导数练习题及答案
- 格式:docx
- 大小:19.27 KB
- 文档页数:5
精选文档章末检测一、选择题1.已知曲线y= x2+ 2x- 2 在点 M 处的切线与x 轴平行,则点M 的坐标是 ()A . (- 1,3)B .( -1,- 3)C. (- 2,- 3)D. (- 2,3)答案 B分析∵ f′ (x)= 2x+ 2=0,∴ x=- 1.f(- 1)= (- 1)2+ 2× (- 1)- 2=- 3.∴ M(- 1,- 3).2.函数 y=x4- 2x2+ 5 的单一减区间为()A . (-∞,- 1)及 (0,1)B. (- 1,0)及 (1,+∞ )C. (- 1,1)D. (-∞,- 1)及 (1,+∞ )答案 A分析y′= 4x3-4x= 4x(x2- 1),令 y′<0 得 x 的范围为 (-∞,- 1)∪ (0,1) ,应选 A. 3.函数 f(x)=x3+ax2+ 3x- 9,在 x=- 3 时获得极值,则 a 等于 ()A . 2B . 3C. 4 D . 5答案 D分析f′ (x)= 3x2+ 2ax+ 3.由 f(x)在 x=- 3 时获得极值,即f′( - 3)=0,即 27- 6a+ 3=0,∴ a=5.14.函数 y=ln的大概图象为()|x+ 1|答案 D分析函数的图象对于x=- 1 对称,清除 A 、 C,当 x>- 1 时, y=- ln(x+ 1)为减函数,应选 D.5.二次函数y= f(x)的图象过原点,且它的导函数y=f′ (x)的图象过第一、二、三象限的一条直线,则函数y= f(x) 的图象的极点所在象限是()A .第一B.第二C.第三D.第四答案 C分析∵ y= f′ (x)的图象过第一、二、三象限,故二次函数 y= f(x)的图象必定先降落再上涨且对称轴在原点左边,又由于其图象过原点,故极点在第三象限.6.已知函数 f(x)=- x3+ ax2- x- 1 在 (-∞,+∞ )上是单一函数,则实数 a 的取值范围是()A . (-∞,-3)B . [- 3, 3]C. ( 3,+∞ ) D . (- 3, 3)答案 B分析f′ (x)=- 3x2+ 2ax-1≤ 0 在 (-∞,+∞ )恒建立,= 4a2- 12≤ 0? - 3≤a≤ 3. 7.设 f(x)= xln x,若 f′( x0)= 2,则 x0等于 ()A . e2 B. ln 2ln 2C. 2 D. e答案 D分析f′ (x)= x·(ln x)′+ (x)′ ·ln x= 1+ ln x.∴f′ (x0)= 1+ ln x0= 2,∴l n x0= 1,∴x0=e.18.设函数f(x)=3x- ln x(x> 0),则 y=f(x)()1A .在区间 (e, 1)(1, e)内均有零点1B.在区间 (e, 1), (1, e)内均无零点C.在区间 (1e, 1)内无零点,在区间(1, e)内有零点D.在区间 (1e, 1)内有零点,在区间(1, e)内无零点答案 C分析 由题意得 f ′( x)=x -3,令 f ′ (x)>0 得 x > 3;令 f ′ (x)<0 得 0< x < 3; f ′ (x)= 0 得3xx =3,故知函数 f(x)在区间 (0,3) 上为减函数,在区间 (3 ,+ ∞ )为增函数,在点x =3 处有极1 > 0 e 1 1+ 1> 0.小值 1- ln 3< 0;又 f(1) =, f(e) = - 1 < 0,f( )=33 e 3e9.设函数 f(x)=sin θ3 3cos θ 25π )3 x +x + tan θ,此中 θ∈ [0,] ,则导数 f ′ (1) 的取值范围是 (212A . [ -2,2]B . [ 2, 3]C . [ 3, 2]D . [ 2,2]答案 D分析∵ f ′ (x)= x 2sin θ+ x · 3cos θ,13∴ f ′ (1)= sin θ+ 3cos θ= 2(2sin θ+ 2 cos θ)π=2sin( θ+3).5πππ 3π ∵0≤ θ≤12, ∴ 3≤θ+ 3≤ 4 ,∴ 2π π 2 ≤sin( θ+ )≤ 1.∴ 2≤ 2sin(θ+ )≤ 2.3 3 10.方程 2x 3 -6x 2+ 7= 0 在(0,2) 内根的个数有 ( )A . 0B . 1C . 2D . 3答案B分析令 f(x)= 2x 3- 6x 2+ 7,∴ f ′ (x)= 6x 2- 12x = 6x(x - 2),由 f ′( x)> 0 得 x > 2 或 x < 0;由 f ′ (x)< 0 得 0< x < 2;又 f(0)= 7> 0,f(2)=- 1<0, ∴ 方程在 (0,2)内只有一实根.二、填空题11.若曲线 y =kx +ln x 在点 (1, k)处的切线平行于 x 轴,则 k = ______.答案 - 1分析 求导得 y ′ = k +1,依题意 k + 1= 0,x 所以 k =- 1.12.已知函数 f(x)=- x 3+ax 在区间 (- 1,1)上是增函数,则实数 a 的取值范围是 ________.答案 a ≥ 3分析 由题意应有 f ′( x)=- 3x 2+ a ≥ 0,在区间 (- 1,1)上恒建立,则 a ≥ 3x 2,x ∈ (- 1,1)恒建立,故 a ≥ 3.13.在平面直角坐标系xOy 中,点 P 在曲线 C : y =x 3-10x + 3 上,且在第二象限内,已知曲线 C 在点 P 处的切线的斜率为 2,则点 P 的坐标为 ________.答案(2,15)分析 y ′ = 3x 2-10= 2? x = ±2,又点 P 在第二象限内, ∴ x =- 2,得点 P 的坐标为 (- 2,15) 14.函数 f(x)= x 3+ ax 2+ bx + a 2,在 x = 1 时有极值 10,那么 a ,b 的值分别为 ________.答案 4,- 11分析f ′ (x)= 3x 2+ 2ax + b , f ′(1) = 2a + b + 3= 0,f(1)= a 2+ a + b +1= 10,2a + b =- 3 a =- 3 a = 4 ,当 a =- 3 时, x = 1 不是极值点, a ,b 的值分,,或b =- 11 a 2+ a + b = 9 b = 3别为 4,- 11. 三、解答题23 ax 2+ b(- 1≤ x ≤ 1)的最大值为 1,最小值为- 6,求常数 a , 15.设 <a<1 ,函数 f(x)= x3- 2 32b. 解令 f ′ (x)= 3x 2- 3ax =0,得 x 1 =0, x 2= a.f(0)= b , f(a)=- a3 + b , f(- 1)=- 1- 3a +b ,2 23 f(1)= 1- 2a + b23a<0,由于 <a<1 ,所以 1-32故最大值为 f(0)= b =1,所以 f( x)的最小值为 f(- 1)=- 1-3a +b =- 3a , 2 23 6 ,所以 a = 6所以- a =-2 3 .2故 a = 6, b = 1.316.若函数 f(x)= 4x 3- ax +3 在 [- 1, 1 ]上是单一函数,则实数 a 的取值范围为多少?2 2 解 1 11 1 f ′(x)=12x 2- a ,若 f(x)在 [ - , ]上为单一增函数,则 f ′ ( x)≥ 0 在 [ - , ] 上恒建立,2 2 2 2即 12x 2- a ≥ 0 在[-12, 12] 上恒建立,∴ a ≤ 12x 2在 [ -1, 1] 上恒建立, ∴ a ≤(12x 2 )min =0. 2 22∴a = 0 切合题意.1 1若 f(x)在 [ - 2,2] 上为单一减函数,1 1则 f ′( x)≤ 0,在 [ - 2, 2] 上恒建立,即 12x 2- a ≤ 0 在[- 1, 1] 上恒建立,2 2∴ a ≥ 12x 2 在 [ -12, 12] 上恒建立,∴ a ≥ (12x 2)max = 3.当 a = 3 时, f ′(x)= 12x 2 -3= 3(4x 2- 1)≤ 01 恒建立 (且只有 x = ± 时 f ′ (x)= 0).2所以, a 的取值范围为 a ≤ 0 或 a ≥ 3.17.某乡村拟修筑一个无盖的圆柱形蓄水池(不计厚度 ).设该蓄水池的底面半径为 r 米,高为 h 米,体积为 V 立方米.假定建筑成本仅与表面积相关,侧面的建筑成本为 100 元/ 平方米,底面的建筑成本为 160 元 / 平方米,该蓄水池的总建筑成本为 12 000 π元 ( π为圆周率 ) .(1) 将 V 表示成 r 的函数 V(r ),并求该函数的定义域;(2) 议论函数 V(r)的单一性,并确立 r 和 h 为什么值时该蓄水池的体积最大.解 (1) 由于蓄水池侧面的总成本为 100·2rh π= 200πrh(元 ),底面的总成本为 160πr 2 元,所以蓄水池的总成本为 (200 πrh + 160πr 2 )元.又依据题意 200πrh +160πr 2= 12 000 π,所以 h = 1(300-4r 2),5rπ进而 V(r)= πr 2h = 5(300r - 4r 3).由于 r>0 ,又由 h>0 可得 r<53,故函数 V(r )的定义域为 (0,5 3).π(2) 由于 V(r )=5(300r - 4r 3),故 V ′ (r)= π(300-12r 2). 5令 V ′ (r)= 0,解得 r 1= 5, r 2=- 5(由于 r 2=- 5 不在定义域内,舍去).当 r ∈ (0,5)时, V ′(r )>0,故 V(r)在 (0,5)上为增函数;当 r ∈ (5,5 3)时, V ′ (r )<0 ,故 V(r )在 (5,5 3)上为减函数.由此可知, V(r )在 r = 5 处获得最大值,此时h =8.即当 r = 5, h = 8 时,该蓄水池的体积最大.17.统计表示, 某种型号的汽车在匀速行驶中每小时的耗油量 y(升 )对于行驶速度 x(千米 /时 )的函数分析式能够表示为:y = 1x 3-3x + 8(0< x ≤ 120).已知甲、乙两地相距 100 千128 00080米.(1) 当汽车以 40 千米 /时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2) 当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?解 (1)当 x = 40 时,汽车从甲地到乙地行驶了100= 2.5 小时,40要耗油 (1 × 403- 3× 40+ 8)×= 17.5(升 ).128 000 80(2) 当速度为 x 千米 /小不时,汽车从甲地到乙地行驶了100小时,设耗油量为 h(x)升,x依题意得 h(x)= (1 x 3- 3 x + 8).100= 1 x 2+ 800-15(0< x ≤120), 128 000 80 x 1280 x 4h ′ (x)= x - 8002 = x3- 803 2 (0< x ≤ 120).640 x 640x令 h ′ (x)= 0,得 x = 80.当 x ∈ (0,80) 时, h ′ (x)< 0, h(x)是减函数;当 x ∈ (80,120) 时, h ′ (x)> 0, h(x)是增函数.∴当 x = 80 时, h(x)取到极小值 h(80)= 11.25. 由于 h(x)在 (0,120] 上只有一个极值,所以它是最小值.答 当汽车以 40 千米 / 时的速度匀速行驶时,从甲地到乙地耗油 17.5 升.当汽车以 80 千米/ 时的速度匀速行驶时,从甲地到乙地耗油最少,最少为 11.25 升.18.已知函数 f(x)= 1x 3- aln x -1(a ∈ R ,a ≠ 0).3 3(1) 当 a =3 时,求曲线 y = f(x)在点 (1, f(1)) 处的切线方程; (2) 求函数 f(x)的单一区间;(3) 若对随意的 x ∈ [1,+∞ ),都有 f(x)≥ 0 建立,求 a 的取值范围.解 (1)当 a = 3 时, f(x)=13x3- 3ln x -13, f(1)= 0,∴ f ′ (x)= x 2- 3, ∴ f ′ (1) =-2, x∴曲线 y = f(x)在点 (1, f(1)) 处的切线方程 2x + y - 2=0.(2) f ′ (x)=x 2- a = x 3- a(x > 0).x xx 3 -a①当 a < 0 时, f ′ ( x)=x > 0 恒建立,函数 f(x)的递加区间为 (0,+ ∞ ).②当 a > 0 时,令 f ′ (x)= 0,解得 x =3a 或 x =- 3a(舍 ).x3 a) 3 3(0, a ( a ,+ ∞ )f ′ (x) - 0 + f(x)减极小值增∴函数 f(x) 的递加区间为 (3a ,+ ∞ ),递减区间为 (0,3a)(3) 对随意的 x ∈ [1,+ ∞ ),使 f(x)≥0 建立,只要对随意的 x ∈ [1,+ ∞ ), f(x)min ≥ 0.①当 a < 0 时, f(x)在 [1,+ ∞ )上是增函数, ∴只要 f(1) ≥0,而 f(1) =1- aln 1 - 1= 0,3 3∴a < 0 知足题意,②当 0< a ≤ 1 时, 0<3a ≤ 1,f(x)在 [1,+ ∞ )上是增函数, ∴ 只要 f(1)≥ 0 而 f(1)= 1- aln 13-1= 0, 3∴0< a ≤ 1 知足题意;③当 a > 1 时, 3 a > 1,f(x)在 [1,3 a] 上是减函数, [ 3 a ,+ ∞ )上是增函数, ∴ 只要 f( 3a)≥ 03即可,而 f( a)< f(1) = 0, ∴a > 1 不知足题意;。
完整版)导数测试题(含答案)1.已知函数y=f(x)=x^2+1,则在x=2,Δx=0.1时,Δy的值为0.41.2.函数f(x)=2x^2-1在区间(1,1+Δx)上的平均变化率为4+4Δx。
3.设f′(x)存在,则曲线y=f(x)在点(x,f(x))处的切线与x 轴相交但不垂直。
4.曲线y=-1/x在点(1,-1)处的切线方程为y=x-2.5.在曲线y=x^2上,且在该点处的切线倾斜角为π/4的点为(2,4)。
6.已知函数f(x)=1/x,则f′(-3)=-1/9.7.函数f(x)=(x-3)ex的单调递增区间是(2,∞)。
8.“函数y=f(x)在一点的导数值为0”是“函数y=f(x)在这点取极值”的充要条件。
9.函数f(x)在开区间(a,b)内的极小值点有2个。
10.函数f(x)=-x^2+4x+7,在x∈[3,5]上的最大值和最小值分别是f(3)和f(5)。
11.函数f(x)=x^3-3x^2-9x+k在区间[-4,4]上的最小值为-71.12.速度为零的时刻是0,1,4秒末。
13.已知函数 $y=f(x)=ax^2+2x$,且 $f'(1)=4$,则 $a=3$。
14.已知函数 $y=ax^2+b$ 在点 $(1,3)$ 处的切线斜率为 $2$,则 $b=a+1$。
15.函数 $y=x e^x$ 的最小值为 $-1/e$。
16.有一长为 $16$ m 的篱笆,要围成一个矩形场地,则矩形场地的最大面积是 $64$ $m^2$。
17.(1) $y'=6x+\cos x$;(2) $y'=\dfrac{1}{(1+x)^2}$;(3)$y'=\dfrac{1}{x}-e^x$。
18.(1) 解方程 $x^2+4=x+10$ 得 $x=3$ 或 $x=-2$,故交点为 $(3,13)$ 或 $(-2,0)$;(2) 在交点 $(3,13)$ 处,抛物线的斜率为 $6$,故该点处的切线方程为 $y=6x-5$。
高考数学专题:导数大题专练附答案一、解答题 1.已知函数()()2ln 0f x a x ax a =+-> (1)求()f x 的最大值(2)若()0f x ≤恒成立,求a 的值 2.已知函数()1ln f x ax x =--,a R ∈. (1)讨论函数()f x 在区间()1,e 的极值;(2)若函数()f x 在1x =处取得极值,对()0,x ∀∈+∞,()2f x bx ≥-恒成立,求实数b 的取值范围.3.已知函数1()2ln f x x x x=+-. (1)求函数的单调区间和极值;(2)若12x x ≠且()()12f x f x =,求证:121x x <.4.已知a R ∈,函数()22e 2xax f x =+. (1)求曲线()y f x =在0x =处的切线方程 (2)若函数()f x 有两个极值点12,x x ,且1201x x ,(ⅰ)求a 的取值范围;(ⅱ)当9a <-时,证明:21x x <-<. (注: 2.71828e =…是自然对数的底数)5.设函数()()2()ln 1f x x a x x =++-,其中R a ∈.(1)1a =时,求曲线()y f x =在点()()1,1f 处的切线方程; (2)讨论函数()f x 极值点的个数,并说明理由; (3)若()0,0x f x ∀>成立,求a 的取值范围. 6.求下列函数的导数: (1)2cos x xy x -=; (2)()e 1cos 2x x y x =+-; (3)()3log 51y x =-.7.已知函数()e xf x kx =-,()()28ln ag x x x a R x=--∈.(1)当1k =时,求函数()f x 在区间[]1,1-的最大值和最小值;(2)当()0f x =在1,22⎡⎤⎢⎥⎣⎦有解,求实数k 的取值范围;(3)当函数()g x 有两个极值点1x ,()212x x x <,且11x ≠时,是否存在实数m ,总有()21221ln 51a x m x x x >--成立,若存在,求出实数m 的取值范围,若不存在,请说明理由.8.已知函数()e (1)()x f x a x a -=++∈R . (1)当1a =时,求函数()y f x =的极值;(2)若函数()()ln e g x f x x =-+-在[1,)+∞有唯一的零点,求实数a 的取值范围. 9.已知函数()()1ln f x x x =+ (1)求函数()f x 的单调区间和极值;(2)若m Z ∈,()()1m x f x -<对任意的()1,x ∈+∞恒成立,求m 的最大值. 10.已知函数2()e 1)(x f x ax x =-+.(1)求曲线()y f x =在点(0,(0))f 处的切线的方程; (2)若函数()f x 在0x =处取得极大值,求a 的取值范围; (3)若函数()f x 存在最小值,直接写出a 的取值范围.【参考答案】一、解答题1.(1)22ln 2ln 2a a --+ (2)2a = 【解析】 【分析】(1)求导求解单调性即可求出最值;(2)要使()0f x ≤成立必须()22ln 2ln 20a a a ϕ=--+≤,求单调性求解即可. (1)因为()()2ln 0f x a x ax a =+->,所以()()20axf x a x-'=>, 由()0f x '>得20x a <<;()0f x '<得2x a>;所以()f x 在20,a⎛⎫⎪⎝⎭上单调递增,在2,a ⎛⎫+∞ ⎪⎝⎭上单调递减,故()222ln 2ln 2max f x f a a a ⎛⎫==--+ ⎪⎝⎭,即()()22ln 2ln 20a a a a ϕ=--+>.(2)要使()0f x ≤成立必须()22ln 2ln 20a a a ϕ=--+≤, 因为()2a a aϕ-'=,所以当02a <<,()0a ϕ'<;当2a >时,()0a ϕ'>. 所以()a ϕ在()0,2上单调递减,在()2,+∞上单调递增. 所以()()20min a ϕϕ==,所以满足条件的a 只有2,即2a =. 【点睛】用导数求函数的单调区间或判断函数的单调性问题时应注意如下几方面: (1)在利用导数讨论函数的单调区间时,首先要确定函数的定义域; (2)不能随意将函数的2个独立的单调递增(或递减)区间写成并集形式; (3)利用导数解决含参函数的单调性问题时,一般将其转化为不等式恒成立问题,解题过程中要注意分类讨论和数形结合思想的应用. 2.(1)答案见解析 (2)211e b ≤-【解析】 【分析】(1)先讨论()f x 的单调性再确定()f x 在()1,e 上的极值(2)利用极值点处的导数为求出1a =,代入恒成立的不等式中,用分离参数法求b 的取值范围 (1)在区间()0,∞+上, ()11ax f x a xx-'=-=, 当0a ≤时, ()0f x '<恒成立, ()f x 在区间()1,e 上单调递减, 则()f x 在区间()1,e 上无极值; 当0a >时,令()0f x '=得1x a=, 在区间10,a⎛⎫ ⎪⎝⎭上,()0f x '<,函数()f x 单调递减,在区间1,a⎛⎫+∞ ⎪⎝⎭上,()0f x '>,函数()f x 单调递增.若11e a <<,即11e a<<,则()f x 在区间()1,e 上极小值1ln f a a ⎛⎫= ⎪⎝⎭若1a ≥或10ea <≤,即11a≤或1e a≥,则()f x 在区间()1,e 上无极值 (2)因为函数()f x 在1x =处取得极值,所以()10f '=,解得1a =,经检验可知满足题意 由已知()2f x bx ≥-,即1ln 2x x bx --≥-, 即1ln 1+xb xx-≥对()0,x ∀∈+∞恒成立, 令()1ln 1x g x xx =+-,则()22211ln ln 2x x g x x x x-='---=, 当()20,e x ∈时,()0g x '<;当()2e ,x ∈+∞时,()0g x '> 所以()g x 在()20,e 上单调递减,在()2e ,+∞上单调递增,所以()()22min 1e 1e g x g ==-, 即211e b ≤-. 3.(1)减区间()0,1,增区间()1,+∞,极小值3, (2)证明见解析 【解析】 【分析】(1)依据导函数与原函数的关系去求函数的单调区间和极值即可; (2)构造新函数利用函数单调性去证明121x x <即可. (1)1()2ln (0)f x x x x x =+->,则()()2221111()2(0)x x f x x x x x +-'=--=> 由()0f x '>得1x >,由()0f x '<得01x <<, 即()f x 减区间为()0,1,增区间为()1,+∞,在1x =时()f x 取得极小值(1)2103f =+-=,无极大值. (2)不妨设12x x <且()()12f x f x a ==,则101x <<,21>x ,3a >,2101x << 令1()()2ln (0)h x f x a x x a x x=-=+-->,则()()120h x h x ==()()2221111()2x x h x x x x +-'=--=, 则当1x >时()0h x '>,()h x 单调递增;当01x <<时()0h x '<,()h x 单调递减 由()222212ln 0x x h x a x +=--=,得22212ln a x x x =+- 则2222222222211ln 2ln 2ln 1x x x x x h x x x x x ⎛⎫++-+-=-+ ⎪⎛⎫=⎪⎝⎝⎭⎭令21t x =,则222112ln 2ln (01)x x t t t x t -+=--<< 令()12ln (01)t m t t t t --<=<,则()()22211210t t tt m t -'=+-=> 即()12ln (01)t m t t t t--<=<为增函数,又()11100m =--=,则()12ln 0m t t tt --<=在(0,1)上恒成立.则222212ln 10x x x h x ⎛⎫+ ⎪⎝⎭=-<恒成立,则()211h h x x ⎛⎫⎪< ⎝⎭, 又01x <<时()h x 单调递减,101x <<,2101x <<则211x x >,故121x x <4.(1)(21y x =-+(2)(ⅰ)22e ,-;(ⅱ)证明见解析【解析】 【分析】(1)由导数的几何意义即可求解;(2)(ⅰ)原问题等价于12,x xa =-的两根,且1201x x ,从而构造函数())0g x x =>,将问题转化为直线y a =-与函数()g x 的图象有两个交点,且交点的横坐标大于0小于1即可求解;(ⅱ)由1e x x +≤,利用放缩法可得()()1112210x ax f x '++-=,即1x 2114x <<,从而可证21x x -<()21e 011x xx x +<<<-,然后利用放缩法可得()()1201,21i i i ix ax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,最后构造二次函数()(222m x ax a x =-++++21x x ->而得证原不等式. (1)解:因为()22e x f x ax '=+所以()02f '=()01f =,所以曲线()y f x =在0x =处的切线方程为(21y x =-+; (2)解:(ⅰ)因为函数()f x 有两个极值点12,x x ,所以12,x x 是关于x 的方程()22e 0x f x ax =+'的两根,也是关于x的方程a =-的两正根, 设())0g x x =>,则()g x '=, 令())224e 2e 0x x h x x x =->,则()28e xh x x '=,当0x >时,()0h x '>,所以()h x 在()0,∞+上单调递增,又104h ⎛⎫= ⎪⎝⎭,所以,当104x <<时,()0h x <,()0g x '<;当14x >时,()0h x >,()0g x '>,所以函数()g x 在10,4⎛⎫⎪⎝⎭上单调递减,在1,4⎛⎫+∞ ⎪⎝⎭上单调递增, 又因为1201x x ,所以()114g a g ⎛⎫<-<⎪⎝⎭,即22e a <-<- 所以a的取值范围是22e ,-;22e 9a <<-, 因为1e x x +≤,所以()()1112210x ax f x '++-=,所以()142a x +-,所以1x 2114x <<,所以211x x -<= 下面先证明不等式()21e 011x xx x+<<<-, 设()()2101e 1xx r x x x -=⋅<<+,则()()2222e 1x x r x x '=-+, 所以,当01x <<时,()0r x '<,()r x '在()0,1上单调递减,所以,()()01r x r <=,所以不等式()21e 011xxx x+<<<-成立, 因为12,x x ,()1201x x <<<是()22e 0x f x ax '=+=的两个根,所以()()01,2i f x i '==,又()21e 011x xx x+<<<-,所以()()1201,21ii i ixax f x i x +'⋅+->==-,即(()22201,2i i ax a x i -++++-=,设函数()(222m x ax a x =-++++x t ==因为((()2224261620a a a ∆=+++-=+-+->,且()00m >,()10m >,102t <<, 所以函数()m x 有两个不同的零点,记为α,()βαβ<,且01t αβ<<<<,因为()22616212e 201ta tf t at at t+++'=+-⋅+-=<-,且()00f '>,()10f '>,所以1201x x ,因为()m x 在()0,t 上单调递减,且()()10m x m α>=,所以10x t α<<<; 因为()m x 在(),1t 上单调递增,且()()20m x m β>=,所以21t x β<<<; 所以1201x x αβ<<<<<,所以21x x βα->-,因为βα-=又()109a -<<<-,所以βα-> 所以21x x-> 综上,21x x <-< 【点睛】关键点点睛:本题(2)问(ii )小题证明的关键是,利用1e x x +≤,进行放缩可得1x 21x x -<;再利用()21e 011xx x x +<<<-,进行放缩可得()()1201,21ii i ix ax f x i x+'⋅+->==-,从而构造二次函数()(222mx ax a x =-++++21x x ->5.(1)322ln230x y -+-=(2)当0a <时,函数()f x 有一个极值点; 当809a ≤≤时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点. (3)0,1【解析】 【分析】(1)将1a =代入函数()f x 中,得出函数()f x 的解析式,进而可以求出切点坐标,再利用导数的几何意义及点斜式即可求解;(2)根据已知条件,对a 进行分类讨论,利用导数法求函数极值的步骤及函数极值的定义即可求解;(3)根据()0,0x f x ∀>成立,转化为()min 0,0x f x ∀>即可,再利用第(2)的结论即可求解. (1)当1a =时,()2()ln 1f x x x x =++-()()21ln 1111ln 2f =++-=,所以切点为()1,ln2,()()11321,12111112f x x k f x ''=+-∴==+⨯-=++, 所以曲线()y f x =在点()()1,1f 处的切线的斜率为()312k f ='=, 所以曲线()y f x =在点()1,ln2处的切线的斜率切线方程为()3ln212y x -=-,即322ln230x y -+-= (2)由题意知函数()f x 的定义域为()1,-+∞,()()21212111ax ax a f x a x x x +-+=+-='++,令()()221,1,g x ax ax a x =+-+∈-+∞,(i )当0a =时,()10f x '=>,函数()f x 在()1,-+∞单调递增,无极值点 (ii )当0a >时,()Δ98a a =-,①当809a <≤时,()()Δ0,0,0g x f x '≤≥≥, 所以函数()f x 在()1,-+∞单调递增,无极值点; ②当89a >时,Δ0>,设方程2210ax ax a +-+=两根1212,,x x x x ==此时12x x <()121211111,,,110,12444x x x x g x +=-∴---=>-<<∴<->()()121,,,x x x ∴∈-+∞时,()()0,0g x f x '>>,函数()f x 单调递增;()12,x x x ∈时,()()0,0g x f x '<<,函数()f x 单调递减. ∴函数有两个极值点;③当0a <时,()Δ980a a =->,设方程2210ax ax a +-+=两根1212,,x x x x ==此时12x x >()12110,1x g x -=>∴-<<()11,x x ∴∈-时,()()0,0g x f x '>>,函数()f x 单调递增; ()1,x x ∈+∞时,()()0,0g x f x '<<,函数()f x 单调递减.∴函数有一个极值点;综上所述:当0a <时,函数()f x 有一个极值点; 当809a ≤≤时,函数()f x 无极值点; 当89a >时,函数()f x 有两个极值点. (3)由()0,0x f x ∀>成立等价于()min 0,0x f x ∀>≥即可. ①当809a ≤≤时,函数()f x 在()0,+∞上单调递增,()()00,0,f x =∴∈+∞时,()0f x >,符合题意;②当819a <≤时,由()00g >,得20x ≤,∴函数()f x 在()0,+∞上单调递增,又()()00,0,f x =∴∈+∞时,()0f x >,符合题意; ③当1a >时,由()00<g ,得20x >()20,x x ∴∈时, ()f x 单调递减,()()200,0,f x x =∴∈时,()0f x <时,不合题意;④当0a <时,设()()ln 1h x x x =-+,()0,x ∈+∞,时,()()110,11x h x h x x x =-=>∴+'+在()0,+∞上单调递增. ∴当()0,x ∞∈+时,()()00h x h >=,即()ln 1x x +<,可得()()()221f x x a x x ax a x <+-=+-,当11x a>-时,()210ax a x +-<,此时()0f x <,不合题意.综上,a 的取值范围是0,1. 【点睛】解决此题的关键是第一问利用导数的几何意义及点斜式即可,第二问主要是对参数进行分类讨论,再结合利用导数法求函数的极值的步骤即可,第三问主要将恒成立问题转化为最值问题再结合第二问的结论即可求解. 6.(1)'y ()31sin 2cos x x xx --=;(2)'y ()e 1cos sin 2ln 2x xx x =+--;(3)'y ()551ln 3x =-⋅.【解析】 【分析】根据导数的运算法则,对(1)(2)(3)逐个求导,即可求得结果. (1)因为2cos x x y x -=,故'y ()()()243sin 12cos 1sin 2cos x x x x x x x x x x ------==. (2)因为()e 1cos 2x x y x =+-,故'y ()e 1cos sin 2ln 2x xx x =+--.(3)因为()3log 51y x =-,故'y ()()155?51ln 351ln 3x x =⨯=--⋅. 7.(1)最大值为e 1-,最小值为1;(2)21e,?e 2⎡⎤⎢⎥⎣⎦; (3)(],1-∞-. 【解析】 【分析】(1)求得'()f x ,利用导数研究函数在区间上的单调性,再利用单调性求其最值即可;(2)分离参数并构造函数()e xh x x=,求其在区间上的值域即可求得参数的范围;(3)根据12,x x 是()g x 的极值点,求得12,,x x a 的等量关系以及取值范围,等价转化目标不等式,且构造函数()()212ln ,02m x m x x x x-=+<<,对参数进行分类讨论,利用导数研究其值域,即可求得参数范围.(1)当1k =时,()e xf x x =-,'()f x e 1x =-,令'()f x 0=,解得0x =,当()1,,0x ∈-时,()f x 单调递减,当()0,1x ∈时,()f x 单调递增; 又()()()111,01,1e 1ef f f -=+==-,且()()11f f >-, 故()f x 在[]1,1-上的最大值为e 1-,最小值为1. (2)令()e xf x kx =-0=,因为1,22x ⎡⎤∈⎢⎥⎣⎦,则0x ≠,故e xk x =,令()e 1,,22x h x x x ⎡⎤=∈⎢⎥⎣⎦,则'()h x ()2e 1 x x x-=, 故当1,12x ⎛⎫∈ ⎪⎝⎭,()h x 单调递减,当()1,2x ∈,()h x 单调递增, 又()()2111e,2e 22h h h ⎛⎫=== ⎪⎝⎭,且()122h h ⎛⎫> ⎪⎝⎭,故()h x 的值域为21e,?e 2⎡⎤⎢⎥⎣⎦,则要满足题意,只需21e,?e 2k ⎡⎤∈⎢⎥⎣⎦.即()h x 的取值范围为:21e,?e 2⎡⎤⎢⎥⎣⎦.(3)因为()28ln a g x x x x =--,'()g x 2228282a x x a x x x -+=+-=,因为()g x 有两个极值点12,x x ,故可得12126480,4,02a a x x x x ->+==>, 也即08a <<,且12124,2ax x x x +==. 因为11x ≠,12x x <,故()()10,11,2x ∈⋃,则()21221ln 51a x m x x x >--,即()()()211111124ln 5441x x x m x x x -⎡⎤>---⎣⎦-, 因为140x ->,故上式等价于()11112ln 11x x m x x >+-,即()21111112ln 01m x x x x x ⎡⎤-⎢⎥+>-⎢⎥⎣⎦,又当()0,1x ∈时,1101x x >-,当()1,2x ∈时,1101xx <-, 令()()212ln ,02m x m x x x x-=+<<,则'()m x 222mxx mx ++=, 当0m ≥时,'()m x 0>,故()m x 在()0,2单调递增,又()10m =, 故当()0,1x ∈时,()0m x <,当()1,2x ∈时,()0m x >,故不满足题意;当0m <时,令()22n x mx x m =++,若方程()0n x =对应的2440m =-≤时,即1m ≤-时,'()m x 0≤,()m x 单调递减, 又()10m =,故当()0,1x ∈时,()0m x >,当()1,2x ∈时,()0m x <,满足题意; 若2440m =->,即10m -<<时,又()y n x =的对称轴11x m=->,且开口向下, 又()1220n m =+>,不妨取1min ,2b m ⎧⎫=-⎨⎬⎩⎭, 故当()1,x b ∈,'()m x 0>,()m x 单调递增,又()10m =, 故此时()0m x >,不满足题意,舍去; 综上所述:m 的取值范围为(],1-∞-. 【点睛】本题考察利用导数研究函数值域,有解问题,以及利用导数处理恒成立问题;其中第三问中,合理的处理12,,x x a 以及m 多变量问题,以及构造函数,是解决本题的关键,属综合困难题. 8.(1)()f x 的极小值为2,无极大值; (2)(,e 1]-∞+ 【解析】 【分析】(1)当1a =时,求导分析()f x 的单调性,即可得出答案.(2)由题意可得()()ln e e ln e(1)x g x f x x ax a x x =-+-=-++-,求导得()g x ',从而可推出()g x '在(1,)+∞单调递增,(1)e 1g a '=+-,分两种情况讨论:①当e 10a +-,②当e 10a +-<,分析()g x 的单调性,即可得出答案.(1)当1a =时,()(1)xf x e x -=++,1()1xxxe f x e e --+'=-+=,令1e 0x -+>,得0x >, 令1e 0x -+<,得0x <,则()f x 单调递增区间为(0,)+∞,单调递减区间为(,0)-∞, ∴()f x 存在极小值为()02f =,无极大值; (2)()()ln e e (1)ln e e ln e(1)x x g x f x x a x x ax a x x =-+-=+-++-=-++-,则1()xg x e a x'=-+,令1()xh x e a x =-+,则221()x x e h x x -'=,由1x >得,21x >,210x x e ->,则()0h x '>,故()g x '在(1,)+∞单调递增,(1)e 1g a '=+-,①当e 10a +-,即e 1a +时,即(1,)x ∈+∞时,()0g x '>, ∴()g x 在(1,)+∞上单调递增,又(1)0g =, ∴当1x >时,函数()g x 没有零点, ②当e 10a +-<,即e 1a >+时, 由e e (1)x y x x =->,得e e 0x y '=->, ∴e e x x >,∴11()e e xg x a x a x x '=+->+-,e e e 0e e a a g a a a ⎛⎫'>⋅+-=> ⎪⎝⎭, 又∵e 1e ea >=,∴存在01,e a x ⎛⎫∈ ⎪⎝⎭,使得()00g x '=,当()01,x x ∈时,()0g x '<,()g x 单调递减, 又∵(1)0g =,∴当0(]1,x x ∈时,()0g x <,在()01,x 内,函数()g x 没有零点, 又∵()0,x x ∈+∞时,()0g x '>, ∴()g x 单调递增,又∵22e )e 1(ln e a a g a a a a a +-+>-=-+, 令2()e 1(1)>x k x x x =-+,()()e 2x s x k x x '==-,()e 2e 20x s x '=->->,∴()k x '在(1,)+∞上单调递增, 又∵(1)0k '>,∴1x >时,()0k x '>,()k x 在(1,)+∞上单调递增, ∴()(1)0k a k >>, ∴()0g a >, 又∵0eaa x >>, ∴由零点的存在定理可知存在()()101,,0x x a g x ∈=, ∴在()0,x a 内,函数()g x 有且只有1个零点, 综上所述,实数a 的取值范围是(,e 1]-∞+.9.(1)递增区间为2(e ,)-+∞,递减区间为2(0,e )-,极小值为2e --,没有极大值 (2)3 【解析】【分析】(1)由导数分析单调性后求解 (2)参变分离后,转化为最值问题求解 (1)函数()()1ln f x x x =+的定义域为(0,)+∞, 由()=ln 2f x x '+,令()=0f x '可得2e x -=,当2(0,)e x -∈时,()0f x '<,函数()()1ln f x x x =+在2(0,e )-上单调递减, 当2(e ,)x -∈+∞时,()0f x '>,函数()()1ln f x x x =+在2(e ,)-+∞上单调递增, ∴ 函数()()1ln f x x x =+的递增区间为2(e ,)-+∞,递减区间为2(0,e )-,函数()()1ln f x x x =+在2e x -=时取极小值,极小值为2e --,函数()()1ln f x x x =+没有极大值 (2)当()1,x ∈+∞时,不等式()()1m x f x -<可化为ln 1x x xm x +<-, 设ln ()1x x xg x x +=-,由已知可得[]min ()g x m <, 又()()()22ln 2(1)ln 2'ln 11()x x x x g x x x x x x +---==----, 令()ln 2(1)h x x x x =-->,则1'()10h x x=->,∴ ()ln 2h x x x =--在()1,+∞上为增函数,又(3)1ln30h =-<,(4)2ln 40h =->, ∴ 存在0(3,4)x ∈,使得0()0h x =,即002ln x x -= 当()01,x x ∈时,()0g x '<,函数ln ()1x x xg x x +=-在0(1,)x 上单调递减, 当0(,)x x ∈+∞时,()0g x '>,函数ln ()1x x xg x x +=-在0(,)x +∞上单调递增, ∴ []20000000min 00ln ()=()==11x x x x x g x g x x x x +-=--, ∴ 0m x <, ∴ m 的最大值为3. 10.(1)1y = (2)1(,)2-∞ (3)10,4⎛⎤ ⎥⎝⎦【解析】 【分析】(1)先求导后求出切线的斜率'(0)0f =,然后求出直线上该点的坐标即可写出直线方程;(2)根据函数的单调性和最值分类讨论; (3)分情况讨论,根据函数的单调性和极限求解. (1)解:由题意得:22'e 121)e 2)()((x x ax x a f x ax x x ax =-++-=+- '(0)0f =,(0)1f =故曲线()y f x =在点(0,(0))f 处的切线的方程1y =. (2)由(1)得要使得()f x 在0x =处取得极大值,'()f x 在0x <时应该'()0f x >,'()f x 在0x >时应该'()0f x <,'e 2(1)()x x x ax f a =+-故①0a <且120aa-<,解得0a < ②0a >且120a a->,解得102a <<当0a =时,'()e x f x x =-,满足题意; 当12a =时,'21(e )2x f x x =,不满足题意; 综上:a 的取值范围为1(,)2-∞. (3)可以分三种情况讨论:①0a ≤②102a <<③12a ≥ 若0a ≤,()f x 在12(,)a a --∞上单调递减,在12(,0)aa-单调递增,在(0,)+∞上单调递减,无最小值;若102a <<时,当0x <时,x 趋向-∞时,()f x 趋向于0;当0x > ,要使函数取得存在最小值121221212112()[(41)0e ()]e a aaa a a a f a a a a a a -----=-=-≤+,解得104a <≤,故 12a x a -=处取得最小值,故a 的取值范围10,4⎛⎤⎥⎝⎦. 若12a ≥时,()f x 在x 趋向-∞时,()f x 趋向于0,又(0)1f =故无最小值; 综上所述函数()f x 存在最小值, a 的取值范围10,4⎛⎤⎥⎝⎦.。
导数练习题及答案导数是微积分中的重要概念,它描述了函数在某一点的变化率。
掌握导数的概念和计算方法对于解决实际问题和理解数学原理都至关重要。
在学习导数的过程中,练习题是必不可少的一环。
本文将介绍一些常见的导数练习题及其答案,帮助读者更好地理解和掌握导数的概念和计算方法。
一、基本函数的导数1. 常数函数的导数常数函数f(x) = c的导数为0,其中c为常数。
这是因为常数函数在任意一点的变化率都为0,即斜率为0。
2. 幂函数的导数幂函数f(x) = x^n的导数为f'(x) = nx^(n-1),其中n为正整数。
这是根据导数的定义和幂函数的性质得出的。
3. 指数函数的导数指数函数f(x) = a^x的导数为f'(x) = a^x * ln(a),其中a为正实数,ln(a)为以e为底的对数。
这是根据指数函数和对数函数的性质以及导数的定义得出的。
4. 对数函数的导数对数函数f(x) = ln(x)的导数为f'(x) = 1/x,其中x为正实数。
这是根据对数函数和指数函数的性质以及导数的定义得出的。
二、基本运算法则1. 和差法则如果函数f(x)和g(x)都可导,则它们的和函数(f+g)(x)和差函数(f-g)(x)也可导,并且有以下公式:(f+g)'(x) = f'(x) + g'(x)(f-g)'(x) = f'(x) - g'(x)2. 积法则如果函数f(x)和g(x)都可导,则它们的乘积函数(f*g)(x)也可导,并且有以下公式:(f*g)'(x) = f'(x) * g(x) + f(x) * g'(x)3. 商法则如果函数f(x)和g(x)都可导,并且g(x)不为0,则它们的商函数(f/g)(x)也可导,并且有以下公式:(f/g)'(x) = (f'(x) * g(x) - f(x) * g'(x)) / g(x)^2三、常见函数的导数1. 正弦函数和余弦函数的导数正弦函数f(x) = sin(x)的导数为f'(x) = cos(x)。
导数解答题练习1.已知f (x )=x ln x -ax ,g (x )=-x 2-2,(Ⅰ)对一切x ∈(0,+∞),f (x )≥g (x )恒成立,求实数a 的取值范围; (Ⅱ)当a =-1时,求函数f (x )在[m ,m +3](m >0)上的最值;(Ⅲ)证明:对一切x ∈(0,+∞),都有ln x +1>ex e x 21-成立.2、已知函数2()ln 2(0)f x a x a x=+->. (Ⅰ)若曲线y =f (x )在点P (1,f (1))处的切线与直线y =x +2垂直,求函数y =f (x )的单调区间;(Ⅱ)若对于(0,)x ∀∈+∞都有f (x )>2(a ―1)成立,试求a 的取值范围;(Ⅲ)记g (x )=f (x )+x ―b (b ∈R ).当a =1时,函数g (x )在区间[e ―1,e]上有两个零点,求实数b 的取值范围.3、设函数f (x )=ln x +(x -a )2,a ∈R .(Ⅰ)若a =0,求函数f (x )在[1,e]上的最小值;(Ⅱ)若函数f (x )在1[,2]2上存在单调递增区间,试求实数a 的取值范围; (Ⅲ)求函数f (x )的极值点.4、已知函数21()(21)2ln ()2f x ax a x x a =-++∈R . (Ⅰ)若曲线()y f x =在1x =和3x =处的切线互相平行,求a 的值; (Ⅱ)求()f x 的单调区间;(Ⅲ)设2()2g x x x =-,若对任意1(0,2]x ∈,均存在2(0,2]x ∈,使得12()()f x g x <,求a 的取值范围.5、已知函数1ln ()xf x x+=. (1)若函数在区间1(,)2a a +(其中0a >)上存在极值,求实数a 的取值范围; (2)如果当1x ≥时,不等式()1kf x x ≥+恒成立,求实数k 的取值范围.1.解:(Ⅰ)对一切)()(),,0(x g x f x ≥+∞∈恒成立,即2ln 2--≥-x ax x x 恒成立.也就是++≤x x a ln x2在),0(+∞∈x 恒成立.………1分 令xx x x F 2ln )(++= , 则F '2222)1)(2(2211)(x x x x x x x x x -+=-+=-+=,……2分在)10(,上F '0)(<x ,在)1(∞+,上F '0)(>x , 因此,)(x F 在1=x 处取极小值,也是最小值, 即3)1()(min ==F x F ,所以3≤a .……4分(Ⅱ)当时,1-=a x x x x f +=ln )(, f '2ln )(+=x x ,由f '0)(=x 得21ex =. ………6分 ①当210em <<时,在)1,[2e m x ∈上f '0)(<x ,在]3,1(2+∈m e x 上f '0)(>x 因此,)(x f 在21e x =处取得极小值,也是最小值. 2min 1)(ex f -=. 由于0]1)3)[ln(3()3(,0)(>+++=+<m m m f m f 因此,]1)3)[ln(3()3()(max +++=+=m m m f x f………8分②当时21em ≥,0)('≥x f ,因此]3,[)(+m m x f 在上单调递增, 所以)1(ln )()(min +==m m m f x f ,]1)3)[ln(3()3()(max +++=+=m m m f x f ……9分(Ⅲ)证明:问题等价于证明)),0((2ln +∞∈->+x ee x x x x x ,………10分 由(Ⅱ)知1-=a 时,x x x xf +=ln )(的最小值是21e-,当且仅当21e x =时取得,……11分 设)),0((2)(+∞∈-=x e e x x G x ,则G 'xexx -=1)(,易知eG x G 1)1()(max -==,当且仅当1x =时取到, ………12分但,e e112->-从而可知对一切(0,)x ∈+∞, 都有exe x x 211ln ->+成立. ………13分 2、解:(Ⅰ)直线y =x +2的斜率为1.函数f (x )的定义域为(0,+∞),因为22'()a f x x x=-+,所以22'(1)111af =-+=-,所以a =1.所以2()ln 2f x x x =+-. 22'()x f x x -=.由'()0f x >解得x >0;由'()0f x <解得0<x <2. 所以f (x )的单调增区间是(2,+∞),单调减区间是(0,2).…… 4分(Ⅱ)2222'()a ax f x x x x -=-+=, 由'()0f x >解得2x a>;由'()0f x <解得20x a <<.所以f (x )在区间2(,)a +∞上单调递增,在区间2(0,)a 上单调递减.所以当2x a=时,函数f (x )取得最小值,min 2()y f a=. 因为对于(0,)x ∀∈+∞都有()2(1)f x a >-成立,所以2()2(1)f a a >-即可. 则22ln 22(1)2a a a a+->-.由2ln a a a >解得20e a <<.所以a 的取值范围是2(0,)e. ……………… 8分(Ⅲ)依题得2()ln 2g x x x b x=++--,则222'()x x g x x +-=.由'()0g x >解得x >1;由'()0g x <解得0<x <1.所以函数()g x 在区间(0,1)为减函数,在区间(1,+∞)为增函数.又因为函数()g x 在区间[e -1,e]上有两个零点,所以1()0()0(1)0g e g e g -⎧≥⎪≥⎨⎪<⎩.解得21e 1e b <≤+-.所以b 的取值范围是2(1,e 1]e+-. (13)分3.解:(Ⅰ)f (x )的定义域为(0,+∞).……………… 1分因为1'()20f x x x=+>,所以f (x )在[1,e]上是增函数, 当x =1时,f (x )取得最小值f (1)=1. 所以f (x )在[1,e]上的最小值为1.……………… 3分(Ⅱ)解法一:21221'()2()x ax f x x a x x-+=+-=设g (x )=2x 2―2ax +1,……………… 4分依题意,在区间1[,2]2上存在子区间使得不等式g (x )>0成立.…… 5分注意到抛物线g (x )=2x 2―2ax +1开口向上,所以只要g (2)>0,或1()02g >即可……………… 6分由g (2)>0,即8―4a +1>0,得94a <, 由1()02g >,即1102a -+>,得32a <,所以94a <,所以实数a 的取值范围是9(,)4-∞.……………… 8分解法二:21221'()2()x ax f x x a x x-+=+-=,……………… 4分依题意得,在区间1[,2]2上存在子区间使不等式2x 2―2ax +1>0成立. 又因为x >0,所以12(2)a x x<+. ……………… 5分设1()2g x x x =+,所以2a 小于函数g (x )在区间1[,2]2的最大值. 又因为1'()2g x x=-,由21'()20g x x=->解得2x >;由21'()20g x x =-<解得02x <<.所以函数g (x )在区间2)2上递增,在区间1(,22上递减. 所以函数g (x )在12x =,或x =2处取得最大值. 又9(2)2g =,1()32g =,所以922a <,94a <所以实数a 的取值范围是9(,)4-∞.……………… 8分(Ⅲ)因为2221'()x ax f x x-+=,令h (x )=2x 2―2ax +1①显然,当a ≤0时,在(0,+∞)上h (x )>0恒成立,f '(x )>0,此时函数f (x )没有极值点; ……………… 9分 ②当a >0时,(i )当Δ≤0,即0a <≤时,在(0,+∞)上h (x )≥0恒成立,这时f '(x )≥0,此时,函数f (x )没有极值点;……………… 10分(ii )当Δ>0时,即a >x <<h (x )<0,这时f '(x )<0;当02a x <<或2a x >时,h (x )>0,这时f '(x )>0;所以,当a >2a x =是函数f (x )的极大值点;2a x +=是函数f (x )的极小值点.……………… 12分综上,当a ≤f (x )没有极值点;当a >x =是函数f (x )的极大值点;x =是函数f (x )的极小值点.4.解:2()(21)f x ax a x '=-++(0)x >. ………1分 (Ⅰ)(1)(3)f f ''=,解得23a =. ………3分(Ⅱ)(1)(2)()ax x f x x--'=(0)x >. ………4分 ①当0a ≤时,0x >,10ax -<,在区间(0,2)上,()0f x '>;在区间(2,)+∞上()0f x '<,故()f x 的单调递增区间是(0,2),单调递减区间是(2,)+∞. ………5分 ②当102a <<时,12a>, 在区间(0,2)和1(,)a +∞上,()0f x '>;在区间1(2,)a上()0f x '<,故()f x 的单调递增区间是(0,2)和1(,)a +∞,单调递减区间是1(2,)a. ………6分③当12a =时,2(2)()2x f x x -'=,故()f x 的单调递增区间是(0,)+∞. ………7分 ④当12a >时,102a <<, 在区间1(0,)a 和(2,)+∞上,()0f x '>;在区间1(,2)a上()0f x '<,故()f x 的单调递增区间是1(0,)a和(2,)+∞,单调递减区间是1(,2)a. ………8分 (Ⅲ)由已知,在(0,2]上有max max ()()f x g x <. ………9分由已知,max ()0g x =,由(Ⅱ)可知, ①当12a ≤时,()f x 在(0,2]上单调递增, 故max ()(2)22(21)2ln 2222ln 2f x f a a a ==-++=--+, 所以,222ln 20a --+<,解得ln 21a >-,故1ln 212a -<≤.……10分 ②当12a >时,()f x 在1(0,]a 上单调递增,在1[,2]a上单调递减, 故max 11()()22ln 2f x f a a a==---. 由12a >可知11ln ln ln 12ea >>=-,2ln 2a >-,2ln 2a -<,所以,22ln 0a --<,max ()0f x <, 综上所述,ln 21a >-. ………12分5、(Ⅰ)直线y =x +2的斜率为1, 函数f (x )的定义域为 ()+∞,0因为x a x x f +-=2'2)(,所以()111212'-=+-=a f ,所以a =1 所以()()2'2,2ln 2xx x f x x x f -=-+= 由()0'>x f解得x >2 ; 由()0'<x f 解得0<x <2所以f (x )得单调增区间是()+∞,2,单调减区间是()2,0 ………4分(Ⅱ)22'22)(x ax x a x x f -=+-= 由()0'>x f 解得;2a x >由()0'<x f 解得a x 20<<所以f (x )在区间),2(+∞a 上单调递增,在区间)2,0(a 上单调递减所以当a x 2=时,函数f (x )取得最小值)2(min af y =因为对于任意()())1(2,0->+∞∈a x f x 都有成立, 所以)1(2)2(->a af 即可则)1(222ln 22->-+a a a a,由a a a >2ln 解得e a 20<< 所以a 得取值范围是)2,0(e……… 8分(Ⅲ)依题意得b x xx g --+=2ln 2)(,则22'2)(x x x x g -+= 由()0'>x g 解得x >1,由()0'<x g 解得0<x <1所以函数g (x )在区间[]e ,e 1-上有两个零点,所以⎪⎩⎪⎨⎧<≥≥-0)1(0)(0)(1g e g e g 解得121-+≤<e e b所以b 得取值范围是]12,1(-+e e……… 12分6、解:(1)因为1ln ()x f x x +=,0x >,则2ln ()xf x x'=-, …1分 当01x <<时,()0f x '>;当1x >时,()0f x '<. ∴()f x 在(0,1)上单调递增;在(1,)+∞上单调递减, ∴函数()f x 在1x =处取得极大值.………3分∵函数()f x 在区间1(,)2a a +(其中0a >)上存在极值,∴1,11,2a a <⎧⎪⎨+>⎪⎩解得112a <<.……….5分(2)不等式()1k f x x ≥+,即为(1)(1ln )x x k x++≥, ………7分记(1)(1ln )()x x g x x ++=∴22[(1)(1ln )](1)(1ln )ln ()x x x x x x xg x x x'++-++-'==,…9分 令()ln h x x x =-,则1'()1h x x=-,∵1x ≥,∴'()0h x ≥,∴()h x 在[1,)+∞上递增, ∴min [()](1)10h x h ==>,从而()0g x '>,故()g x 在[1,)+∞上也单调递增, ∴min [()](1)2g x g ==,∴2k ≤.………12分。
导数练习题答案1. 问题一:求函数 f(x) = 3x^2 + 2x + 1 在 x = 2 处的导数。
解答一:首先,我们可以使用导数的定义来计算该函数在 x = 2 处的导数。
导数的定义为:f'(x) = lim(h->0) [f(x+h) - f(x)] / h代入函数 f(x) = 3x^2 + 2x + 1,我们有:f'(x) = lim(h->0) [3(x+h)^2 + 2(x+h) + 1 - (3x^2 + 2x + 1)] / h= lim(h->0) [3(x^2 + 2xh + h^2) + 2x + 2h + 1 - 3x^2 - 2x - 1] / h = lim(h->0) [3x^2 + 6xh + 3h^2 + 2x + 2h + 1 - 3x^2 - 2x - 1] / h = lim(h->0) (6xh + 3h^2 + 2h) / h= lim(h->0) 6x + 3h + 2= 6x + 2代入 x = 2,我们可以得到:f'(2) = 6 * 2 + 2= 12 + 2= 14所以,函数 f(x) 在 x = 2 处的导数为 14。
2. 问题二:求函数 g(x) = sin(3x) 在 x = pi/6 处的导数。
函数 g(x) = sin(3x) 是一个三角函数。
我们可以使用链式法则来计算它的导数。
链式法则的公式为:(f(g(x)))' = f'(g(x)) * g'(x)首先,计算 f'(x) 的导数。
因为 f(x) = sin(x) 的导数是 cos(x),我们有:f'(x) = cos(x)接下来,计算 g'(x) 的导数。
因为 g(x) = 3x,我们有:g'(x) = 3将 f'(x) 和 g'(x) 代入链式法则公式,我们有:(g(x))' = f'(g(x)) * g'(x)= cos(3x) * 3代入 x = pi/6,我们可以得到:(g(pi/6))' = cos(3 * (pi/6)) * 3= cos(pi/2) * 3= 0 * 3= 0所以,函数 g(x) = sin(3x) 在 x = pi/6 处的导数为 0。
导数的测试题及答案一、选择题(每题5分,共20分)1. 函数f(x)=x^2的导数是:A. 2xB. x^2C. 2D. x答案:A2. 函数g(x)=sin(x)的导数是:A. cos(x)B. sin(x)C. xD. 1答案:A3. 函数h(x)=e^x的导数是:A. e^xB. e^(-x)C. xD. 1答案:A4. 函数k(x)=ln(x)的导数是:A. xB. 1/xC. ln(x)D. e^x答案:B二、填空题(每题5分,共20分)1. 函数f(x)=3x^2+2x-5的导数是______。
答案:6x+22. 函数g(x)=x^3-4x^2+7的导数是______。
答案:3x^2-8x3. 函数h(x)=1/x的导数是______。
答案:-1/x^24. 函数k(x)=sqrt(x)的导数是______。
答案:1/(2*sqrt(x))三、计算题(每题10分,共40分)1. 求函数f(x)=x^4-2x^3+3x^2-4x+5的导数。
答案:4x^3-6x^2+6x-42. 求函数g(x)=x^5+3x^4-2x^3+x^2-5的导数。
答案:5x^4+12x^3-6x^2+2x3. 求函数h(x)=e^(2x)-3e^x+2的导数。
答案:2e^(2x)-3e^x4. 求函数k(x)=ln(x^2)-2ln(x)+3的导数。
答案:2/x-2/x结束语:以上是导数的测试题及答案,希望同学们通过这些题目能够更好地理解和掌握导数的概念和计算方法。
导数练习题及答案为了帮助学习者更好地理解与掌握导数的概念与计算方法,以下是一些导数练习题及其详细答案解析。
通过解题的过程,读者可以加深对导数的理解,并熟练掌握导数的计算技巧。
题目一:计算函数 f(x) = x^3 在点 x = 2 处的导数。
解答一:对 f(x) = x^3 进行求导,根据求导规则,可以得到:f'(x) = 3x^2计算 f'(2) 得到导数的值。
代入 x = 2:f'(2) = 3(2)^2 = 12因此,函数 f(x) = x^3 在点 x = 2 处的导数为 12。
题目二:计算函数 f(x) = 2x^2 + 3x - 5 在点 x = -1 处的导数。
解答二:对 f(x) = 2x^2 + 3x - 5 进行求导,根据求导规则,可以得到:f'(x) = 4x + 3计算 f'(-1) 得到导数的值。
代入 x = -1:f'(-1) = 4(-1) + 3 = -1因此,函数 f(x) = 2x^2 + 3x - 5 在点 x = -1 处的导数为 -1。
题目三:计算函数 f(x) = e^x 在点 x = 1 处的导数。
解答三:对 f(x) = e^x 进行求导,根据求导规则,可以得到:f'(x) = e^x计算 f'(1) 得到导数的值。
代入 x = 1:f'(1) = e^1 = e因此,函数 f(x) = e^x 在点 x = 1 处的导数为 e。
题目四:计算函数 f(x) = ln(x) 在点 x = 3 处的导数。
解答四:对 f(x) = ln(x) 进行求导,根据求导规则,可以得到:f'(x) = 1/x计算 f'(3) 得到导数的值。
代入 x = 3:f'(3) = 1/3因此,函数 f(x) = ln(x) 在点 x = 3 处的导数为 1/3。
通过以上导数练习题的解答,读者可以进一步掌握导数的概念与计算方法。
导数的练习题及答案导数是微积分中的一个重要概念,它描述了函数在某一点上的变化率。
掌握导数的概念对于解决各种数学和物理问题至关重要。
在这篇文章中,我们将给出一些关于导数的练习题及其答案,帮助读者更好地理解和应用导数。
练习题一:求函数 $f(x) = 2x^3 - 5x^2 + 3x - 1$ 在 $x = 2$ 处的导数。
解答一:根据导数的定义,我们知道导数可以通过函数的极限来求解。
在这个例子中,我们可以使用直接求导的方法来计算导数。
首先,我们对每一项使用求导法则。
对于 $2x^3$,它的导数是$6x^2$;对于 $-5x^2$,它的导数是 $-10x$;对于 $3x$,它的导数是$3$;对于常数项 $-1$,它的导数是 $0$。
然后,将这些导数相加,得到函数 $f(x)$ 的导数 $f'(x)$。
所以,$f'(x) = 6x^2 - 10x + 3$。
接下来,我们求函数 $f(x)$ 在 $x = 2$ 处的导数。
将 $x$ 替换为 $2$,得到 $f'(2) = 6(2)^2 - 10(2) + 3 = 28$。
所以,函数 $f(x) = 2x^3 - 5x^2 + 3x - 1$ 在 $x = 2$ 处的导数为 $f'(2) = 28$。
练习题二:求函数 $y = e^x \sin(x)$ 的导数。
解答二:这个问题涉及到两个函数的乘积,所以我们需要使用乘积规则来求解。
首先,我们将函数 $y = e^x \sin(x)$ 分解为两个函数的乘积:$y =u(x) v(x)$,其中 $u(x) = e^x$,$v(x) = \sin(x)$。
然后,我们求出每个函数的导数。
对于 $u(x) = e^x$,它的导数仍然是 $e^x$;对于 $v(x) = \sin(x)$,它的导数是 $\cos(x)$。
根据乘积规则,函数 $y$ 的导数为 $y' = u'v + uv'$。
导数练习题及答案
导数练习题及答案
导数是微积分的初步知识,是研究函数,解决实际问题的有力工具。
以下是导数练习题及答案,欢迎阅读。
一、选择题
1.函数在某一点的导数是( )
A.在该点的函数值的增量与自变量的增量的比
B.一个函数
C.一个常数,不是变数
D.函数在这一点到它附近一点之间的平均变化率
[答案] C
[解析] 由定义,f′(x0)是当Δx无限趋近于0时,ΔyΔx无限趋近的常数,故应选C.
2.如果质点A按照规律s=3t2运动,则在t0=3时的瞬时速度为( )
A.6 B.18
C.54 D.81
[答案] B
[解析] ∵s(t)=3t2,t0=3,
∴Δs=s(t0+Δt)-s(t0)=3(3+Δt)2-332
=18Δt+3(Δt)2∴ΔsΔt=18+3Δt.
当Δt→0时,ΔsΔt→18,故应选B.
3.y=x2在x=1处的导数为( )
A.2x B.2
C.2+Δx D.1
[答案] B
[解析] ∵f(x)=x2,x=1,
∴Δy=f(1+Δx)2-f(1)=(1+Δx)2-1=2Δx+(Δx)2
∴ΔyΔx=2+Δx
当Δx→0时,ΔyΔx→2
∴f′(1)=2,故应选B.
4.一质点做直线运动,若它所经过的路程与时间的关系为s(t)=4t2-3(s(t)的单位:m,t的单位:s),则t=5时的`瞬时速度为( ) A.37 B.38
C.39 D.40
[答案] D
[解析] ∵ΔsΔt=4(5+Δt)2-3-4×52+3Δt=40+4Δt,
∴s′(5)=limΔt→0 ΔsΔt=limΔt→0 (40+4Δt)=40.故应选D.
5.已知函数y=f(x),那么下列说法错误的是( )
A.Δy=f(x0+Δx)-f(x0)叫做函数值的增量
B.ΔyΔx=f(x0+Δx)-f(x0)Δx叫做函数在x0到x0+Δx之间的平均变化率
C.f(x)在x0处的导数记为y′
D.f(x)在x0处的导数记为f′(x0)
[答案] C
[解析] 由导数的定义可知C错误.故应选C.
6.函数f(x)在x=x0处的导数可表示为y′|x=x0,即( )
A.f′(x0)=f(x0+Δx)-f(x0)
B.f′(x0)=limΔx→0[f(x0+Δx)-f(x0)]
C.f′(x0)=f(x0+Δx)-f(x0)Δx
D.f′(x0)=limΔx→0 f(x0+Δx)-f(x0)Δx
[答案] D
[解析] 由导数的定义知D正确.故应选D.
7.函数y=ax2+bx+c(a≠0,a,b,c为常数)在x=2时的瞬时变化率等于( )
A.4a B.2a+b
C.b D.4a+b
[答案] D
[解析] ∵ΔyΔx=a(2+Δx)2+b(2+Δx)+c-4a-2b-cΔx
=4a+b+aΔx,
∴y′|x=2=limΔx→0 ΔyΔx=limΔx→0 (4a+b+aΔx)=4a+b.故应选D.
8.如果一个函数的瞬时变化率处处为0,则这个函数的图象是( ) A.圆 B.抛物线
C.椭圆 D.直线
[答案] D
[解析] 当f(x)=b时,f′(x)=0,所以f(x)的图象为一条直线,故应选D.
9.一物体作直线运动,其位移s与时间t的关系是s=3t-t2,则物体的初速度为( )
A.0 B.3
C.-2 D.3-2t
[答案] B
[解析] ∵ΔsΔt=3(0+Δt)-(0+Δt)2Δt=3-Δt,
∴s′(0)=limΔt→0 ΔsΔt=3.故应选B.
10.设f(x)=1x,则limx→a f(x)-f(a)x-a等于( )
A.-1a B.2a
C.-1a2 D.1a2
[答案] C
[解析] limx→a f(x)-f(a)x-a=limx→a 1x-1ax-a
=limx→a a-x(x-a)xa=-limx→a 1ax=-1a2.
二、填空题
11.已知函数y=f(x)在x=x0处的导数为11,则
limΔx→0f(x0-Δx)-f(x0)Δx=________;
limx→x0 f(x)-f(x0)2(x0-x)=________.
[答案] -11,-112
[解析] limΔx→0 f(x0-Δx)-f(x0)Δx
=-limΔx→0 f(x0-Δx)-f(x0)-Δx=-f′(x0)=-11;
limx→x0 f(x)-f(x0)2(x0-x)=-12limΔx→0 f(x0+Δx)-
f(x0)Δx
=-12f′(x0)=-112.
12.函数y=x+1x在x=1处的导数是________.
[答案] 0
[解析] ∵Δy=1+Δx+11+Δx-1+11
=Δx-1+1Δx+1=(Δx)2Δx+1,
∴ΔyΔx=ΔxΔx+1.∴y′|x=1=limΔx→0 ΔxΔx+1=0.
13.已知函数f(x)=ax+4,若f′(2)=2,则a等于______.
[答案] 2
[解析] ∵ΔyΔx=a(2+Δx)+4-2a-4Δx=a,
∴f′(1)=limΔx→0 ΔyΔx=a.∴a=2.
14.已知f′(x0)=limx→x0 f(x)-f(x0)x-x0,f(3)=2,f′(3)=-2,则limx→3 2x-3f(x)x-3的值是________.
[答案] 8
[解析] limx→3 2x-3f(x)x-3=limx→3 2x-3f(x)+3f(3)-3f(3)x-3
=limx→3 2x-3f(3)x-3+limx→3 3(f(3)-f(x))x-3.
由于f(3)=2,上式可化为
limx→3 2(x-3)x-3-3limx→3 f(x)-f(3)x-3=2-3×(-2)=8.
三、解答题
15.设f(x)=x2,求f′(x0),f′(-1),f′(2).
[解析] 由导数定义有f′(x0)
=limΔx→0 f(x0+Δx)-f(x0)Δx
=limΔx→0 (x0+Δx)2-x20Δx=limΔx→0 Δx(2x0+Δx)Δx=2x0,
16.枪弹在枪筒中运动可以看做匀加速运动,如果它的加速度是5.0×105m/s2,枪弹从枪口射出时所用时间为1.6×10-3s,求枪弹射出枪口时的瞬时速度.
[解析] 位移公式为s=12at2
∵Δs=12a(t0+Δt)2-12at20=at0Δt+12a(Δt)2
∴ΔsΔt=at0+12aΔt,
∴limΔt→0 ΔsΔt=limΔt→0 at0+12aΔt=at0,
已知a=5.0×105m/s2,t0=1.6×10-3s,
∴at0=800m/s.
所以枪弹射出枪口时的瞬时速度为800m/s.
17.在曲线y=f(x)=x2+3的图象上取一点P(1,4)及附近一点(1+Δx,4+Δy),求(1)ΔyΔx (2)f′(1).
[解析] (1)ΔyΔx=f(1+Δx)-f(1)Δx
=(1+Δx)2+3-12-3Δx=2+Δx.
(2)f′(1)=limΔx→0 f(1+Δx)-f(1)Δx
=limΔx→0 (2+Δx)=2.
18.函数f(x)=|x|(1+x)在点x0=0处是否有导数?若有,求出来,若没有,说明理由.
[解析] f(x)=x+x2 (x≥0)-x-x2 (x<0)
Δy=f(0+Δx)-f(0)=f(Δx)
=Δx+(Δx)2 (Δx>0)-Δx-(Δx)2 (Δx<0)
∴limx→0+ΔyΔx=limΔx→0+ (1+Δx)=1,
limΔx→0-ΔyΔx=limΔx→0- (-1-Δx)=-1,
∵limΔx→0-ΔyΔx≠limΔx→0+ΔyΔx,∴Δx→0时,ΔyΔx无极限.
∴函数f(x)=|x|(1+x)在点x0=0处没有导数,即不可导.(x→0+表示x从大于0的一边无限趋近于0,即x>0且x趋近于0)。