应用地电学B课件:EM7-大地电磁测深法-3
- 格式:pptx
- 大小:99.55 MB
- 文档页数:58
大地电磁法及其应用狭义电磁法:前身:磁法、大地电流法(Telluric)(目标:探测地球构造)。
主体:大地电磁法(MT)及有关技术(MT,Magneto-telluric)。
广义电磁法:磁法、电法、电磁法。
大地电磁测深法是以天然电磁场为场源来研究地球内部电性结构的一种重要的地球物理手段。
测深方法:重磁电震。
非地震方法:重磁电(重力+广义的电磁类)。
大地电磁是重要的非地震测深方法研究对象:地球内部的电性结构(电导率结构)。
物理原理:宏观电磁理论(有耗媒质中的低频电磁波理论)。
大地电磁测深的优缺点优点不受高阻层屏蔽、对高导层分辨能力强;横向分辨能力较强;资料处理与解释技术成熟;勘探深度大、勘探费用低、施工方便;缺点体积效应,反演的非唯一性较强(跟地震方法相比)纵向分辨能力随着深度的增加而迅速减弱大地电磁法(MT)是以天然电磁场为场源来研究地球内部电性结构的一种重要的地球物理手段。
基本原理:依据不同频率的电磁波在导体中具有不同趋肤深度的原理,在地表测量由高频至低频的地球电磁响应序列,经过相关的数据处理和分析来获得大地由浅至深的电性结构。
大地电磁法原理示意图大地电磁法野外观测装置2、理论背景理论基础:麦克斯韦方程3大地电磁的理论基础:正演问题需要一个信号激发源需要地表响应的观测数据还需要掌握模型在源作用下地表响应产生的物理过程:这就是正演正演指的是对于一个给定的模型,在一定激发源的作用下,根据一定的物理原理求其响应的过程。
大地电磁正演过程两大假设:1)激励场源:垂直入射到地表的均匀平面电磁波2)地球模型:水平层状导电介质视电阻率和阻抗相位的定义横电波横磁波:场的极化模式横电波(TE ) :垂直于传播方向的场分量只有电场;横磁波(TM ) :垂直于传播方向的场分量只有磁场;大地电磁测深中只研究场源为横电磁波的情况大地电磁测深中常说的极化模式是以场源的极化方式来区分的,并且这种区分一般只在二维情况下才有意义。
2.1 电磁法勘探--可控源音频大地电磁测深法(CSAMT)由于天然场源的随机性和信号微弱,MT 法需要花费巨大努力来记录和分析野外数据。
为克服MT 法的这个缺点,加拿大多伦多大学教授 D.W.Strangway 和他的学生Myron Goldstein 提出了利用人工(可控)场源的音频大地电磁法(CSAMT )。
这种方法使用接地导线或不接地回线为场源,在波区测量相互正交的电、 磁场切向分量, 并计算卡尼亚电阻率,以保留AMT 法的一些数据解释方法。
自20世纪70年代中期, CSAMT 法得到实际应用, 一些公司相继生产用于CSAMT 法测量的仪器和应用解释软件。
进入80年代后,该方法的理论和仪器得到很大发展,应用领域也扩展到普查、 勘探石油、 天然气、 地热、 金属矿产、 水文、 工程、 环境保护等各个方面, 从而成为受人重视的一种地球物理方法。
虽然CSAMT 法属于一种人工源的频率电磁深测, 但和通常的频率域电磁测深不同。
这主要因为CSAMT 法测量两个相互垂直的电磁场切向分量计算卡尼亚电阻率, 因而具有较强的抗干扰能力, 且更容易获得对地电变化较灵敏的相位差信息; 又由于波区电磁场十分接近平面波, 因而其资料处理、 解释也较为简便, 可以保留AMT 法中的许多解释方法。
CSAMT 和AMT 或MT 亦有不同, 根本原因是CSAMT 法使用了人工场源,因而极化方向明显,信噪比高,易于观测。
但是,由于使用了人工场源, CSAMT 法必然受场源效应影响, 这主要包括非平面波效应、 场源附加效应、 阴影效应和测深通道的弯曲。
2.2.1 CSAMT 基本理论CSAMT 有2种常用的场源——水平电偶极子和垂直磁偶极子,此处注重讨论其场的特征和快速计算方法。
2.2.1.1水平层状半空间上水平电偶极子的电磁场如图2.2.1所示, N 层水平层状介质中第n 层的电阻率和层厚度分别记为ρn 和h n 。
水平电偶极子(接地导线)位于层状介质表面,偶极矩为P=IdL (I 为谐变电流)。
席振铢作为大地电磁测深的场源——大地电磁场大地电磁场((又称天然场然场),),),具有很宽的频率范围具有很宽的频率范围具有很宽的频率范围,,它主要由太阳风与地球磁层地球磁层、、电离层之间复杂的相互作用电离层之间复杂的相互作用,,以及雷电活动等这些地球外层空间场源引起的区域性活动等这些地球外层空间场源引起的区域性,,乃至全球性的天然交变电磁场全球性的天然交变电磁场,,不同频率的电磁场相互迭加在一起迭加在一起,,是一个非常复杂的电磁振荡是一个非常复杂的电磁振荡。
大地电磁场入射到地下时磁场入射到地下时,,一部分被介质吸收衰减一部分被介质吸收衰减;;一部分反射到地面分反射到地面。
它带有反映地下介质电性特征的电磁场信息磁场信息,,人们通过观测地表的电人们通过观测地表的电、、磁场分量磁场分量,,来研究地下地质结构及其分布特征。
磁场电场(mv/km)频率(Hz)随着频率的降低,勘探深度在增加,这就是频率测深的原理。
埋深埋深、、产状布置测网尽量规整、、②尽量包含所有的测区地质信息尽量包含所有的测区地质信息。
网度越小越好网度越小越好。
、测深工作频率范围和电偶极距长度帮助后期资料处理与分析帮助后期资料处理与分析;;③选择工作参数电磁噪声比较平静电磁噪声比较平静,,各种人文干扰不严重各种人文干扰不严重;;选择测区内典型地质剖面;;④有一定规模的目标体存在有一定规模的目标体存在;;⑤尽量选择地形开阔尽量选择地形开阔、、起伏平野外工作方法技术1、电偶极子方向相互垂直电偶极子方向相互垂直,,要用罗盘仪定向要用罗盘仪定向。
2、电偶极子的长度用测绳测量电偶极子的长度用测绳测量,,误差误差<0.5<0.5<0.5米米。
3、磁传感器磁传感器((磁棒磁棒))应距前置放大器大于应距前置放大器大于55米,干扰两个磁棒要埋在地下干扰两个磁棒要埋在地下,,保证其平稳保证其平稳,,用罗盘仪定向使用罗盘仪定向使Hx 磁棒相互垂直磁棒相互垂直,,误差控制在误差控制在11度,且水平且水平。
大地电磁测深———探测地球深部电性和物质状态的一种有效手段陈乐寿教授,中国地质大学,北京100083关键词 大地电磁测深 地壳 地幔 良导低阻层 电阻率 作者全面综述了一种极具发展前景的探测地球深部结构和物质状态的手段,它是以天然大地电磁场为场源,以地球电磁感应效应为基础,可以面对多方面应用需求的一种方法,即大地电磁测深。
介绍了地球电磁场的特征和方法的基本原理,随后评述了大地电磁测深提出以来几项突破性的进展。
最后给出了大地电磁测深的几方面标志性应用。
1前 言早在19世纪初,人们就观测到,在固体地球表层,大气和海洋中,都有电流流动,这种天然的电场称为大地电场,它的方向和强度都是随时间变化的。
交变的电场总伴随有交变的磁场,这统称为地球的大地电磁场。
它是本文中介绍的大地电磁测深的天然场源[1]。
大地电磁场变化可分为日变化、湾扰和微变化,后者又含有高频大地电磁场变化和大地电磁脉动。
大地电磁测深作为场源,利用的主要是大地电磁脉动,它们的变化周期在0.1~1500s范围内。
大地电磁场的起因主要来自太阳辐射在高空形成的电离层,和其中产生的电磁扰动;只有高频大地电磁场变化部分除外,它是由位于赤道上空的一种称为雷暴系统的局部天气系统引发的,它是后面要提到的声频大地电磁法(AMT)的场源,周期小于1s[2]。
大地电磁测深(MT)是地球物理学中地球电磁感应学分支学科中的一种重要方法,是在20世纪50年代初由法国学者L·卡尼尔(L.Cagniard)[3]及前苏联学者A ·N·吉洪诺夫(A.N.Tikhonov)[4]几乎同时分别独立提出的。
这种方法是一种以前述天然存在于地球中的呈区域性分布的交变电磁场为场源的电磁测深方法。
如上所述,此大地电磁场具有很大的能量和极宽的频带范围,可以穿过巨厚的岩石圈,为研究几十乃至过百公里深的地壳与上地幔提供信息。
这种深测方法不需要大功率的供电设备,又有如此大的深测深度,自然受到人们的极度关注。
大地电磁测深简介大地电磁测深法(Magnetotelluric Sounding),简称MT,是前苏联学者Tikhonov(1950)和法国学者Cagniard(1953)提出来的,利用天然交变电磁场研究地球电性结构的一种地球物理勘探方法,探测深度随电磁场的频率而异,浅可几百米,深可达数百公里。
国内测量频率一般为320-0.00055Hz范围。
在我国有近30-40年的发展历史,在探测地壳和上地幔的物质结构,普查石油天然气、煤田、地热以及寻找地下水和金属矿产等方面不可缺少的地球物理勘探方法之一。
目前国内使用的电磁法仪器主要有:加拿大凤凰公司的V5-2000型仪器、V8型仪器据说也可以用;德国Metronix公司生产的GMS-07e、08e综合电磁法仪;桔灯的ather电磁仪;美国Zonge公司的公司的GDP32Ⅱ电法工作站。
不极化电极是地球物理勘探各类电法中不可缺少的设备。
国内外常用的主要分为液体和固体两大类,从事物探工作的人员都应该不陌生。
不极化电极通常实用金属盐-金属作为电化学反应的原理来抵消极化效应,两个电极之间极差越小代表电极质量越好,测量的数据所携带的误差也就越小。
液体不极化电极主要使用硫酸铜-铜电极,此为1937年苏联科学家谢苗诺夫发明的装置,也是最早的不极化电极。
需要10小时以内更换硫酸铜溶液以保证溶液的浓度始终保持在一定水平。
它使用过程中溶液浓度不断的下降,带来的影响是极差不断的增加,当然实际工作中不会再次测量极差,所以在野外实际测量中使用也特别广泛,但由此带入的电阻率、极化率等参数误差有多少很难去追究。
固体不极化电极主要有氯化银、氯化镉、氯化汞等电极,均为外国科学家发明。
在长期的使用工程中,也发现其中有很多弊端,寿命短,极差大。
直到1970年前后发过科学家研制出Pb-Pbcl2固体不极化电极,电极的研究才到达巅峰,此后再无优于该类型的电极出现,显著的极差小、稳定好、寿命长、稳定好的各类优点,使得国内外物探工作基本均选用该类型电极。