C o p y r i g h t A S C E . F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .be ͑S /2+P /2,S /2+P /2͒.If the bidders choose ͑H ,A ͒,bidder No.1will have a 100%probability of winning the contract,and thus the expected payoffs are ͑P −E ,S ͒.Similarly,if the bidders choose ͑A ,H ͒,the expected payoffs will be ͑S ,P −E ͒.Payoffs of an n -bidder game can be obtained by the same reasoning.Nash EquilibriumSince the payoffs in each equilibrium are expressed as functions of S ,P ,and E ,instead of a particular number,the model will focus on the conditions for each possible Nash equilibrium of the game.Here,the approach to solving for Nash equilibrium is to find conditions that ensure the stability or self-enforcing require-ment of Nash equilibrium.This technique will be applied throughout this paper.First,check the payoffs of ͑H ,H ͒solution.For bidder No.1or 2not to deviate from this solution,we must haveS /2+P /2−E ϾS →S ϽP −2E͑1͒Therefore,condition (1)guarantees ͑H ,H ͒to be a Nash equilib-rium.Second,check the payoffs of ͑A ,A ͒solution.For bidder No.1or 2not to deviate from ͑A ,A ͒,condition (2)must be satisfiedS /2+P /2ϾP −E →S ϾP −2E͑2͒Thus,condition (2)guarantees ͑A ,A ͒to be a Nash equilibrium.Note that the condition “S =P −2E ”will be ignored since the con-dition can become (1)or (2)by adding or subtracting an infinitely small positive number.Thus,since S must satisfy either condition (1)or condition (2),either ͑H ,H ͒or ͑A ,A ͒must be a unique Nash equilibrium.Third,check the payoffs of ͑H ,A ͒solution.For bid-der No.1not to deviate from H to A ,we must have P −E ϾS /2+P /2;i.e.,S ϽP −2E .For bidder No.2not to deviate from A to H ,we must have S ϾS /2+P /2−E ;i.e.,S ϾP −2E .Since S cannot be greater than and less than P −2E at the same time,͑H ,A ͒solution cannot exist.Similarly,͑A ,H ͒solution cannot exist either.This also confirms the previous conclusion that either ͑H ,H ͒or ͑A ,A ͒must be a unique Nash equilibrium.Impacts of Bid CompensationBid compensation is designed to serve as an incentive to induce bidders to make high effort.Therefore,the concerns of bid com-pensation strategy should focus on whether S can induce high effort and how effective it is.According to the equilibrium solu-tions,the bid compensation decision should depend on the mag-nitude of P −2E or the relative magnitude of E compared to P .If E is relatively small such that P Ͼ2E ,then P −2E will be positive and condition (1)will be satisfied even when S =0.This means that bid compensation is not an incentive for high effort when the extra cost of high effort is relatively low.Moreover,surprisingly,S can be damaging when S is high enough such that S ϾP −2E .On the other hand,if E is relatively large so that P −2E is negative,then condition (2)will always be satisfied since S can-not be negative.In this case,͑A ,A ͒will be a unique Nash equi-librium.In other words,when E is relatively large,it is not in the bidder’s interest to incur extra cost for improving the quality of proposal,and therefore,S cannot provide any incentives for high effort.To summarize,when E is relatively low,it is in the bidder’s interest to make high effort even if there is no bid compensation.When E is relatively high,the bidder will be better off by making average effort.In other words,bid compensation cannot promote extra effort in a two-bidder game,and ironically,bid compensa-tion may discourage high effort if the compensation is too much.Thus,in the two-bidder procurement,the owner should not use bid compensation as an incentive to induce high effort.Three-Bidder GameNash EquilibriumFig.3shows all the combinations of actions and their respective payoffs in a three-bidder game.Similar to the two-bidder game,here the Nash equilibrium can be solved by ensuring the stability of the solution.For equilibrium ͑H ,H ,H ͒,condition (3)must be satisfied for stability requirementS /3+P /3−E Ͼ0→S Ͼ3E −P͑3͒For equilibrium ͑A ,A ,A ͒,condition (4)must be satisfied so that no one has any incentives to choose HS /3+P /3ϾP −E →S Ͼ2P −3E͑4͒In a three-bidder game,it is possible that S will satisfy conditions (3)and (4)at the same time.This is different from the two-bidder game,where S can only satisfy either condition (1)or (2).Thus,there will be two pure strategy Nash equilibria when S satisfies conditions (3)and (4).However,since the payoff of ͑A ,A ,A ͒,S /3+P /3,is greater than the payoff of ͑H ,H ,H ͒,S /3+P /3−E ,for all bidders,the bidder will choose ͑A ,A ,A ͒eventually,pro-vided that a consensus between bidders of making effort A can be reached.The process of reaching such consensus is called “cheap talk,”where the agreement is beneficial to all players,and no player will want to deviate from such an agreement.In the design–build or BOT procurement,it is reasonable to believe that cheap talk can occur.Therefore,as long as condition (4)is satis-fied,͑A ,A ,A ͒will be a unique Nash equilibrium.An important implication is that the cheap talk condition must not be satisfied for any equilibrium solution other than ͑A ,A ,A ͒.In other words,condition (5)must be satisfied for all equilibrium solution except ͑A ,A ,A͒Fig.2.Two-biddergameFig.3.Three-bidder gameD o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y N A N J I N G U N I VE R S I T Y OF o n 01/06/14. C o p y r i g h t A S C E . F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .S Ͻ2P −3E ͑5͒Following this result,for ͑H ,H ,H ͒to be unique,conditions (3)and (5)must be satisfied;i.e.,we must have3E −P ϽS Ͻ2P −3E͑6͒Note that by definition S is a non-negative number;thus,if one cannot find a non-negative number to satisfy the equilibrium con-dition,then the respective equilibrium does not exist and the equi-librium condition will be marked as “N/A”in the illustrative fig-ures and tables.Next,check the solution where two bidders make high efforts and one bidder makes average effort,e.g.,͑H ,H ,A ͒.The ex-pected payoffs for ͑H ,H ,A ͒are ͑S /2+P /2−E ,S /2+P /2−E ,0͒.For ͑H ,H ,A ͒to be a Nash equilibrium,S /3+P /3−E Ͻ0must be satisfied so that the bidder with average effort will not deviate from A to H ,S /2+P /2−E ϾS /2must be satisfied so that the bidder with high effort will not deviate from H to A ,and condi-tion (5)must be satisfied as argued previously.The three condi-tions can be rewritten asS Ͻmin ͓3E −P ,2P −3E ͔andP −2E Ͼ0͑7͒Note that because of the average bidder assumption,if ͑H ,H ,A ͒is a Nash equilibrium,then ͑H ,A ,H ͒and ͑A ,H ,H ͒will also be the Nash equilibria.The three Nash equilibria will constitute a so-called mixed strategy Nash equilibrium,denoted by 2H +1A ,where each bidder randomizes actions between H and A with certain probabilities.The concept of mixed strategy Nash equilib-rium shall be explained in more detail in next section.Similarly,we can obtain the requirements for solution 1H +2A ,condition (5)and S /2+P /2−E ϽS /2must be satisfied.The requirements can be reorganized asS Ͻ2P −3EandP −2E Ͻ0͑8͒Note that the conflicting relationship between “P −2E Ͼ0”in condition (7)and “P −2E Ͻ0”in condition (8)seems to show that the two types of Nash equilibria are exclusive.Nevertheless,the only difference between 2H +1A and 1H +2A is that the bidder in 2H +1A equilibrium has a higher probability of playing H ,whereas the bidder in 1H +2A also mixes actions H and A but with lower probability of playing H .From this perspective,the difference between 2H +1A and 1H +2A is not very distinctive.In other words,one should not consider,for example,2H +1A ,to be two bidders playing H and one bidder playing A ;instead,one should consider each bidder to be playing H with higher probabil-ity.Similarly,1H +2A means that the bidder has a lower probabil-ity of playing H ,compared to 2H +1A .Illustrative Example:Effectiveness of Bid Compensation The equilibrium conditions for a three-bidder game is numerically illustrated and shown in Table 1,where P is arbitrarily assumed as 10%for numerical computation purposes and E varies to rep-resent different costs for higher efforts.The “*”in Table 1indi-cates that the zero compensation is the best strategy;i.e.,bid compensation is ineffective in terms of stimulating extra effort.According to the numerical results,Table 1shows that bid com-pensation can promote higher effort only when E is within the range of P /3ϽE ϽP /2,where zero compensation is not neces-sarily the best strategy.The question is that whether it is benefi-cial to the owner by incurring the cost of bid compensation when P /3ϽE ϽP /2.The answer to this question lies in the concept and definition of the mix strategy Nash equilibrium,2H +1A ,as explained previously.Since 2H +1A indicates that each bidderwill play H with significantly higher probability,2H +1A may already be good enough,knowing that we only need one bidder out of three to actually play H .We shall elaborate on this concept later in a more general setting.As a result,if the 2H +1A equilib-rium is good enough,the use of bid compensation in a three-bidder game will not be recommended.Four-Bidder Game and n-Bidder GameNash Equilibrium of Four-Bidder GameThe equilibrium of the four-bidder procurement can also be ob-tained.As the number of bidders increases,the number of poten-tial equilibria increases as well.Due to the length limitation,we shall only show the major equilibria and their conditions,which are derived following the same technique applied previously.The condition for pure strategy equilibrium 4H ,is4E −P ϽS Ͻ3P −4E͑9͒The condition for another pure strategy equilibrium,4A ,isS Ͼ3P −4E͑10͒Other potential equilibria are mainly mixed strategies,such as 3H +1A ,2H +2A ,and 1H +3A ,where the numeric number asso-ciated with H or A represents the number of bidders with effort H or A in a equilibrium.The condition for the 3H +1A equilibrium is3E −P ϽS Ͻmin ͓4E −P ,3P −4E ͔͑11͒For the 2H +2A equilibrium the condition is6E −3P ϽS Ͻmin ͓3E −P ,3P −4E ͔͑12͒The condition for the 1H +3A equilibrium isS Ͻmin ͓6E −3P ,3P −4E ͔͑13͒Illustrative Example of Four-Bidder GameTable 2numerically illustrates the impacts of bid compensation on the four-bidder procurement under different relative magni-tudes of E .When E is very small,bid compensation is not needed for promoting effort H .However,when E grows gradually,bid compensation becomes more effective.As E grows to a larger magnitude,greater than P /2,the 4H equilibrium would become impossible,no matter how large S is.In fact,if S is too large,bidders will be encouraged to take effort A .When E is extremely large,e.g.,E Ͼ0.6P ,the best strategy is to set S =0.The “*”in Table 2also indicates the cases that bid compensation is ineffec-Table pensation Impacts on a Three-Bidder GameEquilibriumE ;P =10%3H 2H +1A 1H +2A 3A E ϽP /3e.g.,E =2%S Ͻ14%*N/A N/N 14%ϽS P /3ϽE ϽP /2e.g.,E =4%2%ϽS Ͻ8%S Ͻ2%N/A 8%ϽS P /2ϽE Ͻ͑2/3͒P e.g.,E =5.5%N/AN/AS Ͻ3.5%*3.5%ϽS͑2/3͒P ϽEe.g.,E =7%N/A N/A N/A Always*Note:*denotes that zero compensation is the best strategy;and N/A =the respective equilibrium does not exist.D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y N A N J I N G U N I VE R S I T Y OF o n 01/06/14. C o p y r i g h t A S C E . F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .tive.To conclude,in a four-bidder procurement,bid compensation is not effective when E is relatively small or large.Again,similar to the three-bidder game,when bid compensation becomes more effective,it does not mean that offering bid compensation is the best strategy,since more variables need to be considered.Further analysis shall be performed later.Nash Equilibrium of n -Bidder GameIt is desirable to generalize our model to the n -bidder game,al-though only very limited qualified bidders will be involved in most design–build or BOT procurements,since for other project delivery methods it is possible to have many bidders.Interested readers can follow the numerical illustrations for three-and four-bidder games to obtain the numerical solutions of n -bidder game.Here,only analytical equilibrium solutions will be solved.For “nA ”to be the Nash equilibrium,we must have P −E ϽS /n +P /n for bidder A not to deviate.In other words,condition (14)must be satisfiedS Ͼ͑n −1͒P −nE͑14͒Note that condition (14)can be rewritten as S Ͼn ͑P −E ͒−P ,which implies that it is not likely for nA to be the Nash equilib-rium when there are many bidders,unless E is very close to or larger than P .Similar to previous analysis,for “nH ”to be the equilibrium,we must have S /n +P /n −E Ͼ0for stability requirement,and condition (15)for excluding the possibility of cheap talk or nA equilibrium.The condition for the nH equilibrium can be reorga-nized as condition (16).S Ͻ͑n −1͒P −nE ͑15͒nE −P ϽS Ͻ͑n −1͒P −nE͑16͒Note that if E ϽP /n ,condition (16)will always be satisfied and nH will be a unique equilibrium even when S =0.In other words,nH will not be the Nash equilibrium when there are many bidders,unless E is extremely small,i.e.,E ϽP /n .For “aH +͑n −a ͒A ,where 2Ͻa Ͻn ”to be the equilibrium so-lution,we must have S /a +P /a −E Ͼ0for bidder H not to devi-ate,S /͑a +1͒+P /͑a +1͒−E Ͻ0for bidder A not to deviate,and condition (15).These requirements can be rewritten asaE −P ϽS Ͻmin ͓͑a +1͒E −P ,͑n −1͒P −nE ͔͑17͒Similarly,for “2H +͑n −2͒A ,”the stability requirements for bidder H and A are S /͑n −1͒ϽS /2+P /2−E and S /3+P /3−E Ͻ0,re-spectively,and thus the equilibrium condition can be written as ͓͑n −1͒/͑n −3͔͒͑2E −P ͒ϽS Ͻmin ͓3E −P ,͑n −1͒P −nE ͔͑18͒For the “1H +͑n −1͒A ”equilibrium,we must haveS Ͻmin ͕͓͑n −1͒/͑n −3͔͒͑2E −P ͒,͑n −1͒P −nE ͖͑19͒An interesting question is:“What conditions would warrant that the only possible equilibrium of the game is either “1H +͑n −1͒A ”or nA ,no matter how large S is?”A logical response to the question is:when equilibria “aH +͑n −a ͒A ,where a Ͼ2”and equilibrium 2H +͑n −2͒A are not possible solutions.Thus,a suf-ficient condition here is that for any S Ͼ͓͑n −1͒/͑n −3͔͒͑2E −P ͒,the “S Ͻ͑n −1͒P −nE ”is not satisfied.This can be guaranteed if we have͑n −1͒P −nE Ͻ͓͑n −1͒/͑n −3͔͒͑2E −P ͒→E Ͼ͓͑n −1͒/͑n +1͔͒P͑20͒Conditions (19)and (20)show that when E is greater than ͓͑n −1͒/͑n +1͔͒P ,the only possible equilibrium of the game is either 1H +͑n −1͒A or nA ,no matter how large S is.Two important practical implications can be drawn from this finding.First,when n is small in a design–build contract,it is not unusual that E will be greater than ͓͑n −1͒/͑n +1͔͒P ,and in that case,bid compensa-tion cannot help to promote higher effort.For example,for a three-bidder procurement,bid compensation will not be effective when E is greater than ͑2/4͒P .Second,when the number of bidders increases,bid compensation will become more effective since it will be more unlikely that E is greater than ͓͑n −1͒/͑n +1͔͒P .The two implications confirm the previous analyses of two-,three-,and four-bidder game.After the game equilibria and the effective range of bid compensation have been solved,the next important task is to develop the bid compensation strategy with respect to various procurement situations.Table pensation Impacts on a Four-Bidder GameEquilibriumE ;P =10%4H 3H +1A 2H +2A 1H +3A 4A E ϽP /4e.g.,E =2%S Ͻ22%*N/A N/A N/A S Ͼ22%P /4ϽE ϽP /3e.g.,E =3%2%ϽS Ͻ18%S Ͻ2%N/A N/A S Ͼ18%P /3ϽE ϽP /2e.g.,E =4%6%ϽS Ͻ14%2%ϽS Ͻ6%S Ͻ2%N/A S Ͼ14%P /2ϽE Ͻ͑3/5͒P e.g.,E =5.5%N/A 6.5%ϽS Ͻ8%3%ϽS Ͻ6.5%S Ͻ3%S Ͼ8%͑3/5͒P ϽE Ͻ͑3/4͒P e.g.,E =6.5%N/AN/AN/AS Ͻ4%*S Ͼ4%͑3/4͒P ϽEe.g.,E =8%N/A N/A N/A N/AAlways*Note:*denotes that zero compensation is the best strategy;and N/A=respective equilibrium does not exist.D o w n l o a d e d f r o m a s c e l i b r a r y .o r g b y N A N J I N G U N I VE R S I T Y OF o n 01/06/14. C o p y r i g h t A S C E . F o r p e r s o n a l u s e o n l y ; a l l r i g h t s r e s e r v e d .。
毕业设计外文文献翻译Graduation Design Foreign Literature Translation (700 words) Title: The Impact of Artificial Intelligence on the Job Market Introduction:Artificial Intelligence (AI) is a rapidly growing field that has the potential to revolutionize various industries and job markets. With advancements in technologies such as machine learning and natural language processing, AI has become capable of performing tasks traditionally done by humans. This has raised concerns about the future of jobs and the impact AI will have on the job market. This literature review aims to explore the implications of AI on employment and job opportunities.AI in the Workplace:AI technologies are increasingly being integrated into the workplace, with the aim of automating routine and repetitive tasks. For example, automated chatbots are being used to handle customer service queries, while machine learning algorithms are being employed to analyze large data sets. This has resulted in increased efficiency and productivity in many industries. However, it has also led to concerns about job displacement and unemployment.Job Displacement:The rise of AI has raised concerns about job displacement, as AI technologies are becoming increasingly capable of performing tasks previously done by humans. For example, automated machines can now perform complex surgeries with greaterprecision than human surgeons. This has led to fears that certain jobs will become obsolete, leading to unemployment for those who were previously employed in these industries.New Job Opportunities:While AI might potentially replace certain jobs, it also creates new job opportunities. As AI technologies continue to evolve, there will be a greater demand for individuals with technical skills in AI development and programming. Additionally, jobs that require human interaction and emotional intelligence, such as social work or counseling, may become even more in demand, as they cannot be easily automated.Job Transformation:Another potential impact of AI on the job market is job transformation. AI technologies can augment human abilities rather than replacing them entirely. For example, AI-powered tools can assist professionals in making decisions, augmenting their expertise and productivity. This may result in changes in job roles and the need for individuals to adapt their skills to work alongside AI technologies.Conclusion:The impact of AI on the job market is still being studied and debated. While AI has the potential to automate certain tasks and potentially lead to job displacement, it also presents opportunities for new jobs and job transformation. It is essential for individuals and organizations to adapt and acquire the necessary skills to navigate these changes in order to stay competitive in the evolvingjob market. Further research is needed to fully understand the implications of AI on employment and job opportunities.。
编号:毕业设计(论文)外文翻译(原文)院(系):桂林电子科技大学专业:电子信息工程学生姓名: xx学号: xxxxxxxxxxxxx 指导教师单位:桂林电子科技大学姓名: xxxx职称: xx2014年x月xx日Timing on and off power supplyusesThe switching power supply products are widely used in industrial automation and control, military equipment, scientific equipment, LED lighting, industrial equipment,communications equipment,electrical equipment,instrumentation, medical equipment, semiconductor cooling and heating, air purifiers, electronic refrigerator, LCD monitor, LED lighting, communications equipment, audio-visual products, security, computer chassis, digital products and equipment and other fields.IntroductionWith the rapid development of power electronics technology, power electronics equipment and people's work, the relationship of life become increasingly close, and electronic equipment without reliable power, into the 1980s, computer power and the full realization of the switching power supply, the first to complete the computer Power new generation to enter the switching power supply in the 1990s have entered into a variety of electronic, electrical devices, program-controlled switchboards, communications, electronic testing equipment power control equipment, power supply, etc. have been widely used in switching power supply, but also to promote the rapid development of the switching power supply technology .Switching power supply is the use of modern power electronics technology to control the ratio of the switching transistor to turn on and off to maintain a stable output voltage power supply, switching power supply is generally controlled by pulse width modulation (PWM) ICs and switching devices (MOSFET, BJT) composition. Switching power supply and linear power compared to both the cost and growth with the increase of output power, but the two different growth rates. A power point, linear power supply costs, but higher than the switching power supply. With the development of power electronics technology and innovation, making the switching power supply technology to continue to innovate, the turning points of this cost is increasingly move to the low output power side, the switching power supply provides a broad space for development.The direction of its development is the high-frequency switching power supply, high frequency switching power supply miniaturization, and switching power supply into a wider range of application areas, especially in high-tech fields, and promote the miniaturization of high-tech products, light of. In addition, the development and application of the switching power supply in terms of energy conservation, resource conservation and environmental protection are of great significance.classificationModern switching power supply, there are two: one is the DC switching power supply; the other is the AC switching power supply. Introduces only DC switching power supply and its function is poor power quality of the original eco-power (coarse) - such as mains power or battery power, converted to meet the equipment requirements of high-quality DC voltage (Varitronix) . The core of the DC switching power supply DC / DC converter. DC switching power supply classification is dependent on the classification of DC / DC converter. In other words, the classification of the classification of the DC switching power supply and DC/DC converter is the classification of essentially the same, the DC / DC converter is basically a classification of the DC switching power supply.DC /DC converter between the input and output electrical isolation can be divided into two categories: one is isolated called isolated DC/DC converter; the other is not isolated as non-isolated DC / DC converter.Isolated DC / DC converter can also be classified by the number of active power devices. The single tube of DC / DC converter Forward (Forward), Feedback (Feedback) two. The double-barreled double-barreled DC/ DC converter Forward (Double Transistor Forward Converter), twin-tube feedback (Double Transistor Feedback Converter), Push-Pull (Push the Pull Converter) and half-bridge (Half-Bridge Converter) four. Four DC / DC converter is the full-bridge DC / DC converter (Full-Bridge Converter).Non-isolated DC / DC converter, according to the number of active power devices can be divided into single-tube, double pipe, and four three categories. Single tube to a total of six of the DC / DC converter, step-down (Buck) DC / DC converter, step-up (Boost) DC / DC converters, DC / DC converter, boost buck (Buck Boost) device of Cuk the DC / DC converter, the Zeta DC / DC converter and SEPIC, the DC / DC converter. DC / DC converters, the Buck and Boost type DC / DC converter is the basic buck-boost of Cuk, Zeta, SEPIC, type DC / DC converter is derived from a single tube in this six. The twin-tube cascaded double-barreled boost (buck-boost) DC / DC converter DC / DC converter. Four DC / DC converter is used, the full-bridge DC / DC converter (Full-Bridge Converter).Isolated DC / DC converter input and output electrical isolation is usually transformer to achieve the function of the transformer has a transformer, so conducive to the expansion of the converter output range of applications, but also easy to achieve different voltage output , or a variety of the same voltage output.Power switch voltage and current rating, the converter's output power is usually proportional to the number of switch. The more the number of switch, the greater the output power of the DC / DC converter, four type than the two output power is twice as large,single-tube output power of only four 1/4.A combination of non-isolated converters and isolated converters can be a single converter does not have their own characteristics. Energy transmission points, one-way transmission and two-way transmission of two DC / DC converter. DC / DC converter with bi-directional transmission function, either side of the transmission power from the power of lateral load power from the load-lateral side of the transmission power.DC / DC converter can be divided into self-excited and separately controlled. With the positive feedback signal converter to switch to self-sustaining periodic switching converter, called self-excited converter, such as the the Luo Yeer (Royer,) converter is a typical push-pull self-oscillating converter. Controlled DC / DC converter switching device control signal is generated by specialized external control circuit.the switching power supply.People in the field of switching power supply technology side of the development of power electronic devices, while the development of the switching inverter technology, the two promote each other to promote the switching power supply annual growth rate of more than two digits toward the light, small, thin, low-noise, high reliability, the direction of development of anti-jamming. Switching power supply can be divided into AC / DC and DC / DC two categories, AC / AC DC / AC, such as inverters, DC / DC converter is now modular design technology and production processes at home and abroad have already matured and standardization, and has been recognized by the user, but AC / DC modular, its own characteristics make the modular process, encounter more complex technology and manufacturing process. Hereinafter to illustrate the structure and characteristics of the two types of switching power supply.Self-excited: no external signal source can be self-oscillation, completely self-excited to see it as feedback oscillation circuit of a transformer.Separate excitation: entirely dependent on external sustain oscillations, excited used widely in practical applications. According to the excitation signal structure classification; can be divided into pulse-width-modulated and pulse amplitude modulated two pulse width modulated control the width of the signal is frequency, pulse amplitude modulation control signal amplitude between the same effect are the oscillation frequency to maintain within a certain range to achieve the effect of voltage stability. The winding of the transformer can generally be divided into three types, one group is involved in the oscillation of the primary winding, a group of sustained oscillations in the feedback winding, there is a group of load winding. Such as Shanghai is used in household appliances art technological production of switching power supply, 220V AC bridge rectifier, changing to about 300V DC filter added tothe collector of the switch into the transformer for high frequency oscillation, the feedback winding feedback to the base to maintain the circuit oscillating load winding induction signal, the DC voltage by the rectifier, filter, regulator to provide power to the load. Load winding to provide power at the same time, take up the ability to voltage stability, the principle is the voltage output circuit connected to a voltage sampling device to monitor the output voltage changes, and timely feedback to the oscillator circuit to adjust the oscillation frequency, so as to achieve stable voltage purposes, in order to avoid the interference of the circuit, the feedback voltage back to the oscillator circuit with optocoupler isolation.technology developmentsThe high-frequency switching power supply is the direction of its development, high-frequency switching power supply miniaturization, and switching power supply into the broader field of application, especially in high-tech fields, and promote the development and advancement of the switching power supply, an annual more than two-digit growth rate toward the light, small, thin, low noise, high reliability, the direction of the anti-jamming. Switching power supply can be divided into AC / DC and DC / DC two categories, the DC / DC converter is now modular design technology and production processes at home and abroad have already matured and standardized, and has been recognized by the user, but modular AC / DC, because of its own characteristics makes the modular process, encounter more complex technology and manufacturing process. In addition, the development and application of the switching power supply in terms of energy conservation, resource conservation and environmental protection are of great significance.The switching power supply applications in power electronic devices as diodes, IGBT and MOSFET.SCR switching power supply input rectifier circuit and soft start circuit, a small amount of applications, the GTR drive difficult, low switching frequency, gradually replace the IGBT and MOSFET.Direction of development of the switching power supply is a high-frequency, high reliability, low power, low noise, jamming and modular. Small, thin, and the key technology is the high frequency switching power supply light, so foreign major switching power supply manufacturers have committed to synchronize the development of new intelligent components, in particular, is to improve the secondary rectifier loss, and the power of iron Oxygen materials to increase scientific and technological innovation in order to improve the magnetic properties of high frequency and large magnetic flux density (Bs), and capacitor miniaturization is a key technology. SMT technology allows the switching power supply has made considerable progress, the arrangement of the components in the circuit board on bothsides, to ensure that the light of the switching power supply, a small, thin. High-frequency switching power supply is bound to the traditional PWM switching technology innovation, realization of ZVS, ZCS soft-switching technology has become the mainstream technology of the switching power supply, and a substantial increase in the efficiency of the switching power supply. Indicators for high reliability, switching power supply manufacturers in the United States by reducing the operating current, reducing the junction temperature and other measures to reduce the stress of the device, greatly improve the reliability of products.Modularity is the overall trend of switching power supply, distributed power systems can be composed of modular power supply, can be designed to N +1 redundant power system, and the parallel capacity expansion. For this shortcoming of the switching power supply running noise, separate the pursuit of high frequency noise will also increase, while the use of part of the resonant converter circuit technology to achieve high frequency, in theory, but also reduce noise, but some The practical application of the resonant converter technology, there are still technical problems, it is still a lot of work in this field, so that the technology to be practical.Power electronics technology innovation, switching power supply industry has broad prospects for development. To accelerate the pace of development of the switching power supply industry in China, it must take the road of technological innovation, out of joint production and research development path with Chinese characteristics and contribute to the rapid development of China's national economy.Developments and trends of the switching power supply1955 U.S. Royer (Roger) invented the self-oscillating push-pull transistor single-transformer DC-DC converter is the beginning of the high-frequency conversion control circuit 1957 check race Jen, Sen, invented a self-oscillating push-pull dual transformers, 1964, U.S. scientists canceled frequency transformer in series the idea of switching power supply, the power supply to the size and weight of the decline in a fundamental way. 1969 increased due to the pressure of the high-power silicon transistor, diode reverse recovery time shortened and other components to improve, and finally made a 25-kHz switching power supply.At present, the switching power supply to the small, lightweight and high efficiency characteristics are widely used in a variety of computer-oriented terminal equipment, communications equipment, etc. Almost all electronic equipment is indispensable for a rapid development of today's electronic information industry power mode. Bipolar transistor made of 100kHz, 500kHz power MOS-FET made, though already the practical switching power supply is currently available on the market, but its frequency to be further improved. Toimprove the switching frequency, it is necessary to reduce the switching losses, and to reduce the switching losses, the need for high-speed switch components. However, the switching speed will be affected by the distribution of the charge stored in the inductance and capacitance, or diode circuit to produce a surge or noise. This will not only affect the surrounding electronic equipment, but also greatly reduce the reliability of the power supply itself. Which, in order to prevent the switching Kai - closed the voltage surge, RC or LC buffers can be used, and the current surge can be caused by the diode stored charge of amorphous and other core made of magnetic buffer . However, the high frequency more than 1MHz, the resonant circuit to make the switch on the voltage or current through the switch was a sine wave, which can reduce switching losses, but also to control the occurrence of surges. This switch is called the resonant switch. Of this switching power supply is active, you can, in theory, because in this way do not need to greatly improve the switching speed of the switching losses reduced to zero, and the noise is expected to become one of the high-frequency switching power supply The main ways. At present, many countries in the world are committed to several trillion Hz converter utility.the principle of IntroductionThe switching power supply of the process is quite easy to understand, linear power supplies, power transistors operating in the linear mode and linear power, the PWM switching power supply to the power transistor turns on and off state, in both states, on the power transistor V - security product is very small (conduction, low voltage, large current; shutdown, voltage, current) V oltammetric product / power device is power semiconductor devices on the loss.Compared with the linear power supply, the PWM switching power supply more efficient process is achieved by "chopping", that is cut into the amplitude of the input DC voltage equal to the input voltage amplitude of the pulse voltage. The pulse duty cycle is adjusted by the switching power supply controller. Once the input voltage is cut into the AC square wave, its amplitude through the transformer to raise or lower. Number of groups of output voltage can be increased by increasing the number of primary and secondary windings of the transformer. After the last AC waveform after the rectifier filter the DC output voltage.The main purpose of the controller is to maintain the stability of the output voltage, the course of their work is very similar to the linear form of the controller. That is the function blocks of the controller, the voltage reference and error amplifier can be designed the same as the linear regulator. Their difference lies in the error amplifier output (error voltage) in the drive before the power tube to go through a voltage / pulse-width conversion unit.Switching power supply There are two main ways of working: Forward transformand boost transformation. Although they are all part of the layout difference is small, but the course of their work vary greatly, have advantages in specific applications.the circuit schematicThe so-called switching power supply, as the name implies, is a door, a door power through a closed power to stop by, then what is the door, the switching power supply using SCR, some switch, these two component performance is similar, are relying on the base switch control pole (SCR), coupled with the pulse signal to complete the on and off, the pulse signal is half attentive to control the pole voltage increases, the switch or transistor conduction, the filter output voltage of 300V, 220V rectifier conduction, transmitted through the switching transformer secondary through the transformer to the voltage increase or decrease for each circuit work. Oscillation pulse of negative semi-attentive to the power regulator, base, or SCR control voltage lower than the original set voltage power regulator cut-off, 300V power is off, switch the transformer secondary no voltage, then each circuit The required operating voltage, depends on this secondary road rectifier filter capacitor discharge to maintain. Repeat the process until the next pulse cycle is a half weeks when the signal arrival. This switch transformer is called the high-frequency transformer, because the operating frequency is higher than the 50HZ low frequency. Then promote the pulse of the switch or SCR, which requires the oscillator circuit, we know, the transistor has a characteristic, is the base-emitter voltage is 0.65-0.7V is the zoom state, 0.7V These are the saturated hydraulic conductivity state-0.1V-0.3V in the oscillatory state, then the operating point after a good tune, to rely on the deep negative feedback to generate a negative pressure, so that the oscillating tube onset, the frequency of the oscillating tube capacitor charging and discharging of the length of time from the base to determine the oscillation frequency of the output pulse amplitude, and vice versa on the small, which determines the size of the output voltage of the power regulator. Transformer secondary output voltage regulator, usually switching transformer, single around a set of coils, the voltage at its upper end, as the reference voltage after the rectifier filter, then through the optocoupler, this benchmark voltage return to the base of the oscillating tube pole to adjust the level of the oscillation frequency, if the transformer secondary voltage is increased, the sampling coil output voltage increases, the positive feedback voltage obtained through the optocoupler is also increased, this voltage is applied oscillating tube base, so that oscillation frequency is reduced, played a stable secondary output voltage stability, too small do not have to go into detail, nor it is necessary to understand the fine, such a high-power voltage transformer by switching transmission, separated and after the class returned by sampling the voltage from the opto-coupler pass separated after class, so before the mains voltage, and after the classseparation, which is called cold plate, it is safe, transformers before power is independent, which is called switching power supply.the DC / DC conversionDC / DC converter is a fixed DC voltage transformation into a variable DC voltage, also known as the DC chopper. There are two ways of working chopper, one Ts constant pulse width modulation mode, change the ton (General), the second is the frequency modulation, the same ton to change the Ts, (easy to produce interference). Circuit by the following categories:Buck circuit - the step-down chopper, the average output voltage U0 is less than the input voltage Ui, the same polarity.Boost Circuit - step-up chopper, the average output voltage switching power supply schematic U0 is greater than the input voltage Ui, the same polarity.Buck-Boost circuit - buck or boost chopper, the output average voltage U0 is greater than or less than the input voltage Ui, the opposite polarity, the inductance transmission.Cuk circuit - a buck or boost chopper, the output average voltage U0 is greater than or less than the input voltage Ui, the opposite polarity, capacitance transmission.The above-mentioned non-isolated circuit, the isolation circuit forward circuits, feedback circuit, the half-bridge circuit, the full bridge circuit, push-pull circuit. Today's soft-switching technology makes a qualitative leap in the DC / DC the U.S. VICOR company design and manufacture a variety of ECI soft-switching DC / DC converter, the maximum output power 300W, 600W, 800W, etc., the corresponding power density (6.2 , 10,17) W/cm3 efficiency (80-90)%. A the Japanese Nemic Lambda latest using soft-switching technology, high frequency switching power supply module RM Series, its switching frequency (200 to 300) kHz, power density has reached 27W/cm3 with synchronous rectifier (MOSFETs instead of Schottky diodes ), so that the whole circuit efficiency by up to 90%.AC / DC conversionAC / DC conversion will transform AC to DC, the power flow can be bi-directional power flow by the power flow to load known as the "rectification", referred to as "active inverter power flow returned by the load power. AC / DC converter input 50/60Hz AC due must be rectified, filtered, so the volume is relatively large filter capacitor is essential, while experiencing safety standards (such as UL, CCEE, etc.) and EMC Directive restrictions (such as IEC, FCC, CSA) in the AC input side must be added to the EMC filter and use meets the safety standards of the components, thus limiting the miniaturization of the volume of AC / DC power, In addition, due to internal frequency, high voltage, current switching, making the problem difficult to solve EMC also high demands on the internal high-density mountingcircuit design, for the same reason, the high voltage, high current switch makes power supply loss increases, limiting the AC / DC converter modular process, and therefore must be used to power system optimal design method to make it work efficiency to reach a certain level of satisfaction.AC / DC conversion circuit wiring can be divided into half-wave circuit, full-wave circuit. Press the power phase can be divided into single-phase three-phase, multiphase. Can be divided into a quadrant, two quadrant, three quadrants, four-quadrant circuit work quadrant.he selection of the switching power supplySwitching power supply input on the anti-jamming performance, compared to its circuit structure characteristics (multi-level series), the input disturbances, such as surge voltage is difficult to pass on the stability of the output voltage of the technical indicators and linear power have greater advantages, the output voltage stability up to (0.5)%. Switching power supply module as an integrated power electronic devices should be selected。
毕业设计外文翻译Graduation Design – English TranslationIntroductionThe graduation design is a crucial part of a student’s academic journey. It is a project that showcases the knowledge and skills that the student has acquired throughout their studies. The purpose of this translation is to provide an overview of the graduation design and explain its significance.Significance of the Graduation DesignThe graduation design serves as an opportunity for students to apply the theoretical knowledge they have gained in a practical manner. It allows them to put their skills into action and demonstrate their problem-solving abilities. Through the completion of the graduation design, students are equipped with the necessary tools to enter the workforce with confidence.Components of the Graduation DesignThe graduation design typically consists of several key components. Firstly, there is a written report that provides an in-depth analysis of the project. This report outlines the objectives, methodology, results, and conclusions of the graduation design. It also includes a literature review that discusses the existing research related to the topic.In addition to the written report, a presentation is also required aspart of the graduation design. This presentation allows students to communicate their findings to a larger audience. It is an opportunity for students to showcase their ability to effectively present complex information in a clear and concise manner.Furthermore, the graduation design often involves a practical component. This can range from designing and building a prototype to conducting experiments or surveys. The practical component allows students to apply their engineering skills and test their theories in a real-world setting.Evaluation of the Graduation DesignThe graduation design is evaluated based on several criteria. The written report is assessed for its clarity, organization, and depth of analysis. The presentation is evaluated for the student’s ability to effectively communicate their ideas and engage the audience. The practical component is assessed based on the quality and accuracy of the work completed.ConclusionIn conclusion, the graduation design is a significant project that allows students to apply their knowledge and skills in a practical manner. It consists of a written report, a presentation, and a practical component. The completion of the graduation design prepares students for their future careers by equipping them with the necessary tools and abilities.。
Reliability of Frame and Shear Wall Structural Systems. I: StaticLoadingAhmed GhobarahAbstract:An efficient and accurate algorithm is developed to evaluate the reliability of a steel frame and reinforced concrete shear wall structural system subjected to static loading. In a companion paper, the algorithm is extended to consider dynamic loading, including seismic loading. The concept integrates the finite-element method and the first-order reliability method, leading to a stochastic finite element-based approach.In the deterministic finite-element representation, the steel frame is represented bybeam-column elements and the shear walls are represented by plate elements. The stiffness matrix for the combined system is then developed. The deterministic finite-element algorithm is verified using a commercially available computer program. The deterministic algorithm is then extended to consider the uncertainty in the random variables. The reliability of a steel frame with and without the presence of reinforced concrete shear walls is evaluated for the strength and serviceability performance functions. The results are verified using Monte Carlo simulations. The algorithm quantitatively confirms the beneficial effect of shear walls, particularly when the steel frame is weak in satisfying the serviceability requirement of lateral deflection. The algorithm can be used to estimate the reliability of any complicated structural system consisting of different structural elements and materials when subjected to static loading. The procedure will be useful in the performance-based design guidelines under development by the profession. keywords:Limit states; Simulation; Shear walls; Static loads; Steel frames; Finite element method.IntroductionThe realistic reliability analysis of complicated structural systems consisting of different types of structural elements and materials is a major challenge to our profession. In most cases, the limit state or performance function (a functional relationship between the load- and resistance-related variables and the performance criterion) is implicit in evaluating the reliability of such systems. The analytical technique most frequently used to capture the mechanical behavior of complicated structural systems consisting of different materials appears to be the finite-element method (FEM)-based approach. Finite-element analysis is a powerful tool commonly used in many engineering disciplines to analyze simple or complicated structural systems. With this approach, it is straightforward to consider complicated geometric arrangements,various sources of nonlinearity, different materials, and the load path to failure. However, the deterministicfinite-element method fails to consider the uncertainty in the variables, and thus cannot be used for reliability analysis. On the other hand, the available reliability methods fail to represent structures as realistically as possible. If the basic variables are uncertain, every quantity computed during the deterministic analysis is also uncertain. The currently available reliability methods can still be used if the uncertainty in the response can be tracked in terms of thevariation of the basic variables at every step of the deterministic analysis. To capture the desirable features of these two approaches, they needed to be combined, leading to the concept of the stochastic finite-element method (SFEM) (Haldar and Mahadevan 2000b)。
The SFEM algorithm for frame structures has been developed by several researchers. However, the main drawback of frame structures is their inability to transfer horizontal loads (e.g., wind, earthquake, and ocean waves) effectively. They are relatively flexible. To increase their lateral stiffness, bracing systems or shear walls are needed. Haldar and Gao (1997) Attempted to consider bracing systems in a steel frame structure. They used truss elements in their model. However, there has not been an attempt to consider shear walls, represented by two dimensional plate elements, in a frame in the context of SFEM.Numerical ExamplesTo investigate the effect of shear walls on the overall reliability, both a frame without shear walls and a frame with shear walls are studied in this study. All loads are applied statically. The reliability of the frame with and without shear walls is evaluated using the proposed algorithm. The accuracy of the proposed algorithm is established using Monte Carlo simulations. Reliability Analysis of Frame without Shear WallsA two-story two-bay frame shown in Fig. 2 (Fig. 1 without the shear walls) is considered first. A36 steel is used. The statistical characteristics of the cross-sectional and material properties required for the reliability analysis are given in Table 3. The frame is subjected to dead, live, and horizontal loads. The statistical properties of these loads are given in Table 3.For the strength limit state, the reliability of the most critical beam at node e and the most critical column at node c are evaluated using the proposed algorithm with the performance functions represented by Eqs. (13) and (14). For the serviceability limit state, the horizontal drift of the top floor at node a and the vertical deflection of the beam at the midspan at node d are checked. In Eq. (20), the prescribed horizontal drift at the top floor is considered to not exceedh/400, where h is the height 006Ff the frame. Thus, is equal to 1.83cm in this example. Similarly, the prescribed vertical deflection in the midspan of the beam is considered to be l/360under the unfactored live load, where l is the span length of the beam. In this case, is considered to be 2.54cm.Considering all the random variables given in Table 3, the corresponding reliability indexes and the probabilities of failure at different node points are evaluated. The results are summarized in Table 4. For the frame without shear walls, the probability of failure of the beam is found to be 0.0039, and 10,000 simulations were used to capture this behavior. For the horizontal drift, the probability of failure is close to zero. Considering the practical aspects of supercomputer utilization, 100,000 simulations were used to capture this behavior: The Monte Carlo simulation results are summarized in Table 4.Reliability Analysis of Frame with Shear WallsThe frame shown in Fig. 2 is reinforced with shear walls as shown in Fig. 1. The statistical properties of two additional variables related to the shear walls, E c and ν, are given in Table 3. The building is assumed to contain five similar frames connected by rigid diaphragms at the floor levels. Only the center frame of the building is assumed to have shear walls. Although the physical thickness of the shear wall is 12.7cm,considering the presence of five similar frames and the rigid behavior of diaphragms, the effective thickness per frame is assumed to be 2.54 cm in this study. The combined system is subjected to the three static loads given in Table 3. After the tensile stress of each shear wall exceeds the prescribed tensile stress of concrete, the degradation of the shear wall stiffness is assumed to be reduced to 40% of the original stiffness.The probability of failure of the combined system is calculated using the proposed algorithm. For the strength limit state, the probability of failure of a column, represented by Node eg in Figs. 1 and 2, is estimated. For the serviceability limit state, the horizontal deflection at the top of the combined system (point a in Figs. 1 and 2) is evaluated. The results are summarized in Table 4.As before, 10,000 simulations are used for the strength limit state and 100,000 simulations are used for the serviceability limit state. For both the strength and serviceability limit states, the reliability indexes estimated by the proposed algorithm and the Monte Carlo simulation technique are similar. The results clearly indicate that the proposed algorithm can be used to estimate the probability of failure of a combined system consisting of frame and shear walls under static loading. The reliability of the column did not change significantly due to the presence of shear walls. However, the horizontal drift at the top of the frame reduced significantly and the probability of failure of the combined system in serviceability became almost zero. This is expected. For the combined system, the controlling limit state has changed from serviceability to strength. This simple example clearly demonstrates the beneficial effect of shear walls in carrying horizontal loads. It also demonstrates that the proposed algorithm can be used to estimate the reliability of a complicated structural system under static loading conditions, broadening the application potential of reliability methods.ConclusionsAn efficient and accurate algorithm is developed to evaluate the reliability of a steel frame and RC shear wall structural system. The steel frame is represented by beam-column elements and the shear walls are represented by plate elements. A stochastic finite element-based approachconsisting of the reliability approach, the first-order reliability analysis procedure, and thefinite-element method is proposed. The reliability of a frame with and without shear walls is evaluated for the strength and serviceability performance functions. The results are verified using the Monte Carlo simulation technique. The proposed stochastic finite-element-based algorithm is reasonable for evaluating the reliability of a combined system consisting of frame and shear walls for static loading. It gives similar results for both the strength and serviceability performance functions compared to the results from Monte Carlo Simulation. As expected, this study showed that the reliability of a frame for horizontal deflection could be significantly improved with the help of shear walls. The proposed algorithm to evaluate the reliability of a combined system consisting of steel frames and RC shear walls for static loading is very unique. It produces accurate and efficient results, and can be used in the future to evaluate the reliability of complicated structural systems. The proposed algorithm demonstrates how reliability methods can be applied to evaluate the risk of a real structural system capturing its realistic mechanical behavior. The procedure will be useful in the performance-based design guidelines under development by the profession.References[1] Chaallal O, Nollet M-J, Perraton D. Shear strengthening of RC beams by externallybonded side CFRP strips. Journal of Composites for Construction, ASCE 1998;2(2):111–3.[2] Spadea G, Bencardino F, Swamy RN. Structural behaviour of composite RC beams withexternally bonded CFRP. Journal of Composites for Construction, ASCE1998;2(3):132–7.[3] Saadatmanesh H, Ehsani MR, Li MW. Strength and ductility of concrete columnsexternally reinforced with fibre composite straps. ACI Structural Journal1994;91(4):434–47.[4] Saadatmanesh H, Ehsani MR, Jin L. Seismic strengthening of circular bridge pier modelswith fibre composites. ACI Structural Journal 1996;93(6):639–47.[5] Saadatmanesh H, Ehsani MR, Jin L. Seismic retrofitting of rectangular bridge columnswith composite straps.Earthquake Spectra 1997;13(2):281–304.。