温室大棚智能控制系统
- 格式:doc
- 大小:459.00 KB
- 文档页数:31
基于STM32的温室大棚智能控制系统设计为了有效增强我国温室大棚的智能化管理效果,文章介绍了温室智能化调控系统的国内外研究和发展现状,并提出一款基于STM32F103系列芯片的温室环境智能调控系统,主要收集室内的温湿度与光照强度信息进行分析,通过LCD 显示器进行数据图标呈现,并增加无线信息传输组件,有效地创建温室的智能化环境调控系统。
温室环境的智能化控制研究是现代化温室大棚的一个研究重点。
提升智能化温室大棚中植物的栽培效率与质量是较为重要的研究内容,通过对植物生长周期进行分析,科学检测温室条件并进行高效的规划。
现阶段,国内科学领域已经研发出了多种可以改善作物生长效率,提高生产质量的智能设备,并被广泛的应用在温室大棚里,然而这些设备基本不具备智能调节能力,无法获取大棚内的具体情况,同样也无法实现远程调节的效果,仅可以实现一些初步的功能目的。
一、温室大棚智能化控制的国内外研究和发展现状在国外很多发达国家特别是在欧美,十分重视温室栽培方面的研究,例如,美国等发达国家已经通过一些监管设备对大棚内的环境信息进行监控,并结合预期设定数值进行调节,达到农业生产的智能化效果。
而这种智能化植物栽培技术仅是对室内的单一因素进行调控,也就是仅实现对大棚内的温度、湿度、光照、气体条件进行管理。
随着科学技术的不断发展,温室大棚栽培技术也得到了全新的改变,在美国,科学家们研制了一款能够结合气候管理、农作物灌溉与施肥能力为一体的智能化温室大棚管控系统,这系统能够有效地结合各类农作物的管理内容,利用传感器所接收的信号对系统的各项功能进行管理,实现最优质这一高效的方式对温室内农作物的生长进行管理。
以色列通过计算机设备对温度环境进行管理,并建立科学的温室构造,配备优质的环境调节、天窗以及幕帘等,对温湿度、光照效果、气体环境进行有效控制。
并且将中的控制器与管理室内的中央电脑进行远程连接,提高温室管理的便捷性,更精准的对灌溉施肥系统进行控制,提升对于肥料与水资源的利用效果。
基于物联网技术的智能温室大棚控制系统
随着科技的发展,物联网技术正在逐渐应用于各领域,其中智能温室大棚控制系统是
一个很好的案例。
传统的温室大棚需要人工控制种植温度、湿度和光照等因素,而智能温
室大棚控制系统能够通过物联网技术实现精准控制,大幅提高种植效率和产量。
智能温室大棚控制系统基于物联网技术构建,包括传感器、控制器、执行器和云平台。
传感器用于实时监测温度、湿度、光照强度、二氧化碳浓度等环境参数,将数据通过无线
传输方式传送给控制器。
控制器根据预设的种植需求,对环境参数进行实时控制。
执行器
根据控制器的指令,对灌溉、通风、暖气等设备进行自动控制。
云平台用于实现大数据分
析和管理,能够远程监控和控制多个温室大棚。
智能温室大棚控制系统的优势在于能够实现精准控制,提高种植效率和产量。
比如,
通过控制温度和湿度,能够加快植物生长速度和提高品质;通过控制光照强度,能够增加
光合作用和促进花果生长;通过调节二氧化碳浓度,能够提高植物的光合作用效率。
此外,智能温室大棚控制系统还能够通过大数据分析和管理,实现自动化种植、精准灌溉、预测
病虫害等智能化功能,提高种植效率和减少人工成本。
农业大棚控制系统调节智能温室大棚湿度方法为了促进温室大棚作物更好地生长,就要严格把控内部的湿度环境,主要针对空气湿度和土壤湿度这两部分进行调节工作,下面就来详细说明具体应该如何调节温室大棚的这两大部分,确保湿度正常。
一、温室大棚空气湿度温室大棚空气湿度调节的目的一般是为了降低室内空气相对湿度,减少作物叶面的结露现象。
降低空气湿度(1)通风换气通风换气是调节温室大棚内湿度环境的简单有效的方法。
温室大棚内湿度一般高于室外,通过通风换气引进湿度相对较低的空气对室内空气能起到稀释作用。
(2)加热在室内空气含湿量一定的情况下,通过加热提高温室大棚温度自然就能起到降低室内空气相对湿度的作用。
如能将通风与加热结合起来则对于降低室内空气相对湿度为有效。
(3)改进灌溉方法在温室大棚中采用滴灌、微喷灌等节水灌溉措施可以减少地面的集水,显著降低地面蒸发量,从而降低空气相对湿度。
与此相似,采用地膜覆盖也能减少地面水蒸气蒸发:如温室覆盖地膜后温室空气相对湿度由95%—100%下降为75%—80%。
(4)吸湿采用吸湿材料如氧化锂等吸收空气中水分可降低空气中含湿量,从而降低空气相对湿度。
温室大棚加湿有些情况下温室大棚内需要加湿满足作物生长要求,比如新扦插的作物、新嫁接的苗都需要高湿环境;冬季采用热风供暖系统的温室大棚空气相对湿度过低,也需要加湿。
常见的加湿方法为细雾加湿,其基本原理是在高压作用下水雾化为直径小的雾粒飘在空气中并迅速蒸发,从而提高空气湿度。
二、温室大棚内土壤湿度调节对于采用地栽方式的温室大棚,土壤湿度调控的目的是满足作物对水分的要求, 因此应根据不同作物在不同生长期对水分的需求量确定灌水量。
对于采用离地苗床栽培的温室大棚,调控土壤相对湿度的目的是控制其含水量以降低水分蒸发。
温室大棚自动控制系统设计说明书一、引言温室大棚是一种用于农业生产的重要设施,它能够为作物提供稳定的生长环境,改善生产效率。
为了进一步提升温室大棚的管理水平和自动化程度,我们设计了一套温室大棚自动控制系统。
本文将对该系统的设计进行详细说明。
二、系统概述本系统旨在实现温室大棚内环境的自动监测和控制。
主要包括以下功能模块:1. 温度控制:通过温度传感器实时监测温室大棚内外温度,并根据设定的温度阈值自动调节温室大棚的通风和加热设备,以保持适宜的温度。
2. 湿度控制:利用湿度传感器监测温室大棚内外湿度,并通过控制喷水系统和通风设备,自动调节湿度水平,以满足作物的需求。
3. 光照控制:通过光照传感器实时检测温室大棚内外光照强度,并根据设定的光照阈值,自动控制灯光的开关以及遮阳网的卷取。
4. CO2浓度控制:利用CO2传感器监测温室大棚内CO2浓度,并通过控制通风设备和CO2供应系统,维持适宜的CO2浓度,促进光合作用。
三、硬件设计1. 传感器选择:根据温室大棚内环境监测需求,选择适当的温度传感器、湿度传感器、光照传感器和CO2传感器,并与控制器进行连接。
2. 控制器选择:选择一款功能强大、可靠稳定的控制器,用于接收传感器数据、进行数据处理和控制信号输出。
3. 执行器选择:根据温室大棚的需求,选择适当的通风设备、加热设备、喷水系统、灯光和CO2供应系统,并与控制器进行连接。
四、软件设计1. 数据采集:控制器通过与传感器的连接,实时采集温室大棚内环境的数据,包括温度、湿度、光照强度和CO2浓度。
2. 数据处理:通过对采集的数据进行处理,分析温室大棚内环境的变化趋势,判断当前是否需要进行调控。
3. 控制策略:制定合理的控制策略,根据设定的阈值和作物需求,自动调节通风、加热、喷水、灯光和CO2供应等设备的工作状态。
4. 用户界面:设计一个友好的用户界面,使操作人员能够方便地监控温室大棚内环境的数据,并进行手动控制。
温室大棚智能控制系统研究中期报告一、项目背景:温室大棚是由一种透明的材料覆盖在铁架上,在其中含有植株,为了对植物进行更好的保护而建造。
温室大棚可以有效地保护植物在不利环境条件下生长,可以提供较为合适的温度,湿度和光照等条件,所以温室大棚在世界各地都有广泛的使用。
但是温室大棚管理人工费用高、管理难度大,并且难以实现完全自动化管理。
因此,如何实现对温室大棚的智能化监控和控制已经成为了农业技术领域研究的一个重要方向。
本项目旨在实现温室大棚智能控制系统,利用先进的硬件和软件技术设计出一种稳定可靠的智能控制系统,实现对温室大棚中环境参数的自动监控和控制,提高温室大棚的管理效率。
二、项目设计:本项目主要设计一个基于单片机的温室大棚智能控制系统,其硬件和软件都要达到稳定可靠、易于操作、扩展性强等目标。
1、硬件设计:本项目中,我们采用的主控制器为ATmega16单片机,其具有低功耗、高集成度、外部扩展能力强等优点。
温室大棚中需要监测的参数包括温度、湿度、光照等,我们选择一些传感器模块来进行监测。
具体模块如下:温度传感器:DS18B20数字温度传感器;湿度传感器:DHT11数字温湿度传感器;光照传感器:LDR光敏电阻传感器。
同时,我们在控制系统中加入了执行器,如小风扇、水泵等。
这些执行器需要通过电路模块来进行控制,以完成对温湿度等环境参数的控制。
电路模块如下:直流电机驱动模块:采用L298N双路直流电机驱动模块;继电器模块:采用2路8A继电器模块;电源模块:采用12V、2A直流电源模块,为整个系统供电。
2、软件设计:本项目中,我们首先进行的是嵌入式软件设计,将各类传感器模块和执行器模块与主控制器进行连接,实现对环境参数的监测与控制。
其次,我们进行了GUI界面设计,以方便用户对温室大棚进行远程监控和控制。
软件模块如下:驱动程序模块:以C语言编写,包含所有的驱动程序函数;温湿度检测模块:实现对温湿度的检测;光照检测模块:实现对光照的检测;控制程序模块:实现对执行器的控制;通信程序模块:实现对网络通信的支持,以便用户可以使用GUI界面实现对温室大棚的远程监控和控制。
智能温室大棚现场的执行结构:如各种泵,加热器,二氧化碳发生装置,照明控制装置
等执行机构。
检测元件:包括温度检测、湿度检测、二氧化碳浓度等检测元件。
这些装置相
当于整个控制系统的眼睛,实时检测大棚的状况,以便实施控制。
这些装置相当于整个控制系统的手,自动控制系统的指令通过这些设备的到执行,以达
到控制目标。
因为自动控制系统不能识别各种电信号,必须转换成标准的数字信号才能为计
算机所识别,同样计算机发出的也是标准的数字信号。
智能温室这些设备如同人的神经系统,把各个信号传递到大脑,并把控制信号传递到各执行机构。
向下放到底或向上卷至离棚顶 30 厘米时,必须停机。
在使用前和使用期间,离合系统必须上油。
如略有走偏,属正常现象。
可两个月左右调整一次。
使用人必须接受安装人在安装时的培训。
用户自行购买安装时需试
棚长及草苫的重量,智能温室选用适当的材料及良好的焊接工艺。
以上就是飞龙保温被为大家分享的智能温室大棚的控制系统全部内容。
基于物联网的农业温室大棚智能控制系统研究摘要:随着农业现代化的推进,基于物联网的农业温室大棚智能控制系统逐渐成为提高农业生产效益和资源利用效率的重要手段。
本文旨在对综合应用物联网技术的智能控制系统的研究,希望能够实现对温室大棚内环境参数的实时监测、数据传输、智能调控,从而优化作物生长条件,提高产量和质量。
关键词:物联网;农业温室;智能控制系统;环境监测引言随着全球人口的不断增长和气候变化的影响,农业生产面临着越来越大的挑战,为了提高农业生产效益、降低资源浪费,以及实现精准农业管理,农业温室大棚的智能化和自动化成为农业现代化发展的必然趋势。
传统的农业生产方式难以适应当今高效、可持续的发展需求,因此,利用物联网技术构建智能控制系统,成为提高农业生产水平的重要途径。
1物联网在农业中的应用物联网在农业中的应用,是通过连接各种农业设备和传感器,实现实时数据采集、远程监测和智能控制,以提高农业生产效率和管理精度。
首先,物联网在农业中广泛应用于环境监测。
各类传感器可以实时监测土壤湿度、温度、光照等环境参数,将数据传输至云端进行分析,为农民提供科学的决策依据,这有助于优化作物的生长环境,提高产量和质量。
其次,物联网在农业设备的智能化方面发挥了关键作用。
传感器和智能控制系统的应用使得农机具、灌溉系统等设备能够根据实时监测数据进行智能调节和优化操作。
例如,智能化的植保无人机能够根据农田实时的植被状况,精准喷洒农药,提高防治效果的同时减少农药的使用量,降低对环境的影响。
2农业温室大棚智能控制系统设计2.1传感器与数据采集传感器广泛布置在温室大棚内,涵盖土壤、气象和作物等多个方面,土壤湿度传感器、温度传感器、光照传感器等用于实时监测环境参数,而作物生长状况的传感器用于收集作物的生理信息,这些传感器通过物联网技术实现数据的实时传输。
数据采集系统负责对传感器获取的大量数据进行整合、存储和处理。
通过在温室大棚中建立数据采集节点,可以实现对各个传感器数据的集中管理,这些数据不仅用于实时监测温室大棚的当前状态,还可用于历史数据的分析,为农业生产提供科学依据。
说到温室大棚智能控制系统,可能很多人都不陌生,目前很多比较大型的农业大棚基地都有建立。
那么,至于为什么要建立该系统呢?下面让我们一起来了解一下温室大棚智能控制系统建立的重要性。
随着社会的不断发展以及人们生活水平的不断提高,这几年温室大棚种植已经越来越普遍,温室大棚建造和种植每年都在增长,但是温室大棚种植有很多需要注意,比如温室温度、光照、灌溉等。
就比如我们平时对于农作物的灌溉,我们往往是通过经验了解农作物的干旱情况,然后才去灌溉措施,灌溉量也是凭经验,没有明显的数据可以参考,而自从有了温室大棚智能控制系统,农业种植者就可以通过土壤温湿度传感器直观的看到土壤的温湿度数据,可以通过数据确定什么时候需要灌溉了,其实温室大棚智能控制系统的不单单是在灌溉方面有自己独特的优势,包括温室温度的监测和控制、温室室内湿度的监测和控制等,通过对于这些要素的监测和控制,从而保证农作物的生长环境达到一个较佳的状态,进而达到提高农作物产量和质量的目的。
托普云农针对于温室大棚智能化种植管理提出的温室大棚智能控制系统,该系统主要是以物联网为基础,主要依靠传感器而制成,在农业生产管理过程中,实时的进行环境参数采集,光照、空气温湿度、二氧化碳浓度、土壤温湿度等采集到数据库,并通过网络将其传输到控制平台。
然后再依照植物生长的最适宜温度进行调控,保证植物能够生长在适合的环境中。
据了解,温室大棚智能控制系统除了具备以上的功能之外,还可以自动控制天窗、侧窗、内遮阳、外遮阳、风机、湿帘、外翻窗、加温设备、加湿设备、二氧化碳发生器等的目标值和设备的开关闭时间等等。
其实这样看来温室大棚智能控制系统整个过程都是智能化的,真正的实现了种植自动化、管理智能化、操作简单化,不仅提升了温室大棚种植技术水平,而且极大程度上降低了农业生产的成本费用。
温室大棚的智能测控系统毕业设计该系统主要由以下几个模块组成:1.传感器模块:包括温度传感器、湿度传感器、光照传感器、二氧化碳传感器等,用于实时监测温室内环境参数。
传感器将采集到的数据传输到控制器模块进行分析和处理。
2.执行器模块:包括风机、喷灌器、遮阳网等,用于根据控制器的指令自动调节温室内的环境。
例如,当温度过高时,控制器可以通过执行器模块开启风机降温。
3.控制器模块:是系统的核心模块,负责接收传感器传来的数据、进行分析处理并产生相应的控制指令,将指令发送给执行器模块实现寄温室环境的调节。
控制器模块还可以根据农作物的需求和环境的变化,调整控制策略,以达到最优的生长环境。
4.人机交互界面:可以通过手机APP或电脑上的软件进行远程操控和监控温室大棚的状态。
农民可以通过界面了解温室内的环境参数,并做出相应的调整。
该系统的设计需要考虑以下几个关键问题:1.传感器的选择和布局:不同的作物和环境对传感器的要求有所不同,需要根据具体情况选择合适的传感器,并合理布局。
例如,温度和湿度传感器可以放在不同的位置,以获取更全面的环境信息。
2.控制策略的设计:根据农作物的需求和环境的变化,设计合理的控制策略,使温室内的温度、湿度和光照等参数保持在最适宜的范围内。
例如,温度过高时开启风机降温,温度过低时启动加热系统。
3.数据传输和处理:传感器采集到的数据需要传输到控制器进行处理,可以使用有线或无线的方式进行数据传输。
控制器需要对传输来的数据进行实时处理和分析,并根据处理结果制定相应的控制指令。
4.安全性和可靠性的考虑:温室大棚的智能测控系统属于实时的控制系统,需要保证系统的安全性和可靠性。
例如,控制器模块需要有冗余设计,当一个控制器失效时,可以自动切换到备用控制器进行控制。
5.人机交互界面的设计:开发一个友好的人机交互界面,方便农民对系统进行操控和监控。
界面可以显示温室内环境参数的曲线图,并提供相关的控制操作。
总而言之,温室大棚的智能测控系统可以大大提高农作物的生长效率和农民的生产效益。
大连交通大学2010届本科生毕业设计(论文) 1 摘 要
本课题运用STC89C52单片机、DS-18B20 数字温度传感器、继电器和M4QA045电动机、ULN-2003A集成芯片、湿敏电阻,以及四位八段数码管等元器件,设计了温湿度报警电路、M4QA045电机驱动电路、电热器驱动电路,实现了温室大棚中温度和湿度的控制和报警系
统,解决了温室大棚人工控制测试的温度及湿度误差大,且费时费力、效率低等问题。该系统运行可靠,成本低。系统通过对温室内的温度与湿度参量的采集,并根据获得参数实现对温度和湿度的自动调节,达到了温室大棚自动控制的目的。促进了农作物的生长,从而提高温室大棚的产量,带来很好的经济效益和社会效益。 关键词: STC89C52单片机、DS-18B20 数字温度传感器、ULN-2003A集成芯片、 温室、自动控制、自动检测 大连交通大学2010届本科生毕业设计(论文)
2 目 录 第1章绪论 §1.1选题背景 §1.2选题的现实意义 第2章系统硬件电路的设计 §2.1系统硬件电路构成系统整体框图 §2.1.2系统整体电路图 §2.1.3系统工作原理 §2.2温度传感器的选择 §2.2.1 DS18B20简介 §2.2.2 DS18B20的性能特点 §2.2.3 DS18B20的管脚排列 §2.2.4 DS18B20的内部结构 §2.2.5 DS18B20的控制方法 §2.2.6 DS18B20的测温原理 §2.2.7 DS18B20的时序 §2.2.8 DS18B20使用中的注意事项 §2.3单片机的选择 §2.3.1单片机概述 §2.3.2 AT89C2051芯片的主要性能 §2.3.3 AT89C2051芯片的内部结构框图 §2.3.4 AT89C2051芯片的引脚说明 §2.3.5使用AT89C2051芯片编程时的注意事项 §2.4 RS-485通信设计 §2.4.1串行通信的分类 §2.4.2串行通信的制式 §2.4.3串行通信的总线接口标准 §2.4.4 RS-485的硬件设计 §2.5小结 第3章系统软件的设计 §3.1系统主程序 §3.2系统部分子程序 §3.2.1 DS18B20初始化子程序 §3.2.2 DS18B20读子程序 §3.2.3 DS18B20写子程序(有具体的时序要求) §3.2.4 DS18B20定时显示子程序 §3.2.5 DS18B20温度转换子程序 §3.3 DS18B20的流程图 大连交通大学2010届本科生毕业设计(论文) 3 第4章总结 参考文献 致谢
附 录 大连交通大学2010届本科生毕业设计(论文)
1 第一章 绪论 1.1选题背景 在人类的生活环境中,温湿度扮演着极其重要的角色。无论你生活在哪里,从事什么工作,无时无刻不在与温度和湿度打着交道。自18世纪工业革命以来,工业发展与是否能掌握温湿度有着密切的联系。在冶金、钢铁、石化、水泥、玻璃、医药等行业,可以说几乎80%的工业部门都不得不考虑着温湿度的因素。温湿度不但对于工业如此重要,在农业生产中温度的监测与控制也有着十分重要的意义。我国人多地少,人均占有耕地面积更少。因此,要改变这种局面,只靠增加耕地面积是不可能实现的,因此我们要另辟蹊径,想办法来提高单位亩产量。温室大棚技术就是其中一个好的方法。温室大棚就是建立一个模拟适合生物生长的气候条件,创造一个人工气象环境,来消除温度对生物生长的约束。而且,温室大棚能克服环境对生物生长的限制,能使不同的农作物在不适合生长的季节产出,使季节对农作物的生长不再产生过度影响,部分或完全摆脱了农作物对自然条件的依赖。由于温室大棚能带来可观的经济效益,所以温室大棚技术越来越普及,并且已成为农民增收的主要手段。 随着大棚技术的普及,温室大棚数量不断增多,温室大棚的温湿度控制便成为一个十分重要的课题。传统的温湿度控制是在温室大棚内部悬挂温度计和湿度计,通过读取温度值和湿度值了解实际温湿度,然后根据现有温湿度与额定温湿度进行比较,看温湿度是否过高或过低,然后进行相应的通风或者洒水。这些操作都是在人工情况下进行的,耗费了大量的人力物力。现在,随着国家经济的快速发展,农业产业规模的不断提高,农产品在大棚中培育的品种越来越多,对于数量较多的大棚,传统的温度控制措施就显现出很大的局限性。温室大棚的建设对温湿度检测与控制技术也提出了越来越高的要求。 今天,我们的生活环境和工作环境有越来越多称之为单片机的小电脑在为我们服务。单片机在工业控制、尖端武器、通信设备、信息处理、家用电器等各测控领域的应用中独占鳌头。时下,家用电器和办公设备的智能化、遥控化、模糊控制化已成为世界潮流,而这些高性能无一不是靠单片机来实现的。采用单片机来对温湿度进行控制,不仅具有控制方便、组态简单和灵活性大等优点,而且可以大幅度提高被控温湿度的技术指标,从而能够大大提高产品的质量和数量。单片机以其功能强、体积小、可靠性高、造价低和开发周期短等优点,成为自动化和各个测控领域中必不可少且广泛应用的器件,尤其在日常生活中也发挥越来越大的作用。因此,单片机对温湿度的控制问题是一个工农业生产中经常会遇到的问题。因此,本课题围绕基于单片机的温室大棚控制系统展开了应用研究工作。 大连交通大学2010届本科生毕业设计(论文) 2 1.2选题的现实意义 随着单片机和传感技术的迅速发展,自动检测领域发生了巨大变化,温室环境自动监测控制方面的研究有了明显的进展,并且必将以其优异的性能价格比,逐步取代传统的温湿度控制措施.但是,目前应用于温室大棚的温湿度检测系统大多采用模拟温度传感器、多路模拟开关、A/D转换器及单片机等组成的传输系统。这种温湿度度采集系统需要在温室大棚内布置大量的测温电缆,才能把现场传感器的信号送到采集卡上,安装和拆卸繁杂,成本也高。同时线路上传送的是模拟信号,易受干扰和损耗,测量误差也比较大。为了克服这些缺点,本文参考了一种基于单片机并采用数字化单总线技术的温度测控系统应用于温室大棚的的设计方案闭,根据实用者提出的问题进行了改进,提出了一种新的设计方案,在单总线上传输数字信号。 本文介绍的温湿度测控系统就是基于单总线技术及其器件组建的。该系统能够对大棚内的温湿度进行采集,利用温湿度传感器将温室大棚内温湿度的变化,变换成数字量,其值由单片机处理,最后由单片机去控制液晶显示器,显示温室大棚内的实际温湿度,同时通过与预设量比较,对大棚内的温度进行自动调节,如果超过我们预先设定的湿度限制,湿度报警模块将进行报警。这种设计方案实现了温湿度实时测量、显示和控制。该系统抗干扰能力强,具有较高的测量精度,不需要任何固定网络的支持,安装简单方便,性价比高,可维护性好。这种温湿度测控系统可应用于农业生产的温室大棚,实现对温度的实时控制,是一种比较智能、经济的方案,适于大力推广,以便促进农作物的生长,从而提高温室大棚的亩产量,以带来很好的经济效益和社会效益。 大连交通大学2010届本科生毕业设计(论文)
3 第二章 系统硬件电路的设计 2.1系统硬件构成及其测控原理 2.1.1系统硬件电路构成系统整体框图
图2-1 系统整体框图 2.1.2系统整体电路图 大连交通大学2010届本科生毕业设计(论文)
4 图2-2 系统整体电路图 2.1.3系统工作原理 本系统由如图2-1、图2-2所示,DHT11温湿度传感器采集数据,STC89C52单片机进行数据处理,LCD1602显示模块显示温湿度。由PWM控制温度调节模块进行温度调节,当温度小于18℃时,M4QA045电机停止运转,当温室大于28℃时,M4QA045电机全速运转,当温度处于18℃和28℃之间时,通过PWM控制M4QA045电机转速。由STC89C52单片机输出高低电平控制湿度报警模块,当湿度大于65%RH或者小于45%RH时,STC89C52单片机输出高电平,湿度报警模块报警,当湿度处于45%RH和65%RH之间时,STC89C52单片机输出低电平,湿度报警模块关闭。单片机通过RS232通信协议与上位PC机进行串口通信。系统既可由单片机系统独立完成温室环境信息的采集、处理和显示,也可由PC机完成监控工作。 2.2 显示模块的选择 2.2.1DS18B20简介
DS18B20数字温度传感器采用DS18B20可组网数字温度传感器芯片封装而成,具有耐磨耐碰,体积小,使用方便,封装形式多样等优点,适用于各种狭小空间设备数字测温和控制领域。
2.2.2 DS18B20的管脚排列 2.2.2.1、DS18B20的外形及管脚排列如下图: 大连交通大学2010届本科生毕业设计(论文)
5 DS18B20引脚定义: (1)DQ为数字信号输入/输出端; (2)GND为电源地; (3)VDD为外接供电电源输入端(在寄生电源接线方式时接地)。 2.2.3 DS18B20的内部结构
DS18B20内部结构图:
2.2单片机的选择 2.2.1单片机概述 单片微型计算机简称单片机,又称微控制器,嵌入式微控制器等,属于第四代电子计算机。它把中央处理器、存储器、输入/输出接口电路以及定时器叶数器集成在一块芯片上,从而具有体积小、功耗低、价格低廉、抗干扰能力强且可靠性高等特点,因此,适合应用于工业过程控制、智能仪器仪表和测控系统的前端装置。因此,在本课题设计的温湿度测控系统中,采用单片机来实现。在单片机选用方面,由于STC89系列单片机与MCS-51系列单片机兼容,所以,本系统中选用STC89C52单片机。