数据结构实验报告-二叉树的实现与遍历
- 格式:doc
- 大小:285.50 KB
- 文档页数:9
二叉树实验报告二叉树实验报告引言:二叉树作为一种常用的数据结构,在计算机科学领域中具有广泛的应用。
本实验旨在通过实际操作和观察,深入理解二叉树的特性和运用。
一、二叉树的基本概念1.1 二叉树的定义二叉树是一种特殊的树形结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。
树的最顶层节点称为根节点。
1.2 二叉树的特点二叉树具有以下特点:- 每个节点最多有两个子节点,分别称为左子节点和右子节点;- 左子节点的值小于等于父节点的值,右子节点的值大于等于父节点的值;- 二叉树的左子树和右子树也是二叉树。
二、二叉树的遍历方式2.1 先序遍历先序遍历是指先访问根节点,然后按照先序遍历的方式依次访问左子树和右子树。
2.2 中序遍历中序遍历是指按照中序遍历的方式依次访问左子树,根节点和右子树。
2.3 后序遍历后序遍历是指按照后序遍历的方式依次访问左子树,右子树和根节点。
三、二叉树的实验操作3.1 二叉树的创建为了便于实验操作,我们选择使用Python编程语言来实现二叉树的创建和操作。
首先,我们需要定义一个二叉树节点的类,包含节点的值、左子节点和右子节点。
3.2 二叉树的插入在已有的二叉树中插入一个新的节点,需要遵循二叉树的规则。
如果插入的节点值小于当前节点的值,则将节点插入到当前节点的左子树;如果插入的节点值大于当前节点的值,则将节点插入到当前节点的右子树。
3.3 二叉树的查找在二叉树中查找一个特定的节点,需要遍历整个二叉树。
从根节点开始,如果要查找的节点值小于当前节点的值,则继续在左子树中查找;如果要查找的节点值大于当前节点的值,则继续在右子树中查找;如果要查找的节点值等于当前节点的值,则找到了目标节点。
3.4 二叉树的删除在二叉树中删除一个节点,需要考虑多种情况。
如果要删除的节点没有子节点,直接将其删除即可;如果要删除的节点只有一个子节点,将子节点替换为要删除的节点;如果要删除的节点有两个子节点,需要找到其右子树中的最小节点,将其值替换到要删除的节点,然后删除最小节点。
二叉树的遍历实验报告二叉树的遍历实验报告引言:二叉树是一种常见的数据结构,它由节点和连接节点的边组成。
在实际应用中,我们经常需要对二叉树进行遍历,以便对其中的节点进行访问和操作。
本次实验旨在探索二叉树的遍历算法,并通过实验验证其正确性和效率。
一、二叉树的定义和基本操作二叉树是一种特殊的树结构,每个节点最多有两个子节点,分别称为左子节点和右子节点。
根据节点的访问顺序,二叉树的遍历可以分为前序遍历、中序遍历和后序遍历三种方式。
前序遍历是指先访问根节点,然后按照左子树、右子树的顺序递归地进行遍历;中序遍历是指先按照左子树、根节点、右子树的顺序递归地进行遍历;后序遍历是指先按照左子树、右子树、根节点的顺序递归地进行遍历。
二、实验设计和方法为了验证二叉树的遍历算法的正确性和效率,我们设计了以下实验方案:1. 构建二叉树:我们首先构建一个具有一定规模的二叉树,以模拟实际应用中的情况。
为了方便起见,我们选择随机生成一棵二叉树,并确保其结构合理。
2. 实现遍历算法:我们根据前文所述的遍历方式,实现了相应的遍历算法。
在实现过程中,我们考虑到了递归和迭代两种方式,并分别进行了实验比较。
3. 遍历实验:我们使用不同规模的二叉树进行遍历实验,并记录遍历的结果和所花费的时间。
通过对比不同规模下不同遍历方式的结果和时间,我们可以评估遍历算法的效率和准确性。
三、实验结果和分析在实验中,我们构建了一棵具有1000个节点的二叉树,并分别使用前序、中序和后序遍历算法进行遍历。
通过实验结果的比较,我们得出以下结论:1. 遍历结果的正确性:无论是前序、中序还是后序遍历,我们都能够正确地访问到二叉树中的每个节点。
这表明我们所实现的遍历算法是正确的。
2. 遍历算法的效率:在1000个节点的二叉树中,我们发现中序遍历算法的执行时间最短,后序遍历算法的执行时间最长,前序遍历算法的执行时间居中。
这是因为中序遍历算法在访问节点时可以尽可能地减少递归次数,而后序遍历算法需要递归到最深层才能返回。
实验报告:二叉树第一篇:实验报告:二叉树实验报告二叉树一实验目的1、进一步掌握指针变量,动态变量的含义;2、掌握二叉树的结构特性以及各种存储结构的特点及适用范围。
3、掌握用指针类型描述、访问和处理二叉树的运算。
4、熟悉各种存储结构的特征以及如何应用树结构解决具体问题。
二实验原理树形结构是一种应用十分广泛和重要的非线性数据结构,是一种以分支关系定义的层次结构。
在这种结构中,每个数据元素至多只有一个前驱,但可以有多个后继;数据元素之间的关系是一对多的层次关系。
树形结构主要用于描述客观世界中具有层次结构的数据关系,它在客观世界中大量存在。
遍历二叉树的实质是将非线性结构转为线性结构。
三使用仪器,材料计算机 2 Wndows xp 3 VC6.0四实验步骤【问题描述】建立一个二叉树,请分别按前序,中序和后序遍历该二叉树。
【基本要求】从键盘接受输入(按前序顺序),以二叉链表作为存储结构,建立二叉树(以前序来建立),并采用递归算法对其进行前序,中序和后序遍历,将结果输出。
【实现提示】按前序次序输入二叉树中结点的值(一个整数),0表示空树,叶子结点的特征是其左右孩子指针为空。
五实验过程原始记录基本数据结构描述; 2 函数间的调用关系;用类C语言描述各个子函数的算法;附录:源程序。
六试验结果分析将实验结果分析、实验中遇到的问题和解决问题的方法以及关于本实验项目的心得体会,写在实验报告上。
第二篇:数据结构-二叉树的遍历实验报告实验报告课程名:数据结构(C语言版)实验名:二叉树的遍历姓名:班级:学号:时间:2014.11.03一实验目的与要求1.掌握二叉树的存储方法2.掌握二叉树的三种遍历方法3.实现二叉树的三种遍历方法中的一种二实验内容• 接受用户输入一株二叉树• 输出这株二叉树的前根, 中根, 后根遍历中任意一种的顺序三实验结果与分析//*********************************************************** //头文件#include #include //*********************************************************** //宏定义#define OK 1 #define ERROR 0 #define OVERFLOW 0//*********************************************************** typedef struct BiTNode { //二叉树二叉链表存储结构char data;struct BiTNode *lChild,*rChild;}BiTNode,*BiTree;//******************************** *************************** int CreateBiTree(BiTree &T){ //按先序次序输入二叉中树结点的值,空格表示空树//构造二叉链表表示的二叉树T char ch;fflush(stdin);scanf(“%c”,&ch);if(ch==' ')T=NULL;else{ if(!(T=(BiTNode *)malloc(sizeof(BiTNode))))return(OVERFLOW);T->data=ch;Creat eBiTree(T->lChild);CreateBiTree(T->rChild);} return(OK);} //********************************************************* void PreOrderTraverse(BiTree T){ //采用二叉链表存储结构,先序遍历二叉树的递归算法if(T){ printf(“%c”,T->data);PreOrderTraverse(T->lChild);PreOrd erTraverse(T->rChild);} } /***********************************************************/ void InOrderTraverse(BiTree T){ //采用二叉链表存储结构,中序遍历二叉树的递归算法if(T){ InOrderTraverse(T->lChild);printf(“%c”,T->data);InOrderT raverse(T->rChild);} }//*********************************************************** void PostOrderTraverse(BiTree T){ //采用二叉链表存储结构,后序遍历二叉树的递归算法if(T){ PostOrderTraverse(T->lChild);PostOrderTraverse(T->rChild) ;printf(“%c”,T->data);} }//*********************************************************** void main(){ //主函数分别实现建立并输出先、中、后序遍历二叉树printf(“please input your tree follow the PreOrder:n”);BiTNode *Tree;CreateBiTree(Tree);printf(“n先序遍历二叉树:”);PreOrderTraverse(Tree);printf(“n中序遍历二叉树:”);InOrderTraverse(Tree);printf(“n后序遍历二叉树:”);PostOrderTraverse(Tree);}图1:二叉树的遍历运行结果第三篇:数据结构二叉树操作验证实验报告班级:计算机11-2 学号:40 姓名:朱报龙成绩:_________实验七二叉树操作验证一、实验目的⑴ 掌握二叉树的逻辑结构;⑵ 掌握二叉树的二叉链表存储结构;⑶ 掌握基于二叉链表存储的二叉树的遍历操作的实现。
实验报告||实验名称二叉树的遍历课程名称算法与数据结构试验||专业班级:信息管理信息系统学号:实验日期:姓名:慕鑫鑫一、实验名称:二叉树的遍历二、实验目的综合应用所学的知识分析问题、解决问题,学会用建立二叉树并对其进行遍历,提高实际编程能力及程序调试能力。
三、实验要求建立一个二叉树并对其进行遍历(先序,中序,后序)四、实验内容1、问题描述:建立一个二叉树,并分别用前序、中序、后序遍历该二叉树。
2、说明:输入数据:1,2,3,0,0,4,5,0,0,6,7,0,0,0,8,9,0,0,10,11,12,0,0,13,0,0,14,0,0其中“0”表示空子树。
输出数据:先序:1,2,3,4,5,6,7,8,9,10,11,12,13,14。
中序:3,2,5,4,7,6,1,9,8,12,11,13,10,14。
后序:3,5,7,6,4,2,9,12,13,11,14,10,8,1。
五、实验仪器与设备计算机,JDK,记事本六、实验原理建立一个二叉树,利用递归的方法实现对该二叉树的前序,中序,后序的遍历,并输出遍历结果。
七、实验程序及结果#include<iostream>#include<>#include<>using namespace std;typedef struct btnode{int data;btnode *Lchild,*Rchild;}*Btnode;void Creat(Btnode & t){int ch;cin>>ch;if(ch==0)t=NULL;else{btnode *p=new btnode;p->data=ch;t=p;Creat(t->Lchild);Creat(t->Rchild);}}void Preorder(Btnode & p) {if(p!=NULL){cout<<p->data<<",";Preorder(p->Lchild);Preorder(p->Rchild);}}void Midorder(Btnode & p) {if(p!=NULL){Midorder(p->Lchild);cout<<p->data<<",";Midorder(p->Rchild);}}void Folorder(Btnode & p) {if(p!=NULL){Folorder(p->Lchild);Folorder(p->Rchild);cout<<p->data<<",";}}void main(){btnode *head=new btnode;cout<<"请输入数据:";Creat(head);cout<<"前序遍历:";Preorder(head);cout<<endl;cout<<"中序遍历:";Midorder(head);cout<<endl;cout<<"后序遍历:";Folorder(head);getch();}八、实验体会通过本次试验,让我更深刻的理解了二叉树的性质,在上机的操作过场中,发现了自己平时疏忽的细节,以后再学习过程中会注意。
二叉树的遍历算法实验报告二叉树的遍历算法实验报告引言:二叉树是计算机科学中常用的数据结构之一,它是由节点组成的层次结构,每个节点最多有两个子节点。
在实际应用中,对二叉树进行遍历是一项重要的操作,可以帮助我们理解树的结构和节点之间的关系。
本文将介绍二叉树的三种遍历算法:前序遍历、中序遍历和后序遍历,并通过实验验证其正确性和效率。
一、前序遍历前序遍历是指先访问根节点,然后按照先左后右的顺序遍历左右子树。
具体的实现可以通过递归或者使用栈来实现。
我们以递归方式实现前序遍历算法,并进行实验验证。
实验步骤:1. 创建一个二叉树,并手动构造一些节点和它们之间的关系。
2. 实现前序遍历算法的递归函数,函数的输入为根节点。
3. 在递归函数中,首先访问当前节点,然后递归调用函数遍历左子树,最后递归调用函数遍历右子树。
4. 调用前序遍历函数,输出遍历结果。
实验结果:经过实验,我们得到了正确的前序遍历结果。
这证明了前序遍历算法的正确性。
二、中序遍历中序遍历是指按照先左后根再右的顺序遍历二叉树。
同样,我们可以使用递归或者栈来实现中序遍历算法。
在本实验中,我们选择使用递归方式来实现。
实验步骤:1. 继续使用前面创建的二叉树。
2. 实现中序遍历算法的递归函数,函数的输入为根节点。
3. 在递归函数中,首先递归调用函数遍历左子树,然后访问当前节点,最后递归调用函数遍历右子树。
4. 调用中序遍历函数,输出遍历结果。
实验结果:通过实验,我们得到了正确的中序遍历结果。
这证明了中序遍历算法的正确性。
三、后序遍历后序遍历是指按照先左后右再根的顺序遍历二叉树。
同样,我们可以使用递归或者栈来实现后序遍历算法。
在本实验中,我们选择使用递归方式来实现。
实验步骤:1. 继续使用前面创建的二叉树。
2. 实现后序遍历算法的递归函数,函数的输入为根节点。
3. 在递归函数中,首先递归调用函数遍历左子树,然后递归调用函数遍历右子树,最后访问当前节点。
4. 调用后序遍历函数,输出遍历结果。
实习报告实习内容:二叉树遍历实习时间:2023实习单位:某高校计算机实验室一、实习目的本次实习的主要目的是通过实现二叉树的遍历,加深对二叉树数据结构的理解,掌握二叉树的常见操作,提高编程能力。
二、实习内容1. 理解二叉树的基本概念和性质,包括节点之间的关系、树的深度、高度等。
2. 掌握二叉树的存储结构,包括顺序存储和链式存储。
3. 实现二叉树的前序遍历、中序遍历和后序遍历。
4. 通过实际编程,验证二叉树遍历的正确性。
三、实习过程1. 二叉树的基本概念和性质:二叉树是一种非线性的数据结构,每个节点最多有两个子节点。
节点之间的关系包括父子关系、兄弟关系等。
树的深度是指从根节点到最远叶子节点的最长路径上的边数,高度是指从根节点到最远叶子节点的最长路径上的边数加1。
2. 二叉树的存储结构:二叉树可以用顺序存储结构或链式存储结构表示。
顺序存储结构使用数组来实现,每个节点存储在数组的一个位置中,节点之间的父子关系通过数组下标来表示。
链式存储结构使用链表来实现,每个节点包含数据域和两个指针域,分别指向左子节点和右子节点。
3. 二叉树的遍历:二叉树的遍历是指按照一定的顺序访问树中的所有节点。
常见的遍历方式有前序遍历、中序遍历和后序遍历。
前序遍历是指先访问根节点,然后递归遍历左子树,最后递归遍历右子树。
中序遍历是指先递归遍历左子树,然后访问根节点,最后递归遍历右子树。
后序遍历是指先递归遍历左子树,然后递归遍历右子树,最后访问根节点。
4. 编程实现:根据二叉树的存储结构和遍历方法,编写C语言程序实现二叉树的前序遍历、中序遍历和后序遍历。
程序中使用递归函数来实现遍历操作,通过建立链式存储结构,验证遍历的正确性。
四、实习心得通过本次实习,我对二叉树的数据结构有了更深入的了解,掌握了二叉树的存储方式和常见操作。
在实现二叉树遍历的过程中,我学会了如何使用递归函数解决问题,提高了编程能力。
同时,通过实际编程验证了二叉树遍历的正确性,增强了对算法理解的信心。
数据结构二叉树的实验报告数据结构二叉树的实验报告一、引言数据结构是计算机科学中非常重要的一个领域,它研究如何组织和存储数据以便高效地访问和操作。
二叉树是数据结构中常见且重要的一种,它具有良好的灵活性和高效性,被广泛应用于各种领域。
本实验旨在通过实际操作和观察,深入了解二叉树的特性和应用。
二、实验目的1. 理解二叉树的基本概念和特性;2. 掌握二叉树的创建、遍历和查找等基本操作;3. 通过实验验证二叉树的性能和效果。
三、实验过程1. 二叉树的创建在实验中,我们首先需要创建一个二叉树。
通过输入一系列数据,我们可以按照特定的规则构建一棵二叉树。
例如,可以按照从小到大或从大到小的顺序将数据插入到二叉树中,以保证树的有序性。
2. 二叉树的遍历二叉树的遍历是指按照一定的次序访问二叉树中的所有节点。
常见的遍历方式有前序遍历、中序遍历和后序遍历。
前序遍历是先访问根节点,然后再依次遍历左子树和右子树;中序遍历是先遍历左子树,然后访问根节点,最后再遍历右子树;后序遍历是先遍历左子树,然后遍历右子树,最后访问根节点。
3. 二叉树的查找二叉树的查找是指在二叉树中寻找指定的节点。
常见的查找方式有深度优先搜索和广度优先搜索。
深度优先搜索是从根节点开始,沿着左子树一直向下搜索,直到找到目标节点或者到达叶子节点;广度优先搜索是从根节点开始,逐层遍历二叉树,直到找到目标节点或者遍历完所有节点。
四、实验结果通过实验,我们可以观察到二叉树的特性和性能。
在创建二叉树时,如果按照有序的方式插入数据,可以得到一棵平衡二叉树,其查找效率较高。
而如果按照无序的方式插入数据,可能得到一棵不平衡的二叉树,其查找效率较低。
在遍历二叉树时,不同的遍历方式会得到不同的结果。
前序遍历可以用于复制一棵二叉树,中序遍历可以用于对二叉树进行排序,后序遍历可以用于释放二叉树的内存。
在查找二叉树时,深度优先搜索和广度优先搜索各有优劣。
深度优先搜索在空间复杂度上较低,但可能会陷入死循环;广度优先搜索在时间复杂度上较低,但需要较大的空间开销。
实验报告一:预习要求预习树和二叉树的存储结构、以递归为基本思想的相应遍历操作。
二:实验目的1、通过实验,掌握二叉树的建立与存储方法。
2、掌握二叉树的结构特性,以及各种存储结构的特点和适用范围。
3、掌握用指针类型描述、访问和处理二叉树的运算。
4、理解huffman编解码的算法三:实验内容以括号表示法输入一棵二叉树,编写算法建立二叉树的二叉链表结构;编写先序、中序、后序、层次遍历二叉树的算法;编写算法计算二叉树的结点数,叶子结点数,以及二叉树的深度。
四:实验原理及试验方法ADT BinaryTree{数据对象:D:D是具有相同特征的数据元素的集合数据结构:R:若D= 空集,则R=空集,称BinaryTree为空二叉树;若D不等于空集,则R={H},H是如下二元关系:(1)在D中存在唯一的称为根的数据元素root,它在关系H下无前驱;(2)若D-{root}不等于空集,则存在D-{root}={D1,Dr},且D1∩Dr=空集;(3)若D1不等于空集,则D1中存在唯一的元素x1,<root,x1>∈H,且存在D1上的关系H1包含于H;若Dr≠空集,则Dr中存在唯一的元素xr,<root,xr>∈H,且存在Dr上的关系Hr包含于H;H={<root,x1>,<root,xr>,H1,Hr};(4) (D1,{H1})是一颗符合本定义的二叉树,称为根的左子树,(Dr,{Hr})是一颗符合本定义的二叉树,称为根的右子树。
基本操作P:CreateBiTree(&T,definition);初始条件:definition给出二叉树的定义。
操作结果:按definition构造二叉树T。
PreOrderTraverse(T);初始条件:二叉树T存在。
操作结果:先序遍历T 。
InOrderTraverse(T);初始条件:二叉树T存在。
操作结果:中序遍历T。
PostOrderTraverse(T);初始条件:二叉树T存在。
二叉树的建立与遍历一、实验目的进一步理解二叉树的逻辑结构和存储结构,掌握二叉树的建立与遍历算法。
二、实验内容1、用二叉链表创建二叉树①输入根结点值;②若左子树不空,则输入左子树,否则输入一个结束符;③若右子树不空,则输入右子树,否则输入一个结束符。
例如:FCA▲▲DB▲▲▲E▲GH▲▲P▲▲其中▲表示结束符2、遍历该二叉树(1) 先序遍历(DLR)若二叉树为空,则结束返回。
否则:①访问根结点;②先序遍历左子树;③先序遍历右子树。
(2) 中序遍历(LDR)若二叉树为空,则结束返回。
否则:①中序遍历左子树;②访问根结点;③中序遍历左子树。
(3) 后序遍历(LRD)若二叉树为空,则结束返回。
否则:①后序遍历左子树;②后序遍历左子树;③访问根结点。
实验思想:根据要求,输入二叉树各结点对应的编号和数值,建立一棵空树,存储相应数值并使左子树和右子树均为空树,根据计算,若编号为偶数则为左子树,若为奇数则为右子树。
最后遍历二叉树。
三、实验算法流程图与程序清单(一)二叉树的建立与先序遍历:1、算法流程图:2、实验清单:{char data;struct node1 *lchild,*rchild;}BTCHINALR;BTCHINALR * createbt( ){ BTCHINALR *q;struct node1 *s[30];int j,i,x;printf("建立二叉树,输入结点对应的编号和值,编号和值之间用逗号隔开\n\n");printf("i,x = ");scanf("%d,%c",&i,&x);while(i != 0 && x != '$'){q = (BTCHINALR*)malloc(sizeof(BTCHINALR));q->data = x; q->lchild = NULL; q->rchild = NULL;s[i] = q;if(i != 1){j = i / 2;if(i % 2 == 0) s[j]->lchild = q;else s[j]->rchild = q;}printf("i,x = ");scanf("%d,%c",&i,&x);}return s[1];}void inorder(BTCHINALR *bt){if(bt != NULL){ inorder(bt->lchild);printf("%c ",bt->data);inorder(bt->rchild); }}main( ){ BTCHINALR *bt;char ch;int i;bt = createbt(); i = 1;while(i) {printf("\n先序遍历二叉树(递归按y键,): ");fflush(stdin);scanf("%c",&ch);if(ch == 'y') inorder(bt);printf("\n");}3、实验结果:建立二叉树,输入结点对应的编号和值,编号和值之间用逗号隔开i,x = 1,li,x = 2,ki,x = 3,yi,x = 4,bi,x =5,si,x = 7,ci,x =11,vi,x = 15,ri,x = 0,$先序遍历二叉树(递归按y键,): yl k b s v y c r(二)、二叉树的建立与中序遍历:1、算法流程图:2、实验清单:{char data;struct node1 *lchild,*rchild;}BTCHINALR;BTCHINALR * createbt( ){ BTCHINALR *q;struct node1 *s[30];int j,i,x;printf("建立二叉树,输入结点对应的编号和值,编号和值之间用逗号隔开\n\n");printf("i,x = ");scanf("%d,%c",&i,&x);while(i != 0 && x != '$'){q = (BTCHINALR*)malloc(sizeof(BTCHINALR));q->data = x; q->lchild = NULL; q->rchild = NULL;s[i] = q;if(i != 1){j = i / 2;if(i % 2 == 0) s[j]->lchild = q;else s[j]->rchild = q;}printf("i,x = ");scanf("%d,%c",&i,&x);}return s[1];}void inorder(BTCHINALR *bt){if(bt != NULL){ inorder(bt->lchild);printf("%c ",bt->data);inorder(bt->rchild); }}main( ){ BTCHINALR *bt;char ch;int i;bt = createbt(); i = 1;while(i) {printf("\n先序遍历二叉树(递归按y键,): ");fflush(stdin);scanf("%c",&ch);if(ch == 'y') inorder(bt);printf("\n");}3、实验结果:建立二叉树,输入结点对应的编号和值,编号和值之间用逗号隔开i,x = 1,li,x = 2,ki,x = 3,yi,x = 4,bi,x =5,si,x = 7,ci,x =11,vi,x = 15,ri,x = 0,$先序遍历二叉树(递归按y键,): yl k b s v y c r四、实验心得体会通过这次实验,锻炼了自己编程的能力,加深了自己对有关知识的理解。
数据结构实验报告—二叉树数据结构实验报告—二叉树引言二叉树是一种常用的数据结构,它由节点和边构成,每个节点最多有两个子节点。
在本次实验中,我们将对二叉树的基本结构和基本操作进行实现和测试,并深入了解它的特性和应用。
实验目的1. 掌握二叉树的基本概念和特性2. 熟练掌握二叉树的基本操作,包括创建、遍历和查找等3. 了解二叉树在实际应用中的使用场景实验内容1. 二叉树的定义和存储结构:我们将首先学习二叉树的定义,并实现二叉树的存储结构,包括节点的定义和节点指针的表示方法。
2. 二叉树的创建和初始化:我们将实现二叉树的创建和初始化操作,以便后续操作和测试使用。
3. 二叉树的遍历:我们将实现二叉树的前序、中序和后序遍历算法,并测试其正确性和效率。
4. 二叉树的查找:我们将实现二叉树的查找操作,包括查找节点和查找最大值、最小值等。
5. 二叉树的应用:我们将探讨二叉树在实际应用中的使用场景,如哈夫曼编码、二叉搜索树等。
二叉树的定义和存储结构二叉树是一种特殊的树形结构,它的每个节点最多有两个子节点。
节点被表示为一个由数据和指向其左右子节点的指针组成的结构。
二叉树可以分为三类:满二叉树、完全二叉树和非完全二叉树。
二叉树可以用链式存储结构或顺序存储结构表示。
- 链式存储结构:采用节点定义和指针表示法,通过将节点起来形成一个树状结构来表示二叉树。
- 顺序存储结构:采用数组存储节点信息,通过计算节点在数组中的位置来进行访问和操作。
二叉树的创建和初始化二叉树的创建和初始化是二叉树操作中的基础部分。
我们可以通过手动输入或读取外部文件中的数据来创建二叉树。
对于链式存储结构,我们需要自定义节点和指针,并通过节点的方式来构建二叉树。
对于顺序存储结构,我们需要定义数组和索引,通过索引计算来定位节点的位置。
一般来说,初始化一个二叉树可以使用以下步骤:1. 创建树根节点,并赋初值。
2. 创建子节点,并到父节点。
3. 重复步骤2,直到创建完整个二叉树。
《数据结构》第六次实验报告学生姓名学生班级学生学号指导老师一、实验内容1) 采用二叉树链表作为存储结构,完成二叉树的建立,先序、中序和后序以及按层次遍历的操作,求所有叶子及结点总数的操作。
2) 输出树的深度,最大元,最小元。
二、需求分析遍历二叉树首先有三种方法,即先序遍历,中序遍历和后序遍历。
递归方法比较简单,首先获得结点指针如果指针不为空,且有左子,从左子递归到下一层,如果没有左子,从右子递归到下一层,如果指针为空,则结束一层递归调用。
直到递归全部结束。
下面重点来讲述非递归方法:首先介绍先序遍历:先序遍历的顺序是根左右,也就是说先访问根结点然后访问其左子再然后访问其右子。
具体算法实现如下:如果结点的指针不为空,结点指针入栈,输出相应结点的数据,同时指针指向其左子,如果结点的指针为空,表示左子树访问结束,栈顶结点指针出栈,指针指向其右子,对其右子树进行访问,如此循环,直至结点指针和栈均为空时,遍历结束。
再次介绍中序遍历:中序遍历的顺序是左根右,中序遍历和先序遍历思想差不多,只是打印顺序稍有变化。
具体实现算法如下:如果结点指针不为空,结点入栈,指针指向其左子,如果指针为空,表示左子树访问完成,则栈顶结点指针出栈,并输出相应结点的数据,同时指针指向其右子,对其右子树进行访问。
如此循环直至结点指针和栈均为空,遍历结束。
最后介绍后序遍历:后序遍历的顺序是左右根,后序遍历是比较难的一种,首先需要建立两个栈,一个用来存放结点的指针,另一个存放标志位,也是首先访问根结点,如果结点的指针不为空,根结点入栈,与之对应的标志位也随之入标志位栈,并赋值0,表示该结点的右子还没有访问,指针指向该结点的左子,如果结点指针为空,表示左子访问完成,父结点出栈,与之对应的标志位也随之出栈,如果相应的标志位值为0,表示右子树还没有访问,指针指向其右子,父结点再次入栈,与之对应的标志位也入栈,但要给标志位赋值为1,表示右子访问过。
如果相应的标志位值为1,表示右子树已经访问完成,此时要输出相应结点的数据,同时将结点指针赋值为空,如此循环直至结点指针和栈均为空,遍历结束。
三、详细设计源代码:#include<stdio.h>#define MAX 100 //表示栈的最大容量#define FULL 99//表示栈满#define EMPTY -1//表示栈空typedef struct Tnode //定义结点{char data;//存储结点数据struct Tnode *left;//定义结点左子指针struct Tnode *right;//定义右子指针}Tnode,*Pnode;//声明Tnode类型的变量和指针typedef struct Stack//定义栈{Pnode pnode[MAX];//存放数据int p;//栈顶指针}Stack,*Pstack;//定义Stack类型的变量和指针void Push (Pstack pstack,Pnode pnode)//入栈{pstack->p ++;pstack->pnode[pstack->p] = pnode;//赋值}Pnode Pop(Pstack pstack)//出栈{return pstack->pnode[pstack->p--];}Pnode Top (Pstack pstack)//看栈顶元素{return pstack->pnode[pstack->p];}int Isempty (Pstack pstack)//栈判空{if(pstack->p==EMPTY)return 1;elsereturn 0;;}int Isfull (Pstack pstack )//栈满{if (pstack ->p==FULL)return 1;elsereturn 0;}void Initstack (Pstack pstack)//初始化栈{pstack->p=EMPTY;}void Inittnode(Pnode root,Pnode left,Pnode right,char data)//初始化结点{root->left=left;root->right = right;root->data = data;}void PreorderR(Pnode proot)//递归先序遍历算法{if(proot){printf("%2c",proot->data);PreorderR(proot->left);PreorderR(proot->right);}}void InorderR(Pnode proot)//递归中序遍历算法{if(proot){InorderR(proot->left);printf("%2c",proot->data);InorderR(proot->right);}}void PostorderR(Pnode proot)//递归后序遍历算法{if(proot){PostorderR(proot->left);PostorderR(proot->right);printf("%2c",proot->data);}}void PreorderI(Pnode proot,Pstack pstack)//非递归先序遍历算法{Initstack(pstack);//初始化栈while(proot||!Isempty(pstack))//如果栈空并且结点指针空,则结束循环{if(proot){printf("%2c",proot->data);if(Isfull(pstack))//如果栈满不能执行入栈操作{printf("栈满,不能执行入栈操作!!");return;}Push(pstack,proot);//入栈proot=proot->left;//指针指向左子}else{if(Isempty(pstack))//栈空时不能出栈{printf("栈空,不能执行出栈操作!!");return;}proot = Pop(pstack);//执行出栈操作proot=proot->right;//指针指向右子}}}void InorderI(Pnode proot,Pstack pstack)//非递归中序遍历算法{Initstack(pstack);//初始化栈while(proot||!Isempty(pstack))//循环结束条件{if(proot){if(Isfull(pstack)){printf("栈满,不能执行入栈操作!!");return;}Push(pstack,proot);//执行入栈操作proot = proot->left;//指针指向左子}else{if(Isempty(pstack)){printf("栈空,不能执行出栈操作!!");return ;}proot = Pop(pstack);//出栈printf("%2c",proot->data);//打印数据proot=proot->right;//指针指向右子}}}void PostorderI(Pnode proot,Pstack pstack)//非递归后续遍历算法{int flags[MAX];//定义标志位栈int p =-1;//初始化标志位栈int flag;//存放标志位Initstack(pstack);//初始化栈while(proot||!Isempty(pstack))//循环结束条件{if(proot){if(Isfull(pstack)){printf("栈满,不能执行入栈操作!!");return ;}flags[++p] = 0;//标志位置0,并入栈Push(pstack,proot);//结点入栈proot=proot->left;//指针指向左子}else{proot = Pop(pstack);//指针出栈flag = flags[p--];//相应标志位出栈if(flag==0)//如果标志位为0表示右子还未访问过{flag =1;//将标志位置1,右子已访问flags[++p] = flag;//标志位入栈Push(pstack,proot);//结点入栈proot = proot->right;//指针指向右子}else{printf("%2c",proot->data);//打印数据proot = NULL;//将结点指针置空}}}}void main (){Tnode A,B,C,D,E,F,G;//声明结点变量Stack stack;//声明栈Inittnode(&A,&B,&C,'A');//初始化结点Inittnode(&B,NULL,&D,'B');Inittnode(&C,&E,&F,'C');Inittnode(&D,NULL,NULL,'D');Inittnode(&E,NULL,NULL,'E');Inittnode(&F,&G,NULL,'F');Inittnode(&G,NULL,NULL,'G');printf("你定义的树的结构是:\n");/*一下是调用相应的函数输出遍历结果*/printf("A(B(D)C(E F(G)))\n");printf("=====================下面是遍历结果====================\n");printf("=====================递归先序遍历:====================\n");PreorderR(&A);printf("\n");printf("=====================非递归先序遍历:==================\n");PreorderI(&A,&stack);printf("\n");printf("=====================递归中序遍历:====================\n");InorderR(&A);printf("\n");printf("=====================非递归中序遍历:==================\n");InorderI(&A,&stack);printf("\n");printf("=====================递归后序遍历:====================\n");PostorderR(&A);printf("\n");printf("=====================非递归后序遍历:==================\n");PostorderI(&A,&stack);printf("\n");}五、遇到的问题及解决办法这部分我主要遇到如下两个问题,其内容和解决方法如下所列:执行程序时程序停止运行,其效果如图:解决方法:看到程序停止运行,推测可能的原因:遇到死循环、参数设置不合理或者结构体没有造好。