2019潍坊市中考数学一轮复习《51多边形与平行四边形》同步训练有答案
- 格式:docx
- 大小:316.50 KB
- 文档页数:9
要题随堂演练1.(2018·台州中考)正十边形的每一个内角的度数为( )A.120° B.135°C.140° D.144°2.(2018·宁波中考)如图,在▱ABCD中,对角线AC与BD相交于点O,E 是边CD的中点,连接OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为( )A.50° B.40°C.30° D.20°3.在四边形ABCD中,对角线AC和BD相交于点O,AB=CD,添加下列条件后能判定这个四边形是平行四边形的是( )A.AD∥BC B.AO=COC.∠ABC=∠ADC D.∠BAC=∠DCA4.(2018·济南中考)一个正多边形的每个内角等于108°,则它的边数是.5.(2018·泰州中考)如图,▱ABCD中,AC,B D相交于点O,若AD=6,AC +BD=16,则△BOC的周长为.6.(2018·淄博中考)在如图所示的▱ABCD中,AB=2,AD=3,将△ACD沿对角线AC折叠,点D落在△ABC所在平面内的点E处,且AE过BC的中点O,则△ADE的周长等于.7.(2018·济南中考)如图,在▱ABCD中,连接BD,E,F分别是DA和BC延长线上的点,且AE=CF,连接EF交BD于点O.求证:OB=OD.8.(2018·青岛中考)已知:如图,▱ABCD,对角线AC与BD相交于点E,点G为AD的中点,连接CG,CG的延长线交BA的延长线于点F,连接FD.(1)求证:AB=AF;(2)若AG=AB,∠BCD=120°,判断四边形ACDF的形状,并证明你的结论.(1)证明:∵四边形ABCD是平行四边形,(2)解:四边形ACDF是矩形.参考答案1.D 2.B 3.D 4.5 5.14 6.107.证明:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠E=∠F,∠EDB=∠FBD.∵AE=CF,∴BC+CF=DA+AE,∴DE=BF,∴△DOE≌△BOF,∴OB=OD.8.(1)证明:∵四边形ABCD是平行四边形,∴AB∥CD,AB=CD,∴∠AFC=∠DCG.∵GA=GD,∠AGF=∠CGD,∴△AGF≌△DGC,∴AF=CD,∴AB=AF.(2)解:四边形ACDF是矩形.证明如下:∵AF=CD,A F∥CD,∴四边形ACDF是平行四边形.∵四边形ABCD是平行四边形,∴∠B AD=∠BCD=120°,∴∠FAG=60°.∵AB=AG=AF,∴△AFG是等边三角形,∴AG=GF. ∵△AGF≌△DGC,∴FG=CG,AG=GD,∴AD=CF,∴四边形ACDF是矩形.。
§4.5 多边形与平行四边形一、选择题1.(原创题)如果将n边形的边数增加一倍,那么它的内角和增加( )A.180°B.(180n)°C.360°D.(360n)°解析(2n-2)·180°-(n-2)·180°=(180n)°.故选B.答案 B2.(原创题)如图,在平行四边形ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是( )A.7 B.10 C.11 D.12解析∵AC的垂直平分线交AD于E,∴AE=EC.∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=6,∴△CDE的周长为:EC+CD+ED=AD+CD=6+4=10.答案 B3.(原创题)若以A(-0.5,0),B(2,0),C(0,1)三点为顶点要画平行四边形,则第四个顶点不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限解析根据题意画出图形,如图所示:分三种情况考虑:①以CB为对角线作平行四边形ABD1C,此时第四个顶点D1落在第一象限;②以AC为对角线作平行四边形ABCD2,此时第四个顶点D2落在第二象限;③以AB为对角线作平行四边形ACBD3,此时第四个顶点D3落在第四象限,则第四个顶点不可能落在第三象限.答案 C4.(改编题)如图,在▱ABCD中,AB=3 cm,BC=5 cm,对角线AC,BD相交于点O,则OA的取值范围是( )A.3 cm<OA<5 cm B.2 cm<OA<8 cmC.1 cm<OA<4 cm D.3 cm<OA<8 cm解析因为平行四边形的对角线互相平分,即AC=2OA.在△ABC中,BC-AB<AC<AB+BC,所以2 cm <AC<8 cm,所以1 cm<OA<4 cm.故选C.答案 C5.(原创题)如图,D是△ABC内一点,BD⊥CD,AD=12,BD=8,CD=6,E,F,G,H分别是AB,AC,CD,BD的中点,则四边形EFGH的周长是( )A.11 B.13C.16 D.22解析 ∵BD⊥CD,BD =8,CD =6,∴BC =10.根据三角形的中位线定理可知,EF =GH =12BC =5,EH =FG=12AD =6,∴四边形EFGH 的周长为EF +GH +EH +FG =5+5+6+6=22.故选D. 答案 D6.(原创题)如图所示,已知等边△ABC 的边长为1,按图中所示的规律,在同一平面内用2 014个这样的三角形拼接而成的四边形的周长是( )A .2 015B .2 016C .2 017D .2 018解析 观察图形可知,2 014个等边三角形组成的四边形是一个平行四边形,这个平行四边形的边长分别是1和1 007,所以这个平行四边形的周长是(1+1 007)×2=2 016.故选B. 答案 B二、填空题7.(改编题)一个多边形的内角和比外角和的3倍多180°,则它的边数是________. 解析 根据题意,得(n -2)·180=3×360+180,解得:n =9.则这个多边形的边数是9. 答案 98.(改编题)如图,▱ABCD 中,点E 是边AB 的中点,连结DE交对角线AC于点O ,则△AOE 与△COD 面积的比为________. 的比为⎝ ⎛⎭⎪⎫AE CD 2解析 ∵AE∥CD,∴△AOE ∽△COD.∴△AOE 与△COD 面积=⎝ ⎛⎭⎪⎫122=14. 答案 14(或1∶4)9.(原创题)已知▱ABCD 的周长为28,自顶点A 作AE⊥DC 于E ,AF ⊥BC 于F ,若AE =3,AF =4,则CE -CF =____________.解析 由△AFB∽△AED,得AD =6,AB =8.再由勾股定理求得BF =43,DE =3 3.从而求出CE -CF =2+ 3. 答案 2+ 310.(原创题)如图,在图1中,A 1,B 1,C 1分别是△ABC 的边BC ,CA ,AB 的中点,在图2中,A 2,B 2,C 2分别是△A 1B 1C 1的边B 1C 1,C 1A 1,A 1B 1的中点,…,按此规律,则第2 014个图形中平行四边形的个数共有________个.解析 在图1中,有3个平行四边形;在图2中,有6个平行四边形;在图3中,有9个平行四边形,从上面的数据可知图形中平行四边形的个数是图形序号的3倍,故第2 014个图形中平行四边形的个数是2 014×3=6 042. 答案 6 042 三、解答题11.(原创题)如图,在▱ABCD 中,过点A 分别作AE⊥BC 于点E ,AF ⊥CD 于点F.(1)求证:∠BAE=∠DAF; (2)若AE =4,AF =245,sin ∠BAE =35,求CF 的长. (1)证明 ∵四边形ABCD 是平行四边形,∴∠B =∠D.又∵AE⊥BC,AF ⊥CD , ∴∠AEB =∠AFD=90°.∵∠B +∠BAE=90°,∠D +∠DAF=90°, ∴∠BAE =∠DA F. (2)解 在Rt △ABE 中,sin ∠BAE =35,AE =4,可求AB =5.又∵∠BAE=∠DAF, ∴ sin ∠DAF =sin ∠BAE =35.在Rt △ADF 中,AF =245,sin ∠DAF =35, 可求DF =185.∵ CD =AB =5,∴CF =5-185=75. 12.(原创题)已知:如图,▱ABCD 中,E ,F 分别是边AB ,CD 的中点.(1)求证:四边形EBFD 是平行四边形;(2)若AD =AE =2,∠A =60°,求四边形EBFD 的周长和面积.(1)证明 在▱ABCD 中,AB =CD ,AB ∥CD , ∵E ,F 分别是AB ,CD 的中点, ∴BE =12AB ,DF =12CD.∴BE =DF.∴四边形EBFD 是平行四边形.(2)解 作DG⊥AB 于G ,∵AD =AE ,∠A =60°,∴△ADE 是等边三角形.∴DE =AD =2.又∵BE=AE =2.由(1)知四边形EBFD 是平行四边形, ∴四边形EBFD 的周长=2(BE +DE)=8. ∵△ADE 是等边三角形, ∴AG =GE =1.在Rt △ADG 中,DG =AD 2-AG 2=22-12=3, ∴S ▱EBFD =BE×DG=2×3=2 3.2019-2020学年数学中考模拟试卷一、选择题1.已知22x y =-⎧⎨=⎩是方程kx+2y =﹣2的解,则k 的值为( )A .﹣3B .3C .5D .﹣52.甲,乙工程队分别承接600米,800米的道路修建工程,已知乙比甲每天多修建12米,结果甲比乙提早1天完成,问甲每天修建多少米?设甲每天修建x 米,根据题意可列出方程是( ) A .x 600=80012x -﹣1 B .x 600=80012x -+1 C .x 600=80012x +﹣1 D .x 600=80012x ++1 3.平方根和立方根都是本身的数是( ) A .0B .1C .±1D .0和±14.下列计算正确的是( )A. B.C.D.5.如图,平行四边形纸片ABCD ,CD=5,BC=2,∠A=60°,将纸片折叠,使点A 落在射线AD 上(记为点A′),折痕与AB 交于点P ,设AP 的长为x ,折叠后纸片重叠部分的面积为y ,可以表示y 与x 之间关系的大致图象是( )A .B .C .D .6.如图,在△ABC 中,点P ,Q 分别在BC ,AC 上,AQ =PQ ,PR =PS ,PR ⊥AB 于点R ,PS ⊥AC 于点S ,则下面结论错误是( )A.△BPR ≌△QPSB.AS =ARC.QP ∥ABD.∠BAP =∠CAP7.已知x ﹣1x=6,则x 2+21x 的值为( )A .34B .36C .37D .388.如图,5行5列点阵中,左右(或上下)相邻的两个点间距离都是1,若以图中的点为顶点画正方形,共能画出面积互不相等的正方形有( )A .7个B .8个C .9个D .10个9.如图,在平面直角坐标系中2条直线为12:33,:39l y x l y x =-+=-+,直线1l 交x 轴于点A ,交y 轴于点B ,直线2l 交x 轴于点D ,过点B 作x 轴的平行线交2l 于点C ,点A E 、关于y 轴对称,抛物线2y ax bx c =++过E B C 、、三点,下列判断中:①0a b c -+=;②25a b c ++=;③抛物线关于直线1x =对称;④抛物线过点(),b c ;⑤四边形5ABCD S =四边形,其中正确的个数有( )A .5B .4C .3D .210.已知P 为线段AB 的黄金分割点,且AP >PB ,则( ) A .AP 2+BP 2=AB 2 B .BP 2=AP•AB C .AP 2=AB•BPD .AB 2=AP•PB11.由6个完全相同的小正方体组成的立体图形如图所示,其主视图是( )A .B .C .D .12.直线y =﹣2x+5分别与x 轴,y 轴交于点C 、D ,与反比例函数y =3x的图象交于点A 、B .过点A 作AE ⊥y 轴于点E ,过点B 作BF ⊥x 轴于点F ,连结EF ;下列结论:①AD =BC ;②EF ∥AB ;③四边形AEFC 是平行四边形;④S △EOF :S △DOC =3:5.其中正确的个数是( )A .1B .2C .3D .4二、填空题13x 的取值范围是______.14是同类二次根式,那么a =________。
§4.5 多边形与平行四边形一、选择题1.(原创题)如果将n边形的边数增加一倍,那么它的内角和增加( )A.180°B.(180n)°C.360°D.(360n)°解析(2n-2)·180°-(n-2)·180°=(180n)°.故选B.答案 B2.(原创题)如图,在平行四边形ABCD中,AB=4,BC=6,AC的垂直平分线交AD于点E,则△CDE的周长是( )A.7 B.10 C.11 D.12解析∵AC的垂直平分线交AD于E,∴AE=EC.∵四边形ABCD是平行四边形,∴DC=AB=4,AD=BC=6,∴△CDE的周长为:EC+CD+ED=AD+CD=6+4=10.答案 B3.(原创题)若以A(-0.5,0),B(2,0),C(0,1)三点为顶点要画平行四边形,则第四个顶点不可能在( )A.第一象限B.第二象限C.第三象限D.第四象限解析根据题意画出图形,如图所示:分三种情况考虑:①以CB为对角线作平行四边形ABD1C,此时第四个顶点D1落在第一象限;②以AC为对角线作平行四边形ABCD2,此时第四个顶点D2落在第二象限;③以AB为对角线作平行四边形ACBD3,此时第四个顶点D3落在第四象限,则第四个顶点不可能落在第三象限.答案 C4.(改编题)如图,在▱ABCD中,AB=3 cm,BC=5 cm,对角线AC,BD相交于点O,则OA的取值范围是( )A.3 cm<OA<5 cm B.2 cm<OA<8 cmC.1 cm<OA<4 cm D.3 cm<OA<8 cm解析因为平行四边形的对角线互相平分,即AC=2OA.在△ABC中,BC-AB<AC<AB+BC,所以2 cm <AC<8 cm,所以1 cm<OA<4 cm.故选C.答案 C5.(原创题)如图,D是△ABC内一点,BD⊥CD,AD=12,BD=8,CD=6,E,F,G,H分别是AB,AC,CD,BD的中点,则四边形EFGH的周长是( )A.11 B.13C.16 D.22解析 ∵BD⊥CD,BD =8,CD =6,∴BC =10.根据三角形的中位线定理可知,EF =GH =12BC =5,EH =FG=12AD =6,∴四边形EFGH 的周长为EF +GH +EH +FG =5+5+6+6=22.故选D. 答案 D6.(原创题)如图所示,已知等边△ABC 的边长为1,按图中所示的规律,在同一平面内用2 014个这样的三角形拼接而成的四边形的周长是( )A .2 015B .2 016C .2 017D .2 018解析 观察图形可知,2 014个等边三角形组成的四边形是一个平行四边形,这个平行四边形的边长分别是1和1 007,所以这个平行四边形的周长是(1+1 007)×2=2 016.故选B. 答案 B二、填空题7.(改编题)一个多边形的内角和比外角和的3倍多180°,则它的边数是________. 解析 根据题意,得(n -2)·180=3×360+180,解得:n =9.则这个多边形的边数是9. 答案 98.(改编题)如图,▱ABCD 中,点E 是边AB 的中点,连结DE交对角线AC于点O ,则△AOE 与△COD 面积的比为________. 的比为⎝ ⎛⎭⎪⎫AE CD 2解析 ∵AE∥CD,∴△AOE ∽△COD.∴△AOE 与△COD 面积=⎝ ⎛⎭⎪⎫122=14. 答案 14(或1∶4)9.(原创题)已知▱ABCD 的周长为28,自顶点A 作AE⊥DC 于E ,AF ⊥BC 于F ,若AE =3,AF =4,则CE -CF =____________.解析 由△AFB∽△AED,得AD =6,AB =8.再由勾股定理求得BF =43,DE =3 3.从而求出CE -CF =2+ 3. 答案 2+ 310.(原创题)如图,在图1中,A 1,B 1,C 1分别是△ABC 的边BC ,CA ,AB 的中点,在图2中,A 2,B 2,C 2分别是△A 1B 1C 1的边B 1C 1,C 1A 1,A 1B 1的中点,…,按此规律,则第2 014个图形中平行四边形的个数共有________个.解析 在图1中,有3个平行四边形;在图2中,有6个平行四边形;在图3中,有9个平行四边形,从上面的数据可知图形中平行四边形的个数是图形序号的3倍,故第2 014个图形中平行四边形的个数是2 014×3=6 042. 答案 6 042 三、解答题11.(原创题)如图,在▱ABCD 中,过点A 分别作AE⊥BC 于点E ,AF ⊥CD 于点F.(1)求证:∠BAE=∠DAF; (2)若AE =4,AF =245,sin ∠BAE =35,求CF 的长. (1)证明 ∵四边形ABCD 是平行四边形,∴∠B =∠D.又∵AE⊥BC,AF ⊥CD , ∴∠AEB =∠AFD=90°.∵∠B +∠BAE=90°,∠D +∠DAF=90°, ∴∠BAE =∠DA F. (2)解 在Rt △ABE 中,sin ∠BAE =35,AE =4,可求AB =5.又∵∠BAE=∠DAF, ∴ sin ∠DAF =sin ∠BAE =35.在Rt △ADF 中,AF =245,sin ∠DAF =35, 可求DF =185.∵ CD =AB =5,∴CF =5-185=75. 12.(原创题)已知:如图,▱ABCD 中,E ,F 分别是边AB ,CD 的中点.(1)求证:四边形EBFD 是平行四边形;(2)若AD =AE =2,∠A =60°,求四边形EBFD 的周长和面积.(1)证明 在▱ABCD 中,AB =CD ,AB ∥CD , ∵E ,F 分别是AB ,CD 的中点, ∴BE =12AB ,DF =12CD.∴BE =DF.∴四边形EBFD 是平行四边形.(2)解 作DG⊥AB 于G ,∵AD =AE ,∠A =60°,∴△ADE 是等边三角形.∴DE =AD =2.又∵BE=AE =2.由(1)知四边形EBFD 是平行四边形, ∴四边形EBFD 的周长=2(BE +DE)=8. ∵△ADE 是等边三角形, ∴AG =GE =1.在Rt △ADG 中,DG =AD 2-AG 2=22-12=3, ∴S ▱EBFD =BE×DG=2×3=2 3.2019-2020学年数学中考模拟试卷一、选择题1.如图,矩形ABCD 中,AB =3,BC =5,点P 是BC 边上的一个动点(点P 不与点B 、C 重合),现将△PCD 沿直线PD 折叠,使点C 落到点C′处;作∠BPC′的角平分线交AB 于点E .设BP =x ,BE =y ,则下列图象中,能表示y 与x 的函数关系的图象大致是( )A. B.C. D.2.函数k y x=与y =﹣kx 2﹣k (k≠0)在同一直角坐标系中的大致图象可能是( )A .B .C .D .3.下列运算中正确的是( ) A .236x x x ⋅=B .238()x x =C .222()xy x y -=- D .633x x x ÷=4.如图,线段 AB 的长为 4,C 为 AB 上一个动点,分别以 AC 、BC 为斜边在 AB 的同侧作两个等腰直角三角形 ACD 和 BCE , 连结 DE , 则 DE 长的最小值是( )AB .2C.D .45.下列运算正确的是( ) A .236a a a ⋅= B .22423a a a += C .236(2)2a a -=-D .422()a a a ÷-=6.某正方体的每个面上都有一个汉字,如图是它的一种展开图,那么在原正方体中,与“我”字所在面相对的面上的汉字是( )A .厉B .害C .了D .国7.已知关于x 的分式方程1311a x x +=--的解为正数,且关于x 的不等式组314143513x x x a -+⎧+>⎪⎪⎨-⎪<⎪⎩无解,则所有满足条件的整数a 的绝对值之和是( ) A .11B .10C .7D .68.在同一直角坐标系中,函数y =kx和y =kx ﹣2的图象大致是( ) A. B .C. D .9.如图,在ABC ∆中,点D 、E 分别在AB 、AC 上,DE BC ∥,点F 在BC 上,AF 与DE 交于点G ,则下列结论中错误的是( ).A.AD AGBD FG= B.DG GE BF FC = C.AD AE DG GE = D.AG GEAF FC= 10.如图,在矩形纸片ABCD 中,3AB =,点E 在BC 上,将ABE ∆沿AE 折叠,点B 恰好落在CD 边上点F 处,且1CF =.则tan CFE ∠的值为( )A .12B .23C .3D 11.如图,在Rt △ABC 中,∠ACB=90°,以点C 为圆心的圆与边AB 相切于点D.交边BC 于点E ,若BC=4,AC=3,则BE 的长为( )A .0.6B .1.6C .2.4D .512.下列式子中,计算正确的是( ) A .224x x x += B .()222a b a b -=- C .()326a a -=-D .3412x x x ⋅=二、填空题13.如图,将ABC ∆沿BC 所在的直线平移得到DEF ∆,如果7AB =,2GC =,5DF =,那么GE =______.14.如图,将矩形 ABCD 沿AF 折叠,使D 落在BC 边的点E 处,过E 作EG CD 交AF 于点G ,连接DG ,若AG =6,EG =,则BE 的长为_____.15.已知a 2+1=3a ,则代数式a+1a的值为 . 16.如图,在直角三角形纸片ABC 中,∠ACB =90°,AC =2,BC =4,点D 在边AB 上,以CD 为折痕将△CBD 折叠得到△CPD ,CP 与边AB 交于点E ,若△DEP 为直角三角形,则BD 的长是_____17.若m 是方程x 2+x ﹣1=0的一个根,则代数式2019﹣m 2﹣m 的值为_____.18.2018年,我县共接待境内外旅游总人数达到1500000人次,用科学记数法表示为_____人次.三、解答题19.如图,某轮船在点B处,测得小岛A在B的北偏东60°方向,然后向正东方向航行60海里到点C处,测得小岛A在C的北偏东30°方向.(1)求小岛A到这艘轮船航行在点B时AB的长度.(2)若轮船继续往正东方向行驶40海里到点D处,求AD的距离(精确到1海里).≈2.65)20.如图1,已知点A、B、C、D在一条直线上,BF、CE相交于O,AE=DF,∠E=∠F,OB=OC.(1)求证:△ACE≌△DBF;(2)如果把△DBF沿AD折翻折使点F落在点G,如图2,连接BE和CG.求证:四边形BGCE是平行四边形.21.阅读对人成长的影响是巨大的,一本好书往往能改变人的一生,1995年联合国教科文组织把每年4月23日确定为“世界读书日”.如图是某校三个年级学生人数分布扇形统计图,其中八年级人数为400人,如表是该校学生阅读课外书籍情况统计表.请你根据图表中的信息,解答下列问题:(1)求该校八年级的人数占全校总人数的百分率为;(2)表中A=,B=;(3)该校学生平均每人读多少本课外书?22.某公益机构为了解市民使用“手机阅读”的情况,对部分市民进行了随机问卷调查(问卷调查表如左图所示),并将调查结果绘制成两副统计图(均不完整)(1)本次接受调查的总人数是______人.(2)请将条形统计图补充完整.(3)在扇形统计图中,表示观点B的扇形的圆心角度数为______度.(4)根据上述调查结果,请估计在2万名市民中,认为手机阅读“内容丰富“的大约有______人.23.在日常生活中我们经常会使用到订书机,如图MN是装订机的底座,AB是装订机的托板,始终与底座平行,连接杆DE的D点固定,点E从A向B处滑动,压柄BC可绕着转轴B旋转.已知压柄BC的长度为15cm,BD=5cm,压柄与托板的长度相等.(1)当托板与压柄夹角∠ABC=37°时,如图①点E从A点滑动了2cm,求连接杆DE的长度;(2)当压柄BC从(1)中的位置旋转到与底座AB的夹角∠ABC=127°,如图②.求这个过程中点E滑动的距离.(答案保留根号)(参考数据:sin37°≈0.6,cos37°≈0.8.tan37°≈0.75)24.如图1,E为半圆O直径AB上一动点,C为半圆上一定点,连接AC和BC,AD平分∠CAB交BC于点D,连接CE和DE.如果AB=6cm,AC=2.5cm,设A,E两点间的距离为xcm,C,E两点间的距离为y1cm,D,E 两点间的距离为y2cm.小明根据学习函数经验,分别对函数y1和y2随自变量x变化而变化的规律进行了探究.下面是小明的探究过程,请将它补充完整:(1)按表中自变量x值进行取点、画图、测量,得到了y1和y2与x几组对应值:问题:上表中的m=______cm;(2)在同一平面直角坐标系xOy中(见图2),描出补全后的表中各组数值所对应的点(x,y2)和(x,y1),并画出函数y1和y2的图象;(3)结合函数的图象,解决问题:当△ACE为等腰三角形时,AE的长度约为______cm(结果精确到0.01).25.阳春三月,龙泉驿区的桃花又开了,小明乘坐地铁到龙泉看桃花,计划在龙平路地铁口下车,如图是龙平路地铁口的平面图,其有A、B、C、D四个出入口,小明任选一个出口下车出站,赏花结束后,任选一个入口入站乘车.(1)小明从出站到入站共有多少种可能的结果?请用树形图或列表说明;(2)求出小明从龙平路同一侧出入站的概率.【参考答案】***一、选择题二、填空题13.14 51415.316.5或22.17.18.5×106三、解答题19.(1)小岛A到这艘轮船航行在点B时AB的长度是(2)若轮船继续往正东方向行驶40海里到点D处,AD的距离约是530海里.【解析】【分析】(1)如图,直角△ACE和直角△ABE有公共边AE,在两个直角三角形中,利用三角函数即可用AE表示出CE与BE,根据CB=BE-CE即可列方程,从而求得AE的长,然后根据直角三角形的性质即可得到结论;(2)由(1)求得BE=90海里,则DE=10海里,在直角△AED中,利用勾股定理求得AD的长度即可.【详解】(1)如图所示,过点A作AE⊥BD于点E,则有∠ABE=30°,∠ACE=60°.∴∠CAB=∠ABE,∴BC=AC=60海里.在Rt△ACE中,设CE=x海里,则AC =2x ,AE,在Rt △ABE 中,AB =2AE =x ,BE=3x ,又∵BE =BC+CE ,∴3x =60+x ,∴x =30.∴AE=(海里),∴AB =2AD =60海里),答:小岛A 到这艘轮船航行在点B 时AB 的长度是海里.(2)由(1)知,AE =海里,BE =90海里,则ED =(40+60)﹣90=10(海里).∴在直角△AED 中,利用勾股定理得:AD≈200×2.65=530(海里).答:若轮船继续往正东方向行驶40海里到点D 处,AD 的距离约是530海里.【点睛】本题主要考查了勾股定理的应用、直角三角形的计算,一般的三角形可以通过作高线转化为解直角三角形的计算,计算时首先计算直角三角形的公共边是常用的思路.20.(1)见解析;(2)见解析.【解析】【分析】(1)直接利用等腰三角形的性质结合全等三角形的判定与性质得出即可;(2)利用翻折变换的性质得出∠DBG=∠DBF ,再利用平行线的判定方法得出CE ∥BG ,进而求出四边形BGCE 是平行四边形【详解】(1)如图1,∵OB =OC ,∴∠ACE =∠DBF ,在△ACE 和△DBF 中,ACE DBF E FAE FD =⎧⎪=⎨⎪=⎩∠∠∠∠ , ∴△ACE ≌△DBF (AAS );(2)如图2,∵∠ACE =∠DBF ,∠DBG =∠DBF ,∴∠ACE =∠DBG ,∴CE∥BG,∵CE=BF,BG=BF,∴CE=BG,∴四边形BGCE是平行四边形.【点睛】此题考查了平行四边形的判定,全等三角形的判定与性质和翻折变换(折叠问题),综合利用判定的性质是解题关键21.(1)40%;(2)960;0.4;(3)4(本).【解析】【分析】(1)八年级的人数占全校总人数的百分率=1-32%-28%;(2)由频率的意义可知,B=1﹣0.32﹣0.24﹣0.04,再求出样本容量,利用样本容量×0.24即可求出A 的值;(3)先求出全校总人数,再求该校学生平均每人读的本数即可.【详解】解:(1)该校八年级的人数占全校总人数的百分率为1﹣32%﹣28%=40%,故答案为40%;(2)B=1﹣0.32﹣0.24﹣0.04=0.4,由160÷0.04=4000得图书总数是4000本,所以A=4000×0.24=960(本);故答案为960;0.4;(3)因为八年级的人数是400人,占40%,所以求得全校人数有:400÷40%=1000(人),所以全校学生平均每人阅读:4000÷1000=4(本).【点睛】本题考查的是频数分布表和扇形统计图的综合运用,考查分析频数分布直方图和频率的求法.扇形统计图直接反映部分占总体的百分比大小.22.(1)2000;(2)详见解析;(3)18°;(4)2400.【解析】【分析】(1)从条形图中可知A类人数为960人,从扇形图中可知A类比例为48%,结合起来即可求出总人数;(2)将总人数减去A、B、D、E的人数,可得C类的人数,即可根据人数画出条形;(3)求出观点B的人数占总人数的比例,再乘以360°,即可算出表示观点B的扇形的圆心角度数;(4)根据观点D的人数比例即可估算在2万名市民中,认为手机阅读“内容丰富“的人数.【详解】解:(1)960÷48%=2000即调查的总人数为2000人.故答案为2000.(2)持观点C的人为:2000-960-100-240-60=640,补全图形如下图所示.(3)1002000×360°=18°即表示观点B的扇形的圆心角度数为18°.故答案为18.(4)由扇形图可知认为手机阅读“内容丰富“的比例为12%,于是在2万名市民中,认为手机阅读“内容丰富“的人数约为:20000×12%=2400故答案为2400.【点睛】本题考查的是统计图的应用,在同时出现几种统计图时,找到联系几个统计图的量是问题的突破口.23.(1)连接杆DE的长度为cm(2)这个过程中点E滑动的距离为(16)cm【解析】【分析】(1)作DH⊥BE于H,在Rt△BDH中用三角函数算出DH和BH,再求出EH,在三角形DEH中用勾股定理即可求得DE;(2)作DH⊥AB的延长线于点H,在Rt△DBH和Rt△DEH中,用三角函数分别求出BH,DH,EB 的长,从而可求得点E滑动的距离.【详解】(1)如图①,作DH ⊥BE 于H ,在Rt △BDH 中,∠DHB =90°,BD =5,∠ABC =37°, ∴5DH = sin37°,5BH =cos37°, ∴DH =5sin37°≈5×0.6=3(cm ),BH =5cos37°=5×0.8=4(cm ).∵AB =BC =15cm ,AE =2cm ,∴EH =AB ﹣AE ﹣BH =15﹣2﹣4=9(cm ),∴DE ==答:连接杆DE 的长度为.(2)如图②,作DH ⊥AB 的延长线于点H ,∵∠ABC =127°,∴∠DBH =53°,∠BDH =37°,在Rt △DBH 中,5BH BH BD ==sin37°=0.6, ∴BH =3cm ,∴DH =4cm ,在Rt △DEH 中,EH 2+DH 2=DE 2,∴(EB+3)2+16=90,∴EB 3)(cm ),∴点E 滑动的距离为:153)﹣2=(16)(cm ).答:这个过程中点E 滑动的距离为(16)cm .【点睛】本题考查了解直角三角形的应用,作出辅助线,正确构造直角三角形是解决问题的关键.24.(1)3;(2)见解析;(3)①2.5;②0;③3.【解析】【分析】(1)当x=3时,点E 与点O 重合,故CE 即为CO ,即可求解;(2)根据表格数据,描点后图象如下图2;(3)分AE=AC、AC=CE、AE=CE三种情况,求解即可.【详解】解:(1)当x=3时,点E与点O重合,故CE即为CO=3,故:答案为3;(2)根据表格数据,描点后图象如下图2;(3)△ACE为等腰三角形,有以下三种情况:①当AE=AC时,AE=AC=2.5;②AC=CE时,即y1=CE=2.5,从图象可以看出,x=0;即:AE=0(舍去),③当AE=CE时,即:x=y1,从图中可以看出:x=3,即:AE=3;故:答案为2.50或3.00.【点睛】本题考查的是圆知识的综合运用,涉及到作函数图象,此类题目通常在作图的基础上,依据图象确定特殊点坐标情况求解.25.(1)见解析,有16种可能的结果;(2).【解析】【分析】(1)画树状图列出所有等可能结果;(2)从中找到小明从龙平路同一侧出入站的结果数,再根据概率公式求解可得.【详解】解:(1)画树状图如下:小明从出站到入站共有16种可能的结果.(2)∵小明从龙平路同一侧出入站的有8种等可能结果,∴小明从龙平路同一侧出入站的概率为.【点睛】本题考查的是用列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,解决本题的关键是要熟练掌握画树状图的方法.2019-2020学年数学中考模拟试卷一、选择题1.不等式组的解集在数轴上表示正确的是( )A .B .C .D .2.某种速冻水饺的储藏温度是-18℃±2℃,四个冷藏室的温度如下,则不适合储藏此种水饺的是( )A .-17℃B .-22℃C .-18℃D .-19℃3.如图,点P 是∠AOB 的角平分线OC 上一点,PD ⊥OA ,垂足为点D ,PD =2,M 为OP 的中点,则点M 到射线OB 的距离为( )A .12B .1CD .24.计算:2--2的结果是( )A .4B .1C .0D .-45.在一条笔直的公路上有A 、B 两地,甲乙两人同时出发,甲骑自行车从A 地到B 地,乙骑自行车从B 地到A 地,到达A 地后立即按原路返回B 地.如图是甲、乙两人离B 地的距离(km)y 与行驶时间(h)x 之间的函数图象,下列说法中①A 、B 两地相距30千米;②甲的速度为15千米/时;③点M 的坐标为(23,20);④当甲、乙两人相距10千米时,他们的行驶时间是49小时或89小时. 正确的个数为( )A .1个B .2个C .3个D .4个 6.不等式组372291x x +≥⎧⎨-<⎩整数解的个数是() A .4 B .5 C .6 D .77.如图.在直角坐标系中,矩形ABC0的边OA在x轴上,边0C在y轴上,点B的坐标为(1,3),将矩形沿对角线AC翻折,B点落在D点的位置,且AD交y轴于点E.那么点D的坐标为()A.412 ()55 -,B.213 ()55 -,C.113 ()25 -,D.312 ()55 -,8.如图,AB是⊙O的直径,点C、D是圆上两点,且∠AOC=126°,则∠CDB=()A.54°B.64°C.27°D.37°9.在边长为2的正方形ABCD中,对角线AC与BD相交于点O,P是BD上一动点,过P作EF∥AC,分别交正方形的两条边于点E,F.设BP=x,△BEF的面积为y,则能反映y与x之间关系的图象为( )A.B.C.D.10.已知直线y=x+1与反比例函数kyx=的图象的一个交点为P(a,2),则ak的值为()A.2 B.12C.-2 D.-1211.一个不等式组中的两个不等式的解集如图所示,则这个不等式组的整数解为()A.﹣1,0,1 B.﹣1,0 C.0,1 D.﹣1,112.如图,在正方形ABCD中,E是边BC上一点,且BE:CE=1:3,DE交AC于点F,若DE=10,则CF 等于( )A B.C.7D.二、填空题13.18-的立方根是_____________.14=____________ 15.36的算术平方根是.16.如图,在平面直角坐标系中,反比例函数2yx=(x>0)与正比例函数y=kx、xyk=(k>1)的图象分别交于点A、B,若∠AOB=45°,则△AOB的面积是________.17.如图,在⊙O的内接四边形ABCD中,AB=3,AD=5,∠BAD=60°,点C为弧BD的中点,则AC的长是__.18.函数y= +(x﹣2)0中,自变量x的取值范围是____________三、解答题19.随着信息技术的快速发展,人们购物的付款方式更加多样、便捷.某校数学兴趣小组为了解人们最喜欢的付款方式设计了一份调查问卷,要求被调查者选且只选其中一种你最喜欢的付款方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次活动共调查了人;在扇形统计图中,表示“支付宝”付款的扇形圆心角的度数为;(2)补全条形统计图;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种付款方式中选一种方式进行付款,请用树状图或列表法求出两人恰好选择同一种付款方式的概率.20.校车安全是近几年社会关注的重大问题,安全隐患主要是超速和超载,某中学数学活动小组设计了如下检测公路上行驶的汽车速度的实验:先在公路旁边选取一点C,再在笔直的车道l上确定点D,使CD与l垂直,测得CD的长等于24米,在l上点D的同侧取点A、B,使∠CAD=30°,∠CBD=60°.(1)求AB的长(结果保留根号);(2)已知本路段对校车限速为45千米/小时,若测得某辆校车从A到B用时1.5秒,这辆校车是否超速?说明理由.≈1.4)21.尺规作图:确定图中弧CD所在圆的圆心,已知:弧CD.求作:弧CD所在圆的圆心O.22.如图所示AB是⊙O的直径,圆心为点O,点C为⊙O上一点,OM⊥AB于点O交AC于点D,MC=MD求证:MC为⊙O的切线.23.2﹣|1|﹣tan45°+(π﹣1978)0.的平分线交BC于点E,过点D作AE的垂线交AE于24.已知:如图,在平行四边形ABCD中,BAD点G,交AB延长线于点F,连接EF,ED.(1)求证:EF ED =;(2)若60ABC ∠=︒,6AD =, 2CE =, 求EF 的长.25.某超市在端午节期间开展优惠活动,凡购物者可以通过转动转盘的方式享受折扣优惠,本次活动共有两种方式,方式一:转动转盘甲,指针指向A 区域时,所购买物品享受9折优惠、指针指向其它区域无优惠;方式二:同时转动转盘甲和转盘乙,若两个转盘的指针指向每个区域的字母相同,所购买物品享受8折优惠,其它情况无优惠.在每个转盘中,指针指向每个区城的可能性相同(若指针指向分界线,则重新转动转盘)(1)若顾客选择方式一,则享受9折优惠的概率为 ;(2)若顾客选择方式二,请用树状图或列表法列出所有可能,并求顾客享受8折优惠的概率.【参考答案】***一、选择题二、填空题13.12- 14.1215.16.217.18.x≥1且x≠2三、解答题19.(1) 200;72°;(2)见解析;(3)13【解析】【分析】(1)用选用“微信”、“支付宝”、“银行卡”的人数总和除以它们所占的百分比得到调查的总人数;用选用支付宝的人数的百分比乘以360度得到在扇形统计图中,表示“支付宝”付款的扇形圆心角的度数;(2)分别计算出选用微信、银行卡的人数,然后补全条形统计图;(3)画树状图展示所有9种等可能的结果数,找出两人恰好选择同一种付款方式的结果数,然后利用概率公式求解.【详解】解:(1)(50+45+15)÷(1﹣15%﹣30%)=200,所以这次活动共调查了200人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数=360°×40200=72°;故答案为200;90°;(2)如图,使用微信支付的人数:200×30%=60(人)使用银行卡支付的人数:200×15%=30(人),(3)画树状图如下:共有9种等可能的结果数,其中两人恰好选择同一种付款方式的结果数为3,所以两人恰好选择同一种付款方式的概率=39=13.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.20.(1)此校车在AB路段超速,理由见解析.【解析】【分析】(1)结合三角函数的计算公式,列出等式,分别计算AD和BD的长度,计算结果,即可。
第一部分第五章第22讲命题点1 多边形及其性质(2018年玉林考,2017年4考,2016年5考)1.(2016·来宾4题3分)如果一个正多边形的一个外角为30°,那么这个正多边形的边数是( C )A.6 B.11C.12 D.182.(2018·玉林8题3分)在四边形ABCD中:①AB∥CD,②AD∥BC,③AB=CD,④AD =BC,从以上选择两个条件使四边形ABCD为平行四边形的选法共有( B ) A.3种B.4种C.5种D.6种3.(2016·桂林16题3分)正六边形的每个外角是__60__度.4.(2017·来宾19题3分)已知一个多边形的内角和等于其外角和的2倍,则该多边形是__六__边形.命题点2 平行四边形的性质与判定(2018年百色考,2017年4考,2016年5考)5.(2016·河池8题3分)如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为( C )A.150°B.130°C.120°D.100°6.(2016·柳州17题3分)如图,若□ABCD的面积为20,BC=5,则边AD与BC间的距离为__4__.7.(2016·钦州21题8分)如图,DE是△ABC的中位线,延长DE到F,使EF=DE,连接BF.(1)求证:BF=DC;(2)求证:四边形ABFD是平行四边形.证明:(1)如答图,连接DB,CF.∵DE是△ABC的中位线,∴CE =BE .∵EF =DE ,∴四边形CDBF 是平行四边形,∴BF =CD .(2)∵四边形CDBF 是平行四边形,∴CD ∥FB ,∴AD ∥BF .∵DE 是△ABC 的中位线,∴DE ∥AB ,∴DF ∥AB ,∴四边形ABFD 是平行四边形.8.(2016·百色22题8分)已知平行四边形ABCD 中,CE 平分∠BCD 且交AD 于点E ,AF ∥CE ,且交BC 于点F .(1)求证:△ABF ≌△CDE ;(2)如图,若∠1=65°,求∠B 的大小.(1)证明:∵四边形ABCD 是平行四边形,∴AB =CD ,AD ∥BC ,∠B =∠D ,∴∠1=∠BCE .∵AF ∥CE ,∴∠AFB =∠ECB .∵CE 平分∠BCD ,∴∠DCE =∠ECB ,∴∠AFB =∠1.在△ABF 和△CDE 中,⎩⎪⎨⎪⎧ ∠B=∠D,∠AFB=∠1,AB =CD ,∴△ABF ≌△CDE (AA S).(2)解:由(1)得,∠1=∠ECB ,∠DCE =∠ECB ,∴∠1=∠DCE =65°,∴∠B =∠D =180°-2×65°=50°.9.(2018·百色22题8分)平行四边形ABCD 中,∠A =60°,AB =2AD ,BD 的中垂线分别交AB ,CD 于点E ,F ,垂足为O .(1)求证:OE =OF ;(2)若AD =6,求t an ∠ABD 的值.(1)证明:如答图,∵四边形ABCD 是平行四边形,∴AB ∥DC ,∴∠1=∠2.∵EF 是BD 的中垂线,∴OD =OB ,∠3=∠4=90°.在△DOF 和△BOE 中,⎩⎪⎨⎪⎧ ∠1=∠2,OD =OB ,∠3=∠4,∴△DOF ≌△BOE (A S A ),∴OE =OF .(2)解:过点D 作DG ⊥AB ,垂足为G .∵∠A =60°,AD =6,∴∠ADG =30°,∴AG =12AD =3, ∴DG =62-32=3 3.∵AB =2AD ,∴AB =2×6=12,∴BG =AB -AG =12-3=9,∴t an ∠ABD =DG BG =339=33.。
中考数学一轮复习平行四边形复习题及答案一、解答题1.如图,在矩形ABCD 中,AD nAB =,E ,F 分别在AB ,BC 上.(1)若1n =,①如图,AF DE ⊥,求证:AE BF =;②如图,点G 为点F 关于AB 的对称点,连结AG ,DE 的延长线交AG 于H ,若AH AD =,猜想AE 、BF 、AG 之间的数量关系,并证明你的猜想.(2)如图,若M 、N 分别为DC 、AD 上的点,则EM FN的最大值为_____(结果用含n 的式子表示);(3)如图,若E 为AB 的中点,ADE EDF ∠=∠.则CF BF的值为_______(结果用含n 的式子表示).2.正方形ABCD 中,对角线AC 与BD 交于点O ,点P 是正方形ABCD 对角线BD 上的一个动点(点P 不与点B ,O ,D 重合),连接CP 并延长,分别过点D ,B 向射线作垂线,垂足分别为点M ,N .(1)补全图形,并求证:DM=CN;(2)连接OM,ON,判断OMN的形状并证明.3.已知:如图,在△ABC中,D是BC边上的一点,E是AD的中点,过点A作BC的平行线交于BE的延长线于点F,且AF=DC,连接CF.(1)求证:D是BC的中点;(2)如果AB=AC,试判断四边形ADCF的形状,并证明你的结论.∆沿BE折叠,点A的对应点为点4.如图,在矩形ABCD中,E是AD的中点,将ABEG.图1 图2(1)填空:如图1,当点G恰好在BC边上时,四边形ABGE的形状是________;(2)如图2,当点G在矩形ABCD内部时,延长BG交DC边于点F.=+.①求证:BF AB DFAD=,试探索线段DF与FC的数量关系.②若35.如图,在正方形ABCD中,点E是BC边所在直线上一动点(不与点B、C重合),过点B作BF⊥DE,交射线DE于点F,连接CF.(1)如图,当点E在线段BC上时,∠BDF=α.①按要求补全图形;②∠EBF=______________(用含α的式子表示);③判断线段 BF,CF,DF之间的数量关系,并证明.(2)当点E在直线BC上时,直接写出线段BF,CF,DF之间的数量关系,不需证明.6.类比等腰三角形的定义,我们定义:有三条边相等的凸四边形叫做“准等边四边形”.(1)已知:如图1,在“准等边四边形”ABCD中,BC≠AB,BD⊥CD,AB=3,BD=4,求BC 的长;(2)在探究性质时,小明发现一个结论:对角线互相垂直的“准等边四边形”是菱形.请你判断此结论是否正确,若正确,请说明理由;若不正确,请举出反例;(3)如图2,在△ABC中,AB=AC=2,∠BAC=90°.在AB的垂直平分线上是否存在点P,使得以A,B,C,P为顶点的四边形为“准等边四边形”.若存在,请求出该“准等边四边形”的面积;若不存在,请说明理由.7.在矩形ABCD中,BE平分∠ABC交CD边于点E.点F在BC边上,且FE⊥AE.(1)如图1,①∠BEC=_________°;②在图1已有的三角形中,找到一对全等的三角形,并证明你的结论;(2)如图2,FH∥CD交AD于点H,交BE于点M.NH∥BE,NB∥HE,连接NE.若AB=4,AH=2,求NE的长.8.如图,在平行四边形 ABCD中,AD=30 ,CD=10,F是BC 的中点,P 以每秒1 个单位长→→→路径以每秒3个度的速度从 A向 D运动,到D点后停止运动;Q沿着A B C D单位长度的速度运动,到D点后停止运动.已知动点 P,Q 同时出发,当其中一点停止后,另一点也停止运动.设运动时间为 t秒,问:(1)经过几秒,以 A,Q ,F ,P 为顶点的四边形是平行四边形(2)经过几秒,以A ,Q ,F , P为顶点的四边形的面积是平行四边形 ABCD面积的一半?9.如图,已知正方形ABCD与正方形CEFG如图放置,连接AG,AE.=(1)求证:AG AE⊥于P,交AB、AD于M、N,交AE、AG于P、Q,交BC于(2)过点F作FP AEH,.求证:NH=FM10.在边长为5的正方形ABCD中,点E在边CD所在直线上,连接BE,以BE为边,在BE的下方作正方形BEFG,并连接AG.(1)如图1,当点E与点D重合时,AG=;(2)如图2,当点E在线段CD上时,DE=2,求AG的长;(3)若AG517DE的长.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)①见解析;②AG FB AE =+,证明见解析;(2)21n ;(3)241n -【分析】(1)①证明△ADE ≌△BAF (ASA )可得结论.②结论:AG=BF+AE .如图2中,过点A 作AK ⊥HD 交BC 于点K ,证明AE=BK ,AG=GK ,即可解决问题.(2)如图3中,设AB=a ,AD=na ,求出ME 的最大值,NF 的最小值即可解决问题. (3)如图4中,延长DE 交CB 的延长线于H .设AB=2k ,则AD=BC=2kn ,求出CF ,BF 即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,n=1,∴AD=AB ,∴四边形ABCD 是正方形,∴∠DAB=∠B=90°,∵AF ⊥DE ,∴∠ADE+∠DAF=90°,∠DAF+∠BAF=90°,∴∠ADE=∠BAF ,∴△ADE ≌△BAF (ASA ),∴AE=BF ;②结论:AG=BF+AE .理由:如图2中,过点A 作AK ⊥HD 交BC 于点K ,由(1)可知AE=BK ,∵AH=AD ,AK ⊥HD ,∴∠HAK=∠DAK ,∵AD ∥BC ,∴∠DAK=∠AKG ,∴∠HAK=∠AKG ,∴AG=GK ,∵GK=GB+BK=BF+AE ,∴AG=BF+AE ;(2)如图3中,设AB=a ,AD=na ,当ME 的值最大时,NF 的值最小时,ME NF的值最大, 当ME 是矩形ABCD 的对角线时,ME 的值最大,最大值()222na 1a n +=+,当NF ⊥AD 时,NF 的值最小,最小值=a ,∴ME NF 的最大值21a n +⋅21n +, 21n +;(3)如图4中,延长DE 交CB 的延长线于H .设AB=2k ,则AD=BC=2kn ,∵AD ∥BH ,∴∠ADE=∠H ,∵AE=EB=k ,∠AED=∠BEH ,∴△AED ≌△BEH (ASA ),∴AD=BH=2kn ,∴CH=4kn ,∵∠ADE=∠EDF ,∠ADE=∠H ,∴∠H=∠EDF ,∴FD=FH ,设DF=FH=x ,在Rt △DCF 中,∵CD 2+CF 2=DF 2,∴(2k)2+(4kn-x)2=x 2, ∴2142n x k n+=⋅, ∴221441422n n CF kn k k n n +-=-⋅=⋅,241222n k BF kn k n n-=-⋅=, ∴22412412n k CF n n k BFn-⋅==-, 故答案为:241n -.【点睛】本题考查了矩形的性质,正方形的性质,全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数解决问题.2.(1)见解析;(2)MON 为等腰直角三角形,见解析【分析】(1)如图1,由正方形的性质得CB =CD ,∠BCD =90°,再证明∠BCN =∠CDM ,然后根据“AAS”证明△CDM ≌△CBN ,从而得到DM =CN ;(2)如图2,利用正方形的性质得OD =OC ,∠ODC =∠OCB =45°,∠DOC =90°,再利用∠BCN =∠CDM 得到∠OCN =∠ODM ,则根据“SAS”可判断△OCN ≌△ODM ,从而得到ON =OM ,∠CON =∠DOM ,所以∠MON =∠DOC =90°,于是可判断△MON 为等腰直角三角形.【详解】(1)证明:如图1,∵四边形ABCD 为正方形,∴CB =CD ,∠BCD =90°,∵DM ⊥CP ,BN ⊥CP ,∴∠DMC =90°,∠BNC =90°,∵∠CDM+∠DCM =90°,∠BCN+∠DCM =90°,∴∠BCN =∠CDM ,在△CDM 和△CBN 中DMC CNB CD CBCDM BCN ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△CDM ≌△CBN ,∴DM =CN ;(2)解:△OMN 为等腰直角三角形.理由如下:如图2,∵四边形ABCD 为正方形,∴OD =OC ,∠ODC =∠OCB =45°,∠DOC =90°,∵∠BCN =∠CDM ,∴∠BCN ﹣45°=∠CDM ﹣45°,即∠OCN =∠ODM ,在△OCN 和△ODM 中CN DM OCN ODM OC OD =⎧⎪∠=∠⎨⎪=⎩, ∴△OCN ≌△ODM ,∴ON =OM ,∠CON =∠DOM ,∴∠MON =∠DOC =90°, ∴MON 为等腰直角三角形.【点睛】本题考查正方形的性质:正方形的四条边都相等,四个角都是直角;正方形的两条对角线相等,互相垂直平分,并且每条对角线平分一组对角;正方形具有四边形、平行四边形、矩形、菱形的一切性质;两条对角线将正方形分成四个全等的等腰直角三角形,同时,正方形又是轴对称图形,有四条对称轴.也考查全等三角形的判定与性质.3.(1)见详解;(2)四边形ADCF 是矩形;证明见详解.【分析】(1)可证△AFE ≌△DBE ,得出AF=BD ,进而根据AF=DC ,得出D 是BC 中点的结论; (2)若AB=AC ,则△ABC 是等腰三角形,根据等腰三角形三线合一的性质知AD ⊥BC ;而AF 与DC 平行且相等,故四边形ADCF 是平行四边形,又AD ⊥BC ,则四边形ADCF 是矩形.【详解】(1)证明:∵E 是AD 的中点,∴AE=DE .∵AF ∥BC ,∴∠FAE=∠BDE ,∠AFE=∠DBE .在△AFE 和△DBE 中,FAE BDE AFE DBE AE DE ∠=∠⎧⎪∠=∠⎨⎪=⎩∴△AFE ≌△DBE (AAS ).∴AF=BD .∵AF=DC ,∴BD=DC .即:D 是BC 的中点.(2)解:四边形ADCF 是矩形;证明:∵AF=DC ,AF ∥DC ,∴四边形ADCF 是平行四边形.∵AB=AC ,BD=DC ,∴AD ⊥BC 即∠ADC=90°.∴平行四边形ADCF 是矩形.【点睛】此题主要考查了全等三角形的判定和性质,等腰三角形的性质,平行四边形、矩形的判定等知识综合运用.解题的关键是熟练掌握矩形的判定方法,以及全等三角形的判定和性质进行证明.4.(1)四边形ABGE 的形状是正方形;(2)①详见解析;②DF=3CF【分析】(1)由四边形ABCD 是矩形,可得90A ABC ︒∠=∠=,由折叠得:90BGE A ︒∠=∠=,根据三个内角是直角可判断四边形ABGE 为矩形,由折叠得:AB=BG ,根据一组邻边相等的矩形是正方形可判断矩形ABGE 为正方形;(2)①如图,连结EF ,在矩形ABCD 中,AB=DC ,AD=BC ,∠A=∠C=∠D=90°,由△ABE 沿BE 折叠后得到△GBE ,可得BG=AB ,EG=AE=ED ,∠A=∠BGE=90°,故∠EGF=∠D=90°,由HL 可判断Rt △EGF ≌Rt △EDF ,得到DF=FG ,问题得证;②设AB=DC=a ,则AD=BC=3a ,另设CF=x ,则DF=DC-CF=a-x ,由①得BF=AB+DF =2a-x ,在Rt △BCF 中,由勾股定理得:BF 2=BC 2+CF 2,代入数据运算可得:x=14a ,即CF=14a ,DF=a-x=34a ,进而可得DF 与CF 关系. 【详解】 (1)四边形ABGE 的形状是正方形.理由是:∵四边形ABCD 是矩形,∴90A ABC ︒∠=∠=,由折叠得:90BGE A ︒∠=∠=,∴四边形ABGE 为矩形,由折叠得:AB=BG ,∴矩形ABGE 为正方形;故答案为:正方形.(2)①如图,连结EF ,在矩形ABCD 中,AB=DC ,AD=BC ,∠A=∠C=∠D=90°,∵E 是AD 的中点,∴AE=DE ,∵△ABE 沿BE 折叠后得到△GBE ,∴BG=AB ,EG=AE=ED ,∠A=∠BGE=90°,∴∠EGF=∠D=90°,Rt △EGF 和Rt △EDF 中,EG ED EF EF =⎧⎨=⎩, ∴Rt △EGF ≌Rt △EDF (HL ),∴DF=FG ,∴BF=BG+GF=AB+DF ;②不妨假设AB=DC=a ,则,另设CF=x ,则DF=DC-CF=a-x ,由①得BF=AB+DF=a+a-x=2a-x ,在Rt △BCF 中,由勾股定理得:BF 2=BC 2+CF 2,即(2a-x)2a)2+x 2,整理得:x=14a , ∴CF=14a ,DF=a-x=34a , ∴DF=3CF .【点睛】本题主要考查了折叠的性质,正方形的判定,三角形全等的判定,勾股定理等内容,根据图形作出辅助线找出线段的等量关系列出方程是解题的关键.5.(1)①详见解析;②45°-α;③DF BF =+,详见解析;(2)DF BF =,或BF DF =,或BF DF +=【分析】(1)①由题意补全图形即可;②由正方形的性质得出1452DBE ABC ∠=∠=,由三角形的外角性质得出45BEF DBE BDF α∠=∠+∠=+,由直角三角形的性质得出9045EBF BEF α∠=-∠=-即可;③在DF 上截取DM=BF ,连接CM ,证明△CDM ≌△CBF ,得出CM=CF , ∠DCM=∠BCF ,得出即可得出结论;(2)分三种情况:①当点E 在线段BC 上时,,理由同(1)③;②当点E 在线段BC 的延长线上时,,在BF_上截取BM=DF ,连接CM .同(1)③得△CBM ≌△CDF 得出CM=CF ,∠BCM=∠DCF ,证明△CMF 是等腰直角三角形,得出,即可得出结论;③当点E 在线段CB 的延长线上时,,在DF 上截取DM=BF ,连接CM ,同(1) ③得:ACDM ≌△CBF 得出CM=CF ,∠DCM=∠BCF ,证明△CMF 是等腰直角三角形,得出,即可得出结论.【详解】解:(1)①如图,②∵四边形ABCD 是正方形,∴∠ABC=90°,1452DBE ABC ∠=∠=, ∴45BEF DBE BDF α∠=∠+∠=+,∵BF ⊥DE,∴∠BFE=90°,∴9045EBF BEF α∠=-∠=-,故答案为:45°-α;③线段BF ,CF ,DF 之间的数量关系是2DF BF CF =+.证明如下:在DF 上截取DM =BF ,连接CM .如图2所示,∵ 正方形ABCD ,∴ BC =CD ,∠BDC =∠DBC =45°,∠BCD =90°∴∠CDM =∠CBF =45°-α,∴△CDM ≌△CBF (SAS ).∴ DM =BF , CM =CF ,∠DCM =∠BCF .∴ ∠MCF =∠BCF+∠MCE=∠DCM+∠MCE=∠BCD =90°,∴ MF 2CF . ∴2.DF DM MF BF CF =+=+(2)分三种情况:①当点E 在线段BC 上时,2CF ,理由同(1)③; ②当点E 在线段BC 的延长线上时,2CF ,理由如下:在BF 上截取BM=DF ,连接CM ,如图3所示,同(1) ③,得:△CBM ≌△CDF (SAS),∴CM=CF , ∠BCM=∠DCF .∴∠MCF=∠DCF+∠MCD=∠BCM+∠MCD= ∠ BCD=90°,∴△CMF 是等腰直角三角形,∴2CF ,∴2CF ;③当点E 在线段CB 的延长线上时,BF+DF=2CF ;理由如下: 在DF 上截取DM=BF ,连接CM ,如图4所示,同(1)③得:△CDM ≌△CBF ,∴CM=CF ,∠DCM=∠BCF ,∴∠MCF=∠DCF+ ∠MCD= ∠DCF+∠BCF=∠BCD=90°,∴△CMF 是等腰直角三 角形,∴MF=2CF ,即DM+DF=2CF ,∴BF+DF=2CF ;综上所述,当点E 在直线BC 上时,线段BF ,CF ,DF 之间的数导关系为:2DF BF CF =+,或2BF DF CF =+,或2BF DF CF +=.【点睛】此题是四边形的一道综合题,考查正方形的性质,等腰直角三角形的判定及性质,全等三角形的判定及性质,注意解题中分情况讨论避免漏解.6.(1)5;(2)正确,证明详见解析;(3)存在,有四种情况,面积分别是:71+,31+,13+2,33+2【分析】(1)根据勾股定理计算BC的长度,(2)根据对角线互相垂直平分的四边形是菱形判断,(3)有四种情况,作辅助线,将四边形分成两个三角形和一个四边形或两个三角形,相加可得结论.【详解】(1)∵BD⊥CD∴∠BDC=90°,BC>CD∵在“准等边四边形”ABCD中,BC≠AB,∴AB=AD=CD=3,∵BD=4,∴BC=225CD BD+=,(2)正确.如图所示:∵AB=AD∴ΔABD是等腰三角形.∵AC⊥BD.∴AC垂直平分BD.∴BC=CD∴CD =AB=AD=BC∴四边形 ABCD是菱形.(3)存在四种情况,如图2,四边形ABPC是“准等边四边形”,过C作CF PE⊥于F,则∠CFE=90,∵EP 是AB 的垂直平分线,∴90AEF A ==∠∠ ,∴四边形AEFC 是矩形,在Rt ABC 中,2,2AB AC BC === , ∴22CF AE BE === , ∵2AB PC ==∴2262PF PC CF =-= ∴BEP CFP AEFC S S S S =++四边形ABPC 矩形1262126222222222⎛⎫=⨯⨯++⨯+⨯⨯ ⎪ ⎪⎝⎭332+= 如图4,四边形ABPC 是“准等边四边形”,∵2AP BP AC AB ==== ,∴ABP △是等边三角形, ∴2313(2)221422ABP ABC S S S =+=⨯+⨯⨯=+四边形ACBP ; 如图5,四边形ABPC 是“准等边四边形”,∵2AB BP BC === ,PE 是AB 的垂直平分线,∴,PD AB ⊥ E 是AB 的中点,∴1222BE AB == ,∴2222214222PE PB BE ⎛⎫=-=-= ⎪ ⎪⎝⎭∴ACBP 11417222122APB ABC S S S =+=⨯⨯+⨯⨯=+四边形 如图6,四边形ABPC 是“准等边四边形”,过P 作PF AC ⊥于F ,连接AP ,∵2AB AC PB ===∴6PE = ∴16123122222APB APC ABPC S SS +=+=⨯+=四边形【点睛】 本题考查了四边形综合题,矩形和菱形的判定和性质,“准等边四边形”的定义等知识,解题的关键是理解题意,学会添加常用辅助线,构造直角三角形和矩形解题,学会用分类讨论的思想解决问题,难度较大,属于中考压轴题.7.(1)①45;②△ADE≌△ECF,理由见解析;(2)5【分析】(1)①根据矩形的性质得到90ABC BCD ∠=∠=︒,根据角平分线的定义得到45EBC ∠=︒,根据三角形内角和定理计算即可;②利用ASA 定理证明ADE ECF ≅;(2)连接HB ,证明四边形NBEH 是矩形,得到NE BH =,根据勾股定理求出BH 即可.【详解】(1)①∵四边形ABCD 为矩形,∴∠ABC=∠BCD=90°,∵BE 平分∠ABC,∴∠EBC=45°,∴∠BEC=45°,故答案为45;②△ADE≌△ECF,理由如下:∵四边形ABCD 是矩形,∴∠ABC=∠C=∠D=90°,AD=BC .∵FE⊥AE,∴∠AEF=90°.∴∠AED+∠FEC=180°-∠AEF=90°.∵∠AED+∠DAE=90°,∴∠FEC=∠EAD,∵BE 平分∠ABC,∴∠BEC=45°.∴∠EBC=∠BEC.∴BC=EC.∴AD=EC.在△ADE 和△ECF 中,DAE CEF AD ECADE ECF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ADE≌△ECF;(2)连接HB ,如图2,∵FH∥CD,∴∠HFC=180°-∠C=90°.∴四边形HFCD 是矩形.∴DH=CF,∵△ADE≌△ECF,∴DE=CF.∴DH=DE.∴∠DHE=∠DEH=45°.∵∠BEC=45°,∴∠HEB=180°-∠DEH -∠BEC=90°.∵NH∥BE,NB∥HE,∴四边形NBEH 是平行四边形.∴四边形NBEH 是矩形.∴NE=BH.∵四边形ABCD 是矩形,∴∠BAH=90°.∵在Rt△BAH 中,AB=4,AH=2,【点睛】本题考查的是矩形的判定和性质、全等三角形的判定和性质以及勾股定理的应用,掌握全等三角形的判定定理和性质定理是解题的关键.8.(1)254秒或252秒;(2)15秒【分析】(1)Q点必须在BC上时,A,Q ,F ,P 为顶点的四边形才能是平行四边形,分Q点在BF和Q点在CF上时分类讨论,利用平行四边形对边相等的性质即可求解;(2)分Q点在AB、BC、CD之间时逐个讨论即可求解.【详解】解:(1)∵以A、Q、F、P为顶点的四边形是平行四边形,且AP在AD上,∴Q点必须在BC上才能满足以A、Q、F、P为顶点的四边形是平行四边形∵四边形ABCD是平行四边形,∴AD=BC=30,AB=CD=10,∵点F是BC的中点,∴BF=CF=12BC=15,AB+BF=25,情况一:当Q点在BF上时,AP=FQ,且AP=t,FQ=35-3t,故t=25-3t,解得254t ;情况二:当Q点在CF上时,AP=FQ,且AP=t,FQ=3t-35,故t=3t-25,解得t=25 2;故经过254或252秒,以A、Q、B、P为顶点的四边形是平行四边形;(2)情况一:当Q点在AB上时,0<t<103,此时P点还未运动到AD的中点位置,故四边形AQFP面积小于平行四边形ABCD面积的一半,情况二:当Q点在BC上且位于BF之间时,1025 33t,此时AP+FQ=t+35-3t=35-2t,∵102533t,∴35-2t <30,四边形AQFP面积小于平行四边形ABCD面积的一半,情况三:当Q 点在BC 上且位于FC 之间时,254033t 此时AP+FQ=t+3t-35=4t-35∵254033t ,∴4t-35<30, 四边形AQFP 面积小于平行四边形ABCD 面积的一半, 情况四:当Q 点在CD 上时,405033t << 当AP=BF=15时,t=15,1122APF ABFP PFQ DCFP SS S S 且 ∴1+2APF PFQ AFPQ ABCD S S S S , ∴当t=15秒时,以A 、Q 、F 、P 为顶点的四边形面积是平行四边形ABCD 面积的一半, 故答案为:15秒.【点睛】本题考查了平行四边形的判定和性质,根据动点的位置不同需要分多种情况分类讨论,熟练掌握平行四边形的性质是解决本题的关键.9.(1)证明见解析;(2)证明见解析. 【分析】(1)根据正方形的性质证得BG=DE ,利用SAS 可证明ABG ≌ADE ,再利用全等的性质即可得到结论;(2)过M 作MK ⊥BC 于K ,延长EF 交AB 于T ,根据ASA 可证明MHK △≌AED ,得到AE=MH ,再利用AAS 证明TNF △≌DAE △,得到NF=AE ,从而证得MH=NF ,即可得到结论.【详解】证明:(1)∵四边形ABCD 与四边形CEFG 均为正方形,∴AB=AD=BC=CD ,CG=CE ,∠ABG=∠ADE=90°,∴BC -GC=CD -EC ,即BG=DE ,∴ABG ≌ADE ,∴AG=AE ;(2)过M 作MK ⊥BC 于K ,则四边形MKCD 为矩形,∴∠MKH=∠ADE=90°,MK=CD ,∠AMK=90°,∴MK=AD ,∠AMP+∠HMK=90°,又∵FP AE ⊥,∴∠EAD+∠AMP=90°,∴∠HMK=∠EAD ,∴MHK △≌AED ,∴MH=AE ,延长EF 交AB 于T ,则四边形TBGF 为矩形,∴FT=BG ,∠FTN=∠ADE=90°,∵ABG ≌ADE ,∴DE=BG ,∴FT=DE ,∵FP ⊥AE ,∠DAB=90°,∴∠N+∠NAP=∠DAE+∠NAP=90°,∴∠N=∠DAE ,∴TNF △≌DAE △,∴FN=AE ,∴FN=MH ,∴FN -FH=MH -FH ,∴NH=FM .【点睛】本题考查了正方形的性质,矩形的判定与性质,及全等三角形的判定与性质,熟练掌握各性质、判定定理是解题的关键.10.(1)521093)52或152. 【分析】(1)如图1,连接CG ,证明△CBD ≌△CBG (SAS ),可得G ,C ,D 三点共线,利用勾股定理可得AG 的长;(2)如图2,作辅助线,构建全等三角形,证明△BCE ≌△BKG ,可得AK 和KG 的长,利用勾股定理计算AG 的长;(3)分三种情况:①当点E 在边CD 的延长线上时,如图3,同(2)知△BCE ≌△BKG (AAS ),BC =BK =5,根据勾股定理可得KG 的长,即可CE 的长,此种情况不成立;②当点E 在边CD 上;③当点E 在DC 的延长线上时,同理可得结论.【详解】(1)如图1,连接CG ,∵四边形ABCD和四边形EBGF是正方形,∴∠CDB=∠CBD=45°,∠DBG=90°,BD=BG,∴∠CBG=45°,∴∠CBG=∠CBD,∵BC=BC,∴△CBD≌△CBG(SAS),∴∠DCB=∠BCG=90°,DC=CG=5,∴G,C,D三点共线,∴AG=22+=22AD DG+=55,510故答案为:55;(2)如图2,过点G作GK⊥AB,交AB的延长线于K,∵DE=2,DC=5,∴CE=3,∵∠EBG=∠EBC+∠CBG=90°,∠CBG+∠GBK=90°,∴∠EBC=∠GBK,∵BE=BG,∠K=∠BCE=90°,∴△BCE≌△BKG(AAS),∴CE=KG=3,BC=BK=5,∴AK=10,由勾股定理得:AG22+109103(3)(3)分三种情况:①当点E在CD的延长线上时,如图3,由(2)知△BCE≌△BKG(AAS),∴BC=BK=5,∵AG=517,由勾股定理得:KG=22517102⎛⎫-⎪⎪⎝⎭=52,∴CE=KG=52,此种情况不成立;②当点E在边CD上时,如图4,由(2)知△BCE≌△BKG(AAS),∴BC=BK=CD=5,∵AG517由勾股定理得:KG22517102⎛⎫-⎪⎪⎝⎭52,∴CE=KG=52,∴DE=CD-CE=52;③当点E在DC的延长线上时,如图5,同理得CE=KG=52,∴DE=5+52=152;综上,DE的长是52或152.【点睛】本题是四边形综合题目,考查了正方形的性质、全等三角形的判定与性质、勾股定理等知识,本题综合性强,有一定难度,证明三角形全等是解决问题的关键.。
第一部分第五章第21讲命题点1 多边形及其性质1.(2018·曲靖5题4分)若一个正多边形的内角和为720°,则这个正多边形的每一个内角是( D )A.60°B.90°C.108°D.120°2.(2018·云南9题4分)一个五边形的内角和为( A )A.540°B.450°C.360°D.180°3.(2017·云南10题4分)已知一个多边形的内角和是900°,则这个多边形是( C ) A.五边形B.六边形C.七边形D.八边形4.(2016·云南4题3分)若一个多边形的边数为6,则这个多边形的内角和为__720__度.5.(2014·曲靖14题3分)如图,正六边形ABCDEF的边长为2,则对角线AE的长是__.命题点2 平行四边形的判定与性质6.(2016·曲靖7题4分)如图,AD,BE,CF是正六边形ABCDEF的对角线,图中平行四边形的个数有( C )A.2个B.4个C.6个D.8个7.(2014·昆明7题3分)如图,在四边形ABCD中,对角线AC,BD相交于点O,下列条件不能判定四边形ABCD为平行四边形的是( C )A.AB∥CD,AD∥BC B.OA=OC,OB=ODC .AD =BC ,AB ∥CD D .AB =CD ,AD =BC8.(2014·云南22题7分)如图,在平行四边形ABCD 中,∠C =60°,M ,N 分别是AD ,BC 的中点,BC =2CD .(1)求证:四边形MNCD 是平行四边形; (2)求证:BD =3MN .证明:(1)∵四边形ABCD 是平行四边形, ∴AD ∥BC ,AD =BC .∵M ,N 分别是AD ,BC 的中点, ∴MD =NC ,MD ∥NC ,∴四边形MNCD 是平行四边形. (2)如答图所示,连接ND ,答图∵四边形MNCD 是平行四边形,∴MN =DC . ∵N 是BC 的中点,BC =2CD ,∴BN =CN =CD . ∵∠C =60°,∴△NCD 是等边三角形, ∴ND =NC ,∠DNC =60°. ∵∠DNC 是△BND 的外角, ∴∠NBD +∠NDB =∠DNC . ∵DN =NC =NB ,∴∠DBN =∠BDN =12∠DNC =30°,∴∠BDC =90°. ∵tan ∠DBC =DC BD =33,∴DB =3DC =3MN .。
中考数学一轮复习平行四边形知识点及练习题及答案一、解答题1.如图,在矩形ABCD 中,AD nAB =,E ,F 分别在AB ,BC 上.(1)若1n =,①如图,AF DE ⊥,求证:AE BF =;②如图,点G 为点F 关于AB 的对称点,连结AG ,DE 的延长线交AG 于H ,若AH AD =,猜想AE 、BF 、AG 之间的数量关系,并证明你的猜想.(2)如图,若M 、N 分别为DC 、AD 上的点,则EM FN的最大值为_____(结果用含n 的式子表示);(3)如图,若E 为AB 的中点,ADE EDF ∠=∠.则CF BF的值为_______(结果用含n 的式子表示).2.如图,ABC ∆是等腰直角三角形,AB AC =,D 是斜边BC 的中点,,E F 分别是,AB AC 边上的点,且DE DF ⊥,若12BE =,5CF =,求线段EF 的长.3.如图正方形ABCD ,DE 与HG 相交于点O (O 不与D 、E 重合).(1)如图(1),当90GOD ∠=︒,①求证:DE GH =; ②求证:2GD EH DE +>;(2)如图(2),当45GOD ∠=︒,边长4AB =,25HG =,求DE 的长.4.如图,在Rt ABC ∆中,90ABC ∠=︒,30C ∠=︒,12AC cm =,点E 从点A 出发沿AB 以每秒1cm 的速度向点B 运动,同时点D 从点C 出发沿CA 以每秒2cm 的速度向点A 运动,运动时间为t 秒(06t <<),过点D 作DF BC ⊥于点F .(1)试用含t 的式子表示AE 、AD 、DF 的长;(2)如图①,连接EF ,求证四边形AEFD 是平行四边形;(3)如图②,连接DE ,当t 为何值时,四边形EBFD 是矩形?并说明理由.5.如图,在矩形ABCD 中,E 是AD 的中点,将ABE ∆沿BE 折叠,点A 的对应点为点G .图1 图2(1)填空:如图1,当点G 恰好在BC 边上时,四边形ABGE 的形状是________; (2)如图2,当点G 在矩形ABCD 内部时,延长BG 交DC 边于点F .①求证:BF AB DF =+. ②若3AD AB =,试探索线段DF 与FC 的数量关系.6.如图1,点E 为正方形ABCD 的边AB 上一点,EF EC ⊥,且EF EC =,连接AF ,过点F 作FN 垂直于BA 的延长线于点N .(1)求EAF ∠的度数;(2)如图2,连接FC 交BD 于M ,交AD 于P ,试证明:2BD BG DG AF DM =+=+.7.问题背景若两个等腰三角形有公共底边,则称这两个等腰三角形的顶角的顶点关于这条底边互为顶针点;若再满足两个顶角的和是180°,则称这两个顶点关于这条底边互为勾股顶针点. 如图1,四边形ABCD 中,BC 是一条对角线,AB AC =,DB DC =,则点A 与点D 关于BC 互为顶针点;若再满足180A D +=︒∠∠,则点A 与点D 关于BC 互为勾股顶针点.初步思考(1)如图2,在ABC 中,AB AC =,30ABC ∠=︒,D 、E 为ABC 外两点,EB EC =,45EBC ∠=︒,DBC △为等边三角形.①点A 与点______关于BC 互为顶针点;②点D 与点______关于BC 互为勾股顶针点,并说明理由.实践操作(2)在长方形ABCD 中,8AB =,10AD =.①如图3,点E 在AB 边上,点F 在AD 边上,请用圆规和无刻度的直尺作出点E 、F ,使得点E 与点C 关于BF 互为勾股顶针点.(不写作法,保留作图痕迹)思维探究②如图4,点E 是直线AB 上的动点,点P 是平面内一点,点E 与点C 关于BP 互为勾股顶针点,直线CP 与直线AD 交于点F .在点E 运动过程中,线段BE 与线段AF 的长度是否会相等?若相等,请直接写出AE 的长;若不相等,请说明理由.8.阅读下列材料,并解决问题:如图1,在Rt ABC ∆中,90C ∠=︒,8AC =,6BC =,点D 为AC 边上的动点(不与A 、C 重合),以AD ,BD 为边构造ADBE ,求对角线DE 的最小值及此时AD AC的值是多少.在解决这个问题时,小红画出了一个以AD ,BD 为边的ADBE (如图2),设平行四边形对角线的交点为O ,则有AO BO =.于是得出当OD AC ⊥时,OD 最短,此时DE 取最小值,得出DE 的最小值为6.参考小红的做法,解决以下问题:(1)继续完成阅读材料中的问题:当DE的长度最小时,ADAC=_______;(2)如图3,延长DA到点F,使AF DA=.以DF,DB为边作FDBE,求对角线DE的最小值及此时ADAC的值.9.如图,ABC∆是边长为3的等边三角形,点D是射线BC上的一个动点(点D不与点B、C重合),ADE∆是以AD为边的等边三角形,过点E作BC的平行线,交直线AC于点F,连接BE.(1)判断四边形BCFE的形状,并说明理由;(2)当DE AB⊥时,求四边形BCFE的周长;(3)四边形BCFE能否是菱形?若可为菱形,请求出BD的长,若不可能为菱形,请说明理由.10.已知三角形纸片ABC的面积为48,BC的长为8.按下列步骤将三角形纸片ABC进行裁剪和拼图:第一步:如图1,沿三角形ABC的中位线DE将纸片剪成两部分.在线段DE上任意..取一点F,在线段BC上任意..取一点H,沿FH将四边形纸片DBCE剪成两部分;第二步:如图2,将FH左侧纸片绕点D旋转180°,使线段DB与DA重合;将FH右侧纸片绕点E 旋转180°,使线段EC 与EA 重合,再与三角形纸片ADE 拼成一个与三角形纸片ABC 面积相等的四边形纸片.图1 图2(1)当点F ,H 在如图2所示的位置时,请按照第二步的要求,在图2中补全拼接成的四边形;(2)在按以上步骤拼成的所有四边形纸片中,其周长的最小值为_________.【参考答案】***试卷处理标记,请不要删除一、解答题1.(1)①见解析;②AG FB AE =+,证明见解析;(2)21n ;(3)241n -【分析】(1)①证明△ADE ≌△BAF (ASA )可得结论.②结论:AG=BF+AE .如图2中,过点A 作AK ⊥HD 交BC 于点K ,证明AE=BK ,AG=GK ,即可解决问题.(2)如图3中,设AB=a ,AD=na ,求出ME 的最大值,NF 的最小值即可解决问题. (3)如图4中,延长DE 交CB 的延长线于H .设AB=2k ,则AD=BC=2kn ,求出CF ,BF 即可解决问题.【详解】(1)①证明:如图1中,∵四边形ABCD 是矩形,n=1,∴AD=AB ,∴四边形ABCD 是正方形,∴∠DAB=∠B=90°,∵AF ⊥DE ,∴∠ADE+∠DAF=90°,∠DAF+∠BAF=90°,∴∠ADE=∠BAF ,∴△ADE ≌△BAF (ASA ),∴AE=BF ;②结论:AG=BF+AE .理由:如图2中,过点A 作AK ⊥HD 交BC 于点K ,由(1)可知AE=BK ,∵AH=AD ,AK ⊥HD ,∴∠HAK=∠DAK ,∵AD ∥BC ,∴∠DAK=∠AKG ,∴∠HAK=∠AKG ,∴AG=GK ,∵GK=GB+BK=BF+AE ,∴AG=BF+AE ;(2)如图3中,设AB=a ,AD=na ,当ME 的值最大时,NF 的值最小时,ME NF的值最大, 当ME 是矩形ABCD 的对角线时,ME 的值最大,最大值()222na 1a n +=+,当NF ⊥AD 时,NF 的值最小,最小值=a ,∴ME NF 的最大值=21a an +21n +, 21n +;(3)如图4中,延长DE 交CB 的延长线于H .设AB=2k ,则AD=BC=2kn ,∵AD ∥BH ,∴∠ADE=∠H ,∵AE=EB=k ,∠AED=∠BEH ,∴△AED ≌△BEH (ASA ),∴AD=BH=2kn ,∴CH=4kn ,∵∠ADE=∠EDF ,∠ADE=∠H ,∴∠H=∠EDF ,∴FD=FH ,设DF=FH=x ,在Rt △DCF 中,∵CD 2+CF 2=DF 2,∴(2k)2+(4kn-x)2=x 2, ∴2142n x k n+=⋅, ∴221441422n n CF kn k k n n +-=-⋅=⋅,241222n k BF kn k n n-=-⋅=, ∴22412412n k CF n n k BFn-⋅==-, 故答案为:241n -.【点睛】本题考查了矩形的性质,正方形的性质,全等三角形的判定和性质,等腰三角形的判定和性质,勾股定理等知识,解题的关键是学会利用参数解决问题.2.EF =13.【分析】首先连接AD ,由△ABC 是等腰直角三角形,AB=AC ,D 是斜边BC 的中点,可得:AD=DC ,∠EAD=∠C=45°,AD ⊥BC ,即∠CDF+∠ADF=90°,又DE ⊥DF ,可得:∠EDA+∠ADF=90°,故∠EDA=∠CDF ,从而可证:△AED ≌△CFD ;根据全等三角形的性质得到AE=CF=5,进而得出BE=AF=12.然后在Rt △AEF 中,运用勾股定理可将EF 的值求出;【详解】解:连接AD .∵△ABC 是等腰直角三角形,AB =AC ,D 是斜边BC 的中点,∴AD =DC =DB ,AD ⊥BC ,∴∠BAD =∠C =45°,∵∠EDA +∠ADF =90°,又∵∠CDF +∠ADF =90°,∴∠EDA =∠CDF .在△AED 与△CFD 中,EDA FDC AD CDEAD C ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AED ≌△CFD (ASA ).∴AE =CF =5.∵AB =AC ,∴BE =AF =12.在Rt △AEF 中,∵∠EAF =90°,∴22222512169EF AE AF =+=+=,∴EF =13.【点睛】本题考查等腰直角三角形, 直角三角形斜边上的中线,掌握等腰三角形“三线合一”的性质、直角三角形斜边上的中线等于斜边的一半的性质为解题关键.3.(1)①证明见解析;②证明见解析;(2)103DE =. 【分析】(1)过点D 作//DM GH 交BC 延长线于点M ,连接EH ,①由正方形的性质可得//AD BC ,AD CD =,90A ADC DCM ∠=∠=∠=︒,即可证明四边形DGHM 是平行四边形,可得DM=GH ,由90GOD ∠=︒可得∠EDM=90°,根据直角三角形两锐角互余的性质可得12∠=∠,利用ASA 可证明△ADE≌△CDM,可得DE=DM ,即可证明DE=GH ;②由①得DM=DE ,根据勾股定理可得2,利用三角形三边关系即可得结论; (2)过点D 作DN//GH 交BC 于点N ,作ADM CDN ∠=∠,DM 交BA 延长线于点M ,可证明四边形GHND 为平行四边形,可得DN HG =,GD HN =,根据勾股定理可求出CN 的长,利用AAS 可证明ADM CDN ∆∆≌,可得AM NC =,DM DN =,根据平行线的性质∠EDN=45°,根据角的和差故选可得∠MDE=∠EDN ,利用SAS 可证明MDE NDE ∆∆≌,即可证明AE CN EN +=,设AE x =,利用勾股定理可求出x 的值,进而利用勾股定理求出DE 的值即可得答案.【详解】(1)如图(1),过点D 作//DM GH 交BC 延长线于点M ,连接EH ,EM , ①∵四边形ABCD 为正方形,∴//AD BC ,AD CD =,90A ADC DCM ∠=∠=∠=︒∴四边形DGHM 为平行四边形,∴DM=GH ,GD HM =,∵90GOD ∠=︒,∴90EDM EOH ∠=∠=︒,∴290EDC ∠+∠=︒,∵90ADC ∠=︒,∴190EDC ∠+∠=︒,∴12∠=∠,在ADE ∆和CDM ∆中12A DCM AD DC ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴ADE CDM ∆∆≌,∴DE DM =,∴DE GH =.②在DEM ∆中,∠EDM=90°,∴222DE DM EM +=,∵DE DM =,∴222DE EM =, ∴2EM DE =,在EHM ∆中,HM EH EM +>,∵GD HM =,∴GD EH +≥.(2)如图(2),过点D 作DN//GH 交BC 于点N ,则四边形GHND 为平行四边形, ∴DN HG =,GD HN =,∵90C ∠=︒,4CD AB ==,HG DN ==∴2CN ==,∴422BN BC CN =-=-=,作ADM CDN ∠=∠,DM 交BA 延长线于点M ,在ADM ∆和CDN ∆中90C MAD CDN ADM DC AD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴ADM CDN ∆∆≌,∴AM NC =,DM DN =,∵45GOD EOH ∠=∠=︒,∴45EDN ∠=︒,∴45ADE CDN ∠+∠=︒,∴45ADE ADN MDE ∠+∠=︒=∠,在MDE ∆和NDE ∆中MD ND MDE EDN DE DE =⎧⎪∠=∠⎨⎪=⎩,∴MDE NDE ∆∆≌,∴EM EN =,即AE AM AE CN EN +=+=,设AE x =,则BE=4-x ,在Rt BEN ∆中,2222(2)x x +=+, 解得:43x =,∴DE ===.【点睛】本题考查正方形的性质、平行四边形的判定与性质、全等三角形的判定与性质、三角形的三边关系及勾股定理,熟练掌握相关性质及判定定理,并正确作出辅助线是解题关键.4.(1)AE t =;122AD t =-;DF t =;(2)证明见解析;(3)3t =;理由见解析.【分析】(1)根据题意用含t 的式子表示AE 、CD ,结合图形表示出AD ,根据直角三角形的性质表示出DF ;(2)根据对边平行且相等的四边形是平行四边形证明;(3)根据矩形的定义列出方程,解方程即可.【详解】解:(1)由题意得,AE t =,2CD t =,则122AD AC CD t =-=-,∵DF BC ⊥,30C ∠=︒,∴12DF CD t == (2)∵90ABC ∠=︒,DF BC ⊥,∴AB DF , ∵AE t =,DF t =,∴AE DF =,∴四边形AEFD 是平行四边形;(3)当3t =时,四边形EBFD 是矩形,理由如下:∵90ABC ∠=︒,30C ∠=︒, ∴162BC AC cm ==, ∵BE DF ∥,∴BE DF =时,四边形EBFD 是平行四边形,即6t t -=,解得,3t =,∵90ABC ∠=︒,∴四边形EBFD 是矩形,∴3t =时,四边形EBFD 是矩形.【点睛】本题考查的是直角三角形的性质、平行四边形的判定、矩形的判定,掌握平行四边形、矩形的判定定理是解题的关键.5.(1)四边形ABGE 的形状是正方形;(2)①详见解析;②DF=3CF【分析】(1)由四边形ABCD 是矩形,可得90A ABC ︒∠=∠=,由折叠得:90BGE A ︒∠=∠=,根据三个内角是直角可判断四边形ABGE 为矩形,由折叠得:AB=BG ,根据一组邻边相等的矩形是正方形可判断矩形ABGE 为正方形;(2)①如图,连结EF ,在矩形ABCD 中,AB=DC ,AD=BC ,∠A=∠C=∠D=90°,由△ABE 沿BE 折叠后得到△GBE ,可得BG=AB ,EG=AE=ED ,∠A=∠BGE=90°,故∠EGF=∠D=90°,由HL 可判断Rt △EGF ≌Rt △EDF ,得到DF=FG ,问题得证;②设AB=DC=a ,则AD=BC=3a ,另设CF=x ,则DF=DC-CF=a-x ,由①得BF=AB+DF =2a-x ,在Rt △BCF 中,由勾股定理得:BF 2=BC 2+CF 2,代入数据运算可得:x=14a ,即CF=14a ,DF=a-x=34a ,进而可得DF 与CF 关系. 【详解】 (1)四边形ABGE 的形状是正方形.理由是:∵四边形ABCD 是矩形,∴90A ABC ︒∠=∠=,由折叠得:90BGE A ︒∠=∠=,∴四边形ABGE 为矩形,由折叠得:AB=BG ,∴矩形ABGE 为正方形;故答案为:正方形.(2)①如图,连结EF ,在矩形ABCD 中,AB=DC ,AD=BC ,∠A=∠C=∠D=90°,∵E 是AD 的中点,∴AE=DE ,∵△ABE 沿BE 折叠后得到△GBE ,∴BG=AB ,EG=AE=ED ,∠A=∠BGE=90°,∴∠EGF=∠D=90°,Rt △EGF 和Rt △EDF 中,EG ED EF EF =⎧⎨=⎩, ∴Rt △EGF ≌Rt △EDF (HL ),∴DF=FG ,∴BF=BG+GF=AB+DF ;②不妨假设AB=DC=a ,则,另设CF=x ,则DF=DC-CF=a-x ,由①得BF=AB+DF=a+a-x=2a-x ,在Rt △BCF 中,由勾股定理得:BF 2=BC 2+CF 2,即(2a-x)2a)2+x 2,整理得:x=14a , ∴CF=14a ,DF=a-x=34a , ∴DF=3CF .【点睛】本题主要考查了折叠的性质,正方形的判定,三角形全等的判定,勾股定理等内容,根据图形作出辅助线找出线段的等量关系列出方程是解题的关键.6.(1)∠EAF=135°;(2)证明见解析.【分析】(1)根据正方形的性质,找到证明三角形全等的条件,只要证明△EBC ≌△FNE (AAS )即可解决问题;(2)过点F 作FG ∥AB 交BD 于点G .首先证明四边形ABGF 为平行四边形,再证明△FGM ≌△DMC (AAS )即可解决问题;【详解】(1)解:∵四边形ABCD 是正方形,∴90B N CEF ∠=∠=∠=︒,∴90NEF CEB ∠+∠=,90CEB BCE ∠+∠=,∴NEF ECB ∠=∠,∵EC EF =,∴EBC ∆≌FNE ∆∴FN BE =,EN BC =,∵BC AB =∴EN AB =∴EN AE AB AE -=-∴AN BE =,∴FN AN =,∵FN AB ⊥,∴45NAF ∠=,∴135EAF =∠(2)证明:过点F 作//FG AB 交BD 于点G .由(1)可知135EAF =∠,∵45ABD ∠=︒∴135180EAF ABD ∠=︒+∠=︒,∴//AF BG ,∵//FG AB ,∴四边形ABGF 为平行四边形,∴AF BG =,FG AB =,∵AB CD =,∴FG CD =,∵//AB CD ,∴//FG CD ,∴FGM CDM ∠=∠,∵FMG CMD ∠=∠∴FGM ∆≌CDM ∆∴GM DM =,∴2DG DM =,∴2BD BG DG AF DM =+=+.【点睛】本题考查全等三角形的判定和性质、正方形的性质、平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.7.(1)①D 、E ,②A ,理由见解析;(2)①作图见解析;②BE 与AF 可能相等,AE 的长度分别为43,367,2或18. 【分析】(1)根据互为顶点,互为勾股顶针点的定义即可判断.(2)①以C 为圆心,CB 为半径画弧交AD 于F ,连接CF ,作∠BCF 的角平分线交AB 于E ,点E ,点F 即为所求.②分四种情形:如图①中,当BE AF =时;如图②中,当BE AF =时;如图③中,当BE BC AF ==时,此时点F 与D 重合;如图④中,当BE CB AF ==时,点F 与点D 重合,分别求解即可解决问题.【详解】解:(1)根据互为顶点,互为勾股顶针点的定义可知:①点A 与点D 和E 关于BC 互为顶针点;②点D 与点A 关于BC 互为勾股顶针点,理由:如图2中,∵△BDC 是等边三角形,∴∠D =60°,∵AB =AC ,∠ABC =30°,∴∠ABC =∠ACB =30°,∴∠BAC =120°,∴∠A +∠D =180°,∴点D 与点A 关于BC 互为勾股顶针点,故答案为:D 和E ,A .(2)①如图,点E 、F 即为所求(本质就是点B 关于CE 的对称点为F ,相当于折叠).②BE 与AF 可能相等,情况如下:情况一:如图①,由上一问易知,,BE EP BC PC ==,当BE AF =时,设AE x =,连接EF ,∵,,90BE EP AF EF EF EAF FPE ===∠=∠=︒,∴()EAF FPE HL ∆∆≌,∴AE PF x ==,在Rt CDF ∆中,()1082DF AD AF x x =-=--=+,10CF PC PF x =-=-,∴2228(2)(10)x x ++=-, 解得43x =,即43AE =; 情况二:如图②当BE AF =时,设AE x =,同法可得PF AE x ==,则8BE AF x ==-,FP FG GP EG AG AE x =+=+==,则18DF x =-,10CF x =+,在Rt CDF ∆中,则有2228(18)(10)x x +-=+,解得:367x =; 情况三:如图③,当BE BC AF ==时,此时点D 与F 重合,可得1082AE BE AB =-=-=; 情况四:如图④,当BE CB AF ==时,此时点D 与F 重合,可得18AE AB BE AB BC =+=+=. 综上所述,BE 与AF 可能相等,AE 的长度分别为43,367,2或18.【点睛】本题属于四边形综合题,考查了矩形的性质,等边三角形的性质,勾股定理,全等三角形的判定和性质等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.8.(1)12;(2)13ADAC=.【分析】(1)易证四边形CDEB是矩形,由条件“四边形ADBE是平行四边形可得AD=EB=DC,从而得到ADAC的值.(2)由题可知当DE AC⊥时,DE最短,可以证到四边形DCBE是矩形.从而可以得到各边关系从而求出ADAC的值.【详解】解:(1)∵四边形ADBE是平行四边形,∴AD∥BE,AD=BE.∵DE⊥AC,∠ACB=90°,∴∠ADE=∠C=90°.∴DE∥BC.∵DC∥BE,DE∥BC,∠C=90°,∴四边形DCBE是矩形.∴EB=DC.∴AD=DC.∴ADAC==12.故答案为:12.(2)如图,由题可知当DE AC⊥时,DE最短.最小值是6.∵四边形FDBE 是平行四边形,∴//DF BE ,DF BE =.∵DE AC ⊥,90C ∠=︒,∴90ADE C ∠=∠=︒.∴//DE BC .∴四边形CDEB 是平行四边形,又∵90C ∠=︒,∴四边形CDEB 是矩形.∴BE CD =,6DE BC ==.∴DF CD =.∵AF AD =,∴2DC DF AD ==.∴3AC AD DC AD =+=. ∴13AD AC =. 【点睛】 本题考查了平行线之间的距离、平行线的判定、矩形的判定与性质、平行四边形的性质等知识,具有一定的综合性;本题还考查了阅读能力,体现了自主探究与合作交流相结合的新课程理念,是一道好题.9.(1)平行四边形,理由见解析;(2)9;(3)可为菱形,BD=6或0【分析】(1)先证明()EAB DAC SAS ∆≅∆,得60ABE C ∠=∠=︒,可得//AC BE ,由两组对边分别平行的四边形是平行四边形可得四边形BCFE 是平行四边形;(2)如图2,证明90AEB =︒∠,根据直角三角形30度角所对的直角边为斜边的一半可得BE 的长,根据平行四边形的周长计算方法可得结论;(3)分两种情况:①当D 在边BC 的延长线上;②当D 在边BC 上时;分别画图可得BD 的长.【详解】解:(1)如图1,四边形BCFE 是平行四边形,理由是:ABC ∆和ADE ∆是等边三角形, AB AC ∴=,AD AE =,60EAD BAC ∠=∠=︒, EAB DAC ∴∠=∠,()EAB DAC SAS ∴∆≅∆,60ABE C ∴∠=∠=︒,60BAC ∠=︒,BAC ABE ∴∠=∠,//AC BE ∴,//EF BC ,∴四边形BCFE 是平行四边形;(2)如图2,ADE ∆是等边三角形,且DE AB ⊥,30EAB DAB ∴∠=∠=︒,由(1)知:60ABE ∠=︒, 90AEB ∴∠=︒,1322BE AB ∴==, ∴四边形BCFE 的周长32()2(3)92BE BC =+=⨯+=;(3)分2种情况:①如图3,当四边形BCFE 是菱形时,BE BC =,由(1)知:3BE CD ==,336BD ∴=+=;②如图4,当四边形BCFE 是菱形时,B 和D 重合,A 和F 重合,此时0BD =;综上,BD 的长为6或0.【点睛】此题是四边形综合题,主要考查了等边三角形的性质,全等三角形的判断和性质,菱形的性质,平行四边形的判定,正确画图和分类讨论思想的运用是解本题的关键. 10.28【分析】(1)利用旋转的旋转即可作出图形;(2)先求出ABC 的边长边上的高为12,进而求出DE 与BC 间的距离为6,再判断出FH 最小时,拼成的四边形的周长最小,即可得出结论.【详解】(1)∵DE 是△ABC 的中位线,1DE BC 4,AD BD,AE CE 2∴==== ∴四边形BDFH 绕点D 顺时针旋转,点B 和点A 重合,四边形CEFH 绕点E 逆时针旋转,点C 和点A 重合,∴补全图形如图1所示,(2)∵△ABC的面积是48,BC=8,∴点A到BC的距离为12,∵DE是△ABC的中位线,∴平行线DE与BC间的距离为6,由旋转知,∠DAH''=∠B,∠CAH'=∠C,∴∠DAH''+∠BAC+∠CAH'=180°,∴点H'',A,H'在同一条直线上,由旋转知,∠AEF'=∠CEF,∴∠AEF'+∠CEF'=∠CEF+∠CEF'=180°,∴点F,E,F'在同一条直线上,同理:点F,D,F''在同一条直线上,即:点F',F''在直线DE上,由旋转知,AH''=BH,AH'=CH,DF''=DF,EF'=EF,F''H''=FH=F'H',∴F'F''=2DE=BC=H'H'',∴四边形F'H'H''F''是平行四边形,∴▱F'H'H''F''的周长为2F'F''+2F'H'=4DE+2FH=2BC+2FH=16+2FH,∵拼成的所有四边形纸片中,其周长的最小时,FH最小,即:FH⊥BC,∴FH=6,∴周长的最小值为16+2×6=28,故答案为28.【点睛】此题是四边形综合题,主要考查了旋转的旋转和作图,判断三点共线的方法,平行四边形FH H F是平行四边形是解本题的关键.的判断和性质,判断出四边形'''''。
中考数学一轮复习平行四边形知识点及练习题及答案一、选择题1.在菱形ABCD 中,60ADC ∠=︒,点E 为AB 边的中点,点P 与点A 关于DE 对称,连接DP 、BP 、CP ,下列结论:①DP CD =;②222AP BP CD +=;③75DCP ∠=︒;④150CPA ∠=︒,其中正确的是( )A .①②B .①②③C .①②④D .①②③④2.□ABCD 中,∠A=60°,点E 、F 分别在边AD 、DC 上,DE=DF ,且∠EBF=60°.若AE=2,FC=3,则EF 的长度为( )A .21B .25C .26D .53.如图,在正方形ABCD 中,点P 是AB 的中点,BE DP ⊥的延长线于点E ,连接AE ,过点A 作FA AE ⊥交DP 于点F ,连接BF 、FC.下列结论中:ABE ①≌ADF ;PF EP EB =+②;BCF ③是等边三角形;ADF DCF ④∠∠=;APF CDF SS .=⑤其中正确的是( )A .①②③B .①②④C .②④⑤D .①③⑤4.如图,在ABC ,90C ∠=︒,8AC =,6BC =,点P 为斜边AB 上一动点,过点P 作PE AC ⊥于点E ,PF BC ⊥于点F ,连结EF ,则线段EF 的最小值为( )A .1.2B .2.4C .2.5D .4.85.如图,在矩形ABCD 中,1,2AD AC AE =平分BAD ∠交CD 于点E ,给出以下结论:①ADE ∆为等腰直角三角形;②BOC ∆为等边三角形;③70DOE ︒∠=;④3;EOC EAC ∠=∠⑤OE 是ACD ∆的中位线.其中正确的结论有( )A .2个B .3个C .4个D .5个6.如图,点P 在长方形OABC 的边OA 上,连接BP ,过点P 作BP 的垂线,交射线OC 于点Q ,在点P 从点A 出发沿AO 方向运动到点O 的过程中,设AP=x ,OQ=y ,则下列说法正确的是( )A .y 随x 的增大而增大B .y 随x 的增大而减小C .随x 的增大,y 先增大后减小D .随x 的增大,y 先减小后增大7.如图,直角梯形ABCD 中AD ∥BC ,∠D =90°.∠A 的平分线交DC 于E ,EF ⊥AB 于F .已知AD =3.5cm ,DC =4cm ,BC =6.5cm .那么四边形BCEF 的周长是( )A .10cmB .11cmC .11.5cmD .12cm8.如图,△A 1B 1C 1中,A 1B 1=4,A 1C 1=5,B 1C 1=7.点A 2、B 2、C 2分别是边B 1C 1、A 1C 1、A 1B 1的中点;点A 3、B 3、C 3分别是边B 2C 2、A 2C 2、A 2B 2的中点;……;以此类推,则第2019个三角形的周长是( )A .201412B .201512C .201612D .201712 9.如图,ABCD 的对角线,AC BD 交于点,O DE 平分ADC ∠交BC 于点,60,E BCD ∠=︒2,AD AB =连接OE .下列结论:ABCD S AB BD =⋅①;DB ②平分ADE ∠;AB DE =③;CDE BOC S S =④,其中正确的有( )A .1个B .2个C .3个D .4个10.已知菱形ABCD 的面积为83,对角线AC 的长为43,∠BCD=60°,M 为BC 的中点,若P 为对角线AC 上一动点,则PB+PM 的最小值为( )A .3B .2C .23D .4二、填空题11.如图,正方形ABCD 中,AB=4,E 是BC 的中点,点P 是对角线AC 上一动点,则PE+PB 的最小值为 .12.如图,Rt △ABC 中,∠C=90°,AC=2,BC=5,点D 是BC 边上一点且CD=1,点P 是线段DB 上一动点,连接AP ,以AP 为斜边在AP 的下方作等腰Rt △AOP .当P 从点D 出发运动至点B 停止时,点O 的运动路径长为_____.13.已知:点B 是线段AC 上一点,分别以AB ,BC 为边在AC 的同侧作等边ABD △和等边BCE ,点M ,N 分别是AD ,CE 的中点,连接MN .若AC=6,设BC=2,则线段MN 的长是__________.14.如图,在正方形ABCD 中,点,E F 将对角线AC 三等分,且6AC =.点P 在正方形的边上,则满足5PE PF +=的点P 的个数是________个.15.如图正方形 ABCD 中,E 是 BC 边的中点,将△ABE 沿 AE 对折至△AFE ,延长 EF 交 CD 于 G ,接 CF ,AG .下列结论:① AE ∥FC ; ②∠EAG = 45°,且BE + DG = EG ;③ABCD 19CEF S S ∆=正方形;④ AD = 3DG ,正确是_______ (填序号).16.如图,有一张矩形纸条ABCD ,AB =10cm ,BC =3cm ,点M ,N 分别在边AB ,CD 上,CN =1cm .现将四边形BCNM 沿MN 折叠,使点B ,C 分别落在点B ',C '上.在点M 从点A 运动到点B 的过程中,若边MB '与边CD 交于点E ,则点E 相应运动的路径长为_____cm .17.如图,在Rt△ABC中,∠BAC=90°,AB=8,AC=6,以BC为一边作正方形BDEC设正方形的对称中心为O,连接AO,则AO=_____.18.如图,▱ABCD中,∠DAB=30°,AB=6,BC=2,P为边CD上的一动点,则2PB+ PD 的最小值等于______.19.如图,已知在△ABC中,AB=AC=13,BC=10,点M是AC边上任意一点,连接MB,以MB、MC为邻边作平行四边形MCNB,连接MN,则MN的最小值是______20.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,点D为平面内动点,且满足AD =4,连接BD,取BD的中点E,连接CE,则CE的最大值为_____.三、解答题=,对角线AC,BD交于点O,21.如图,在四边形ABCD中,AB∥DC,AB ADAC平分BAD⊥交AB的延长线于点E,连接OE.∠,过点C作CE AB(1)求证:四边形ABCD 是菱形;(2)若5AE =,3OE =,求线段CE 的长.22.在四边形ABCD 中,AD ∥BC ,AB=8cm ,AD=16cm ,BC=22cm ,∠ABC=90°.点P 从点A 出发,以1cm/s 的速度向点D 运动,点Q 从点C 同时出发,以3cm/s 的速度向点B 运动,其中一个动点到达端点时,另一个动点也随之停止运动,设运动时间为t 秒.(1)当t= 时,四边形ABQP 成为矩形?(2)当t= 时,以点P 、Q 与点A 、B 、C 、D 中的任意两个点为顶点的四边形为平行四边形?(3)四边形PBQD 是否能成为菱形?若能,求出t 的值;若不能,请说明理由,并探究如何改变Q 点的速度(匀速运动),使四边形PBQD 在某一时刻为菱形,求点Q 的速度.23.如图,在正方形ABCD 中,点G 在对角线BD 上(不与点B ,D 重合),GE ⊥DC 于点E ,GF ⊥BC 于点F ,连结AG .(1)写出线段AG ,GE ,GF 长度之间的数量关系,并说明理由;(2)若正方形ABCD 的边长为1,∠AGF=105°,求线段BG 的长.24.如图,在ABCD 中,对角线AC 、BD 相交于点O ,点E 、F 分别为OB 、OD 的中点,延长AE 至G ,使EG AE =,连接CG .(1)求证:AOE COF ∆≅∆;(2)四边形EGCF 是平行四边形吗?请说明理由;(3)若四边形EGCF 是矩形,则线段AB 、AC 的数量关系是______.25.在矩形ABCD 中,AE ⊥BD 于点E ,点P 是边AD 上一点,PF ⊥BD 于点F ,PA =PF . (1)试判断四边形AGFP 的形状,并说明理由.(2)若AB =1,BC =2,求四边形AGFP 的周长.26.如图1,在正方形ABCD 和正方形BEFG 中,点,,A B E 在同一条直线上,P 是线段DF 的中点,连接,PG PC .(1)求证:,PG PC PG PC ⊥=.简析:由Р是线段DF 的中点,//DC CF ,不妨延长GP 交DC 于点M ,从而构造出一对全等的三角形,即_______≅________.由全等三角形的性质,易证CMG 是_______三角形,进而得出结论;(2)如图2,将原问题中的正方形ABCD 和正方形BEFG 换成菱形ABCD 和菱形BEFG ,且60ABC BEF ∠=∠=︒,探究PG 与PC 的位置关系及PG PC 的值,写出你的猜想并加以证明;(3)当6,2AB BE ==时,菱形ABCD 和菱形BEFG 的顶点都按逆时针排列,且60ABC BEF ∠=∠=︒.若点A B E 、、在一条直线上,如图2,则CP =________;若点A B G 、、在一条直线上,如图3,则CP =________.27.已知正方形,ABCD 点F 是射线DC 上一动点(不与,C D 重合).连接AF 并延长交直线BC 于点E ,交BD 于,H 连接CH .在EF 上取一点,G 使ECG DAH ∠=∠. (1)若点F 在边CD 上,如图1,①求证:CH CG ⊥.②求证:GFC 是等腰三角形.(2)取DF 中点,M 连接MG .若3MG =,正方形边长为4,则BE = .28.如图平行四边形ABCD ,E ,F 分别是AD ,BC 上的点,且AE =CF ,EF 与AC 交于点O . (1)如图①.求证:OE =OF ;(2)如图②,将平行四边形ABCD (纸片沿直线EF 折叠,点A 落在A 1处,点B 落在点B 1处,设FB 交CD 于点G .A 1B 分别交CD ,DE 于点H ,P .请在折叠后的图形中找一条线段,使它与EP 相等,并加以证明;(3)如图③,若△ABO 是等边三角形,AB =4,点F 在BC 边上,且BF =4.则CF OF= (直接填结果).29.如图,矩形ABCD 中,AB=4,AD=3,∠A 的角平分线交边CD 于点E .点P 从点A 出发沿射线AE 以每秒2个单位长度的速度运动,Q 为AP 的中点,过点Q 作QH ⊥AB 于点H ,在射线AE 的下方作平行四边形PQHM (点M 在点H 的右侧),设P 点运动时间为t 秒.(1)直接写出AQH 的面积(用含t 的代数式表示).(2)当点M 落在BC 边上时,求t 的值.(3)在运动过程中,整个图形中形成的三角形是否存在全等三角形?若存在,请写出所有全等三角形,并求出对应的t 的值;若不存在请说明理由(不能添加辅助线).30.如图,菱形纸片ABCD 的边长为2,60,BAC ∠=︒翻折,,B D ∠∠使点,B D 两点重合在对角线BD 上一点,,P EF GH 分别是折痕.设()02AE x x =<<.(1)证明:AG BE =;(2)当02x <<时,六边形AEFCHG 周长的值是否会发生改变,请说明理由; (3)当02x <<时,六边形AEFCHG 53吗?如果能,求此时x 的值;如果不能,请说明理由.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】如图,设DE交AP于0,根据菱形的性质、翻折不变性-判断即可解决问题;【详解】解:如图,设DE交AP于O.∵四边形ABCD是菱形∴DA=DC=AB∵A.P关于DE对称,∴DE⊥AP,OA=OP∴DA=DP∴DP=CD,故①正确∵AE=EB,AO=OP∴OE//PB,∴PB⊥PA∴∠APB=90°∴2222PA PB AB CD+==,故②正确若∠DCP=75°,则∠CDP=30°∵LADC=60°∴DP平分∠ADC,显然不符合题意,故③错误;∵∠ADC=60°,DA=DP=DC∴∠DAP=∠DPA,∠DCP=∠DPC,∠CPA=(360°-60°)=150°,故④正确.故选:C【点睛】本题考查菱形的性质、轴对称的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.2.A解析:A【解析】【分析】由DE=DF,AE=2,FC=3可知AB-BC=1,过点E作EM⊥AB于M,根据30°角所对的直角等于斜边的一半可得AM=1,进而得出BM=BC,将△BEM顺时针旋转120°得△BEN,连接FN,可证△BEF≌△BFN,即可得出EF=FN,过点N作NG⊥DC交DC的延长线于点G,利用勾股定理即可求出答案.【详解】解:过点E作EM⊥AB于M,在Rt△AEM中,∠A=60°,∴∠AEM=30°,∴AM=12AE=1,∴3又∵DE=DF,AE=2,FC=3,∴DC-AD=1,即AB-BC=1,∴BM=BC,将△BEM顺时针旋转120°得△BEN,连接FN,则3BE=BN,∵∠EBF=60°,∠EBN=120°,∴∠NBF=60°,∴∠EBF=∠NBF又∵BE=BN,BF=BF,∴△BEF≌△BFN,∴EF=FN,过点N作NG⊥DC交DC的延长线于点G,∵∠GCN=180°-60°-90°=30°,∴NG=12NC=32()2233322⎛⎫-=⎪⎪⎝⎭∴FG=3+32=92229321 22⎛⎫⎛⎫+=⎪⎪ ⎪⎝⎭⎝⎭2121.【点睛】此题考查了平行四边形的性质、旋转的性质、勾股定理等知识,合理添加辅助线是解题关键.3.B解析:B【解析】【分析】根据正方形的性质可得AB AD =,再根据同角的余角相等求出BAE DAF ∠∠=,再根据等角的余角相等求出ABE ADF ∠∠=,然后利用“角边角”证明ABE ≌ADF ;根据全等三角形对应边相等可得AE AF =,判断出AEF 是等腰直角三角形,过点A 作AM EF ⊥于M ,根据等腰直角三角形点的性质可得AM MF =,再根据点P 是AB 的中点得到AP BP =,然后利用“角角边”证明APM 和BPE 全等,根据全等三角形对应边相等可得BE AM =,EP MP =,然后求出PF EP EB =+;根据全等三角形对应边相等求出DF BE AM ==,再根据同角的余角相等求出DAM CDF ∠∠=,然后利用“边角边”证明ADM 和DCF 全等,根据全等三角形对应角相等可得ADF DCF ∠∠=,CFD DMA 90∠∠==;再求出CD CF ≠,判定BCF 不是等边三角形;求出CF FP >,AM DF =,然后求出APF CDF SS <.【详解】在正方形ABCD 中,AB AD =,DAF BAF 90∠∠+=, FA AE ⊥,BAE BAF 90∠∠∴+=,BAE DAF ∠∠∴=,BE DP ⊥,ABE BPE 90∠∠∴+=,又ADF APD 90∠∠+=,BPE APD(∠∠=对顶角相等),ABE ADF ∠∠∴=,在ABE 和ADF 中, BAE DAF AB ADABE ADF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ABE ∴≌()ADF ASA ,故①正确;AE AF ∴=,BE DF =,AEF ∴是等腰直角三角形,过点A 作AM EF ⊥于M ,则AM MF =,点P 是AB 的中点,AP BP ∴=,在APM 和BPE 中,90BPE APD BEP AMP AP BP ∠=∠⎧⎪∠=∠=⎨⎪=⎩,APM ∴≌()BPE AAS ,BE AM ∴=,EP MP =,PF MF PM BE EP ∴=+=+,故②正确;BE DF =,FM AM BE ==,AM DF ∴=,又ADM DAM 90∠∠+=,ADM CDF 90∠∠+=,DAM CDF ∠∠∴=,在ADM 和DCF , AD DC DAM CDF AM DF =⎧⎪∠=∠⎨⎪=⎩,ADM ∴≌()DCF SAS ,CF DM ∴=,ADF DCF ∠∠=,CFD DMA 90∠∠==,故④正确; 在Rt CDF 中,CD CF >,BC CD =,CF BC ∴≠,BCF ∴不是等边三角形,故③错误;CF DM DF FM EM FM EF FP ==+=+=≠,又AM DF =,APF CDF S S ∴<,故⑤错误;综上所述,正确的有①②④,故选B .【点睛】本题考查了正方形的性质,全等三角形的判定与性质,同角或等角度余角相等的性质,三角形的面积,综合性较强,难度较大,熟练掌握正方形的性质是解题的关键,作辅助线利用等腰直角三角形的性质并构造出全等三角形是本题的难点.4.D解析:D【分析】连接PC ,当CP ⊥AB 时,PC 最小,利用三角形面积解答即可.【详解】解:连接PC ,∵PE ⊥AC ,PF ⊥BC ,∴∠PEC=∠PFC=∠C=90°,∴四边形ECFP 是矩形,∴EF=PC ,∴当PC 最小时,EF 也最小,即当CP ⊥AB 时,PC 最小,∵AC=8,BC=6,∴AB=10,∴PC 的最小值为:68 4.810AC BC PC AB ⋅⨯=== ∴线段EF 长的最小值为4.8.故选:D .【点睛】本题主要考查的是矩形的判定与性质,关键是根据矩形的性质和三角形的面积公式解答.5.B解析:B【分析】由矩形的性质可得AO =CO =DO =BO ,∠DAB =∠ABC =∠DCB =∠CDA =90°,AD ∥BC ,AB ∥CD ,由角平分线的性质和平行线的性质可判断①,由锐角三角函数可求∠ACD =30°,即可判断②,由三角形内角和定理可求∠DOE 的度数,即可判断③④,由直角三角形的性质可求CE 的长,即可判断⑤.【详解】∵四边形ABCD 是矩形∴AO =CO =DO =BO ,∠DAB =∠ABC =∠DCB =∠CDA =90°,AD ∥BC ,AB ∥CD ∵AE 平分∠BAD∴∠DAE =∠EAB =45°∵AB ∥CD∴∠DEA =∠EAB =45°∴∠DEA =∠DAE =45°∴AD =DE ,且∠ADE =90°∴△ADE 是等腰直角三角形故①正确∵AD =12AC ,∠ADC =90° ∴∠ACD =30°∴∠OCB =60°,且OB =OC ∴△OBC 是等边三角形故②正确∵△OBC 是等边三角形∴OB =OC =BC∴OD =OA =AD =OC =OB∴∠ODA =∠OAD =∠DOA =60°,∠OCD =∠ODC =30°,且OD =DE∴∠DOE =280013︒-︒=75° 故③错误∵∠EAC =∠OAD−∠DAE =15°,∠EOC =∠DOC−∠DOE =180°−∠DOA−75°=120°−75°=45° ∴∠EOC =3∠EAC故④正确∵∠ACD =30°,∴AD=12AC ,AC=2AD∴,且DE =DO =AD ∴CE∴OE 不是△ACD 的中位线,故⑤错误故选:B .【点睛】本题考查了矩形的性质,等边三角形的判定和性质,等腰三角形的性质,求出∠ACD =30°是本题的关键.6.C解析:C【分析】连接BQ ,由矩形的性质,设BC=AO=a ,AB=OC=b ,利用勾股定理得到222PQ PB BQ +=,然后得到y 与x 的关系式,判断关系式,即可得到答案.【详解】解,如图,连接BQ ,由题意可知,△OPQ ,△QPB ,△ABP 是直角三角形,在矩形ABCO 中,设BC=AO=a ,AB=OC=b ,则OP=a x -,CQ b y =-,由勾股定理,得:222()PQ y a x =+-,222PB x b =+,222()BQ a b y =+-,∵222PQ PB BQ +=,∴222222()()y a x x b a b y +-++=+-,整理得:2by x ax =-+, ∴221()24a a y x b b=--+, ∵10b-<, ∴当2a x =时,y 有最大值24a b; ∴随x 的增大,y 先增大后减小;故选择:C.【点睛】本题考查了矩形的性质,勾股定理,解题的关键是利用勾股定理找到y 与x 的关系式,从而得到答案.7.D解析:D【分析】根据角平分线性质得出AD=AF ,根据勾股定理求出EF=DC ,求出AB 长,求出BE ,即可求出答案.【详解】∵AE 平分∠DAB ,∠D=90°,EF ⊥AB ,∴AF=AD=3.5cm ,EF=DE ,∴DC=CE+DE=CE+EF=4cm ,过A 作AM ⊥BC 于M ,则四边形AMCD 是矩形,∴AM=DC=4cm ,AD=CM=3.5cm ,∵BC=6.5cm ,∴BM=6.5cm-3.5cm=3cm ,在Rt △AMB 中,由勾股定理得:22435AB(cm ),∴BF=AB-AF=5cm-3.5cm=1.5cm ,∴四边形BCEF 的周长是BC+BF+CE+EF=6.5cm+1.5cm+CD=8cm+4cm=12cm ,故选:D .【点睛】本题考查了勾股定理,矩形的性质和判定,角平分线性质等知识点,能求出各个边的长度是解此题的关键. 8.A解析:A【分析】由三角形的中位线定理得:22B C ,22A C ,22A B 分别等于11A B 、11B C 、11C A 的12,所以△222A B C 的周长等于△111A B C 的周长的一半,以此类推可求出结论.【详解】解:△111A B C 中,114A B =,115AC =,117B C =, ∴△111A B C 的周长是16,2A ,2B ,2C 分别是边11B C ,11A C ,11A B 的中点,22B C ∴,22A C ,22A B 分别等于11A B 、11B C 、11C A 的12, ⋯,以此类推,则△444A B C 的周长是311622⨯=; ∴△n n n A B C 的周长是4122n -, 当2019n =时,第2019个三角形的周长42019120142122-==故选:A .【点睛】 本题考查了三角形的中位线定理,中位线是三角形中的一条重要线段,由于它的性质与线段的中点及平行线紧密相连,因此,它在几何图形的计算及证明中有着广泛的应用.9.D解析:D【分析】求得∠ADB=90°,即AD⊥BD,即可得到S▱ABCD=AD•BD;依据∠CDE=60°,∠BDE=30°,可得∠CDB=∠BDE,进而得出DB平分∠CDE;依据Rt△BCD中,斜边上的中线DE=斜边BC的一半,即可得到AD=BC=2DE,进而得到AB=DE;依据OE是中位线,即可得到OE∥CD,因为两平行线间的距离相等,进而得到S△CDE=S△OCD,再根据OC是△BCD的中线,可得S△BOC=S△COD,即可得到S△CDE=S△BOC.【详解】∵∠BCD=60°,四边形ABCD是平行四边形,∴∠ADC=180°-∠BCD=120°,BC//AD,BC=AD,∵DE平分∠ADC,∴∠CDE=∠CED=60°=∠BCD,∴△CDE是等边三角形,∴CE=CD= AD= BC,∴E是BC的中点,∴DE=BE,∴∠BDE=∠CED=30°,∴∠CDB=90°,即CD⊥BD,∴S▱ABCD=CD•BD=AB•BD,故①正确;∵∠CDE=60°,∠BDE=30°,∴∠ADB=30°=∠BDE,∴DB平分∠CDE,故②正确;∵△CDE是等边三角形,∴DE=CD=AB,故③正确;∵O是BD的中点,E是BC的中点,∴OE是△CBD的中位线,∴OE∥CD,∴S△OCD=S△CDE,∵OC是△BCD的中线,∴S△BOC=S△COD,∴S△CDE=S△BOC,故④正确,故选D.【点睛】本题考查了平行四边形的性质、等边三角形的判定与性质、三角形中位线、平行线间的距离相等、直角三角形斜边上的中线等于斜边的一半等,综合性较强,熟练掌握和灵活运用相关性质与定理是解题的关键.10.C解析:C【分析】作点B关于对角线AC的对称点,该对称点与D重合,连接DM,则PB与PM之和的最小值为DM的长;由菱形的面积可求出BD=4,由题意可证△BCD是等边三角形,由等边三角形的性质可得DM⊥BC,CM=BM=2,由勾股定理可求DM=23.【详解】解:作点B关于对角线AC的对称点,该对称点与D重合,连接DM,则PB与PM之和的最小值为DM的长;∵菱形ABCD的面积为3,对角线AC长为3,∴BD=4,∵BC=CD,∠BCD=60°,∴△BCD是等边三角形,∴BD=BC=4,∵M是BC的中点,∴DM⊥BC,CM=BM=2,在Rt△CDM中,CM=2,CD=4,∴2216423-CD CM-=故选:C.【点睛】本题考查了轴对称-最短路线问题,菱形的性质,等边三角形的性质,直角三角形勾股定理;掌握利用轴对称求最短距离,将PB与PM之和的最小值转化为线段DM的长是解题的关键.二、填空题11.5【详解】由于点B与点D关于AC对称,所以如果连接DE,交AC于点P,那PE+PB的值最小.在Rt△CDE中,由勾股定理先计算出DE的长度,即为PE+PB的最小值.连接DE,交AC于点P,连接BD.∵点B与点D关于AC对称,∴DE的长即为PE+PB的最小值,∵AB=4,E是BC的中点,∴CE=2,在Rt△CDE中,5考点:(1)、轴对称-最短路线问题;(3)、正方形的性质.12.22【解析】分析:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,易得四边形OECF为矩形,由△AOP为等腰直角三角形得到OA=OP,∠AOP=90°,则可证明△OAE≌△OPF,所以AE=PF,OE=OF,根据角平分线的性质定理的逆定理得到CO平分∠ACP,从而可判断当P 从点D出发运动至点B停止时,点O的运动路径为一条线段,接着证明CE=12(AC+CP),然后分别计算P点在D点和B点时OC的长,从而计算它们的差即可得到P从点D出发运动至点B停止时,点O的运动路径长.详解:过O点作OE⊥CA于E,OF⊥BC于F,连接CO,如图,∵△AOP为等腰直角三角形,∴OA=OP,∠AOP=90°,易得四边形OECF为矩形,∴∠EOF=90°,CE=CF,∴∠AOE=∠POF,∴△OAE≌△OPF,∴AE=PF,OE=OF,∴CO平分∠ACP,∴当P从点D出发运动至点B停止时,点O的运动路径为一条线段,∵AE=PF,即AC-CE=CF-CP,而CE=CF,∴CE=12(AC+CP),∴22(AC+CP),当AC=2,CP=CD=1时,OC=2×(2+1)=2,当AC=2,CP=CB=5时,OC=2×(2+5)=2,∴当P 从点D 出发运动至点B 停止时,点O 的运动路径长=2-2.故答案为点睛:本题考查了轨迹:灵活运用几何性质确定图形运动过程中不变的几何量,从而判定轨迹的几何特征,然后进行几何计算.也考查了全等三角形的判定与性质.13【分析】如图(见解析),先根据等边三角形的性质、平行四边形的判定与性质可得//,4ME AB ME AB ==,再根据平行线的性质可得60FEM C ∠=∠=︒,然后利用直角三角形的性质、勾股定理可得2,EF MF ==,从而可得3FN =,最后在Rt FMN 中,利用勾股定理即可得.【详解】如图,连接ME ,过点M 作MF CE ⊥,交CE 延长线于点F ,ABD △和BCE 都是等边三角形,2BC =,60,2,A CBE C BE CE AD A C B B ∴∠=∠=∠=︒====,//AD BE ∴,6AC =,624AD AB ∴==-=,点M ,N 分别是AD ,CE 的中点,112,122AM AD EN CE ∴====, AM BE ∴=,∴四边形ABEM 是平行四边形,//,4ME AB ME AB ∴==,60FEM C ∴∠=∠=︒,在Rt EFM △中,906030EMF ∠=︒-︒=︒,12,2EF ME MF ∴==== 123FN EN EF ∴=+=+=,则在Rt FMN 中,MN ===【点睛】本题考查了等边三角形的性质、勾股定理、平行四边形的判定与性质、直角三角形的性质等知识点,通过作辅助线,构造直角三角形和平行四边形是解题关键.14.8个【分析】作点F关于BC的对称点M,连接FM交BC于点N,连接EM,交BC于点H,可得点H到点E和点F的距离之和最小,可求最小值,即可求解.【详解】如图,作点F关于BC的对称点M,连接FM交BC于点N,连接EM,交BC于点H,∵点E,F将对角线AC三等分,且AC=6,∴EC=4,FC=2=AE,∵点M与点F关于BC对称,∴CF=CM=2,∠ACB=∠BCM=45°,∴∠ACM=90°,∴EM2222EC+CM=4+2=25则在线段BC存在点H到点E和点F的距离之和最小为55,在点H右侧,当点P与点C重合时,则PE+PF=4+2=6,∴点P在CH上时,5PE+PF≤6,在点H左侧,当点P与点B重合时,∵FN⊥BC,∠ABC=90°,∴FN∥AB,∴△CFN∽△CAB,∴FN CN CF1===AB CB CA3,∵AB=BC 2AC=32∴FN=13AB2,CN=13BC2∴BN=BC-CN=2,BF = 22FN +BN =2+8=10,∵AB =BC ,CF =AE ,∠BAE =∠BCF ,∴△ABE ≌△CBF (SAS ),∴BE =BF =10,∴PE +PF =210,∴点P 在BH 上时,25<PE +PF <210,∴在线段BC 上点H 的左右两边各有一个点P 使PE +PF =5,同理在线段AB ,AD ,CD 上都存在两个点使PE +PF =5.即共有8个点P 满足PE +PF =5,故答案为8.【点睛】本题考查了正方形的性质,最短路径问题,在BC 上找到点H ,使点H 到点E 和点F 的距离之和最小是本题的关键.15.①②④【分析】①根据折叠得△ABE ≌△AFE ,证明△EFC 是等腰三角形,得到∠EFC=∠ECF ,根据∠BEF=∠EFC+∠FEC ,得出∠BEA=∠AEF=∠EFC=∠ECF ,即可证明AE ∥FC ,故①正确;②根据四边形ABCD 是正方形,且△ABE ≌△AFE ,证明Rt △AFG ≌Rt △ADG ,得出∠FAG=∠GAD ,根据∠BAF+∠FAD=90°,推出∠EAF+∠FAG=45°,可得∠EAG=45°,根据全等得:BE=FE ,DG=FG ,即可得BE+DG=EF+GF=EG ,故②正确;③先求出S △ECG ,根据EF :FG=2a :3a =3:2,得出S △EFC :S △FCG =3:2,即S △EFC =2110a ,再根据S ABCD =a 2,得出S △CEF :S △ABCD =2110a :2a ,即S △CEF =110S ABCD ,故③错误;④设正方形的边长为a ,根据勾股定理得22AB BE 52a ,设DG=x ,则CG=a-x ,FG=x ,EG=2a +x ,再根据勾股定理求出x ,即可得出结论,故④正确.【详解】解:①由折叠可得△ABE ≌△AFE ,∴∠BEA=∠AEF ,BE=EF ,∵E 是BC 中点,∴BE=CE=EF ,∴△EFC 是等腰三角形,∴∠EFC=∠ECF ,∵∠BEF=∠EFC+∠FEC ,∴∠BEA=∠AEF=∠EFC=∠ECF ,∴AE ∥FC ,故①正确;②∵四边形ABCD 是正方形,且△ABE ≌△AFE ,∴AB=AF=AD ,∠B=∠D=∠AFG ,∴△AFG 和△ADG 是直角三角形,∴在Rt △AFG 和Rt △ADG 中 AF AD AG AG ==⎧⎨⎩, ∴Rt △AFG ≌Rt △ADG (HL ),∴∠FAG=∠GAD ,又∵∠BAF+∠FAD=90°,∴2∠EAF+2∠FAG=90°,即∠EAF+∠FAG=45°,∴∠EAG=45°,由全等得:BE=FE ,DG=FG ,∴BE+DG=EF+GF=EG ,故②正确;③对于Rt △ECG ,S △ECG =12×EC ×CG=12×2a ×23a =216a , ∵EF :FG=2a :3a =3:2, 则S △EFC :S △FCG =3:2,即S △EFC =2110a , 又∵S ABCD =a 2,则S △CEF :S △ABCD =2110a :2a ,即S △CEF =110S ABCD ,故③错误; ④设正方形的边长为a ,∴AB=AD=AF=a ,BE=EF=2a =EC ,由勾股定理得=2, 设DG=x ,则CG=a-x ,FG=x , EG=2a +x ,∴EG 2=EC 2+CG 2,即(2a +x )2=(2a )2+(a-x )2, 解得x=3a ,CG=23a , 即AD=3DG 成立,故④正确.【点睛】本题考查了正方形的折叠问题,等腰三角形的判定和性质,平行线的判定,全等三角形的判定和性质,勾股定理,掌握这些知识点灵活运用是解题关键.16.101-【分析】探究点E 的运动轨迹,寻找特殊位置解决问题即可.【详解】 如图1中,当点M 与A 重合时,AE =EN ,设AE =EN =xcm ,在Rt △ADE 中,则有x 2=32+(9﹣x )2,解得x =5,∴DE =10﹣1-5=4(cm ),如图2中,当点M 运动到MB ′⊥AB 时,DE ′的值最大,DE ′=10﹣1﹣3=6(cm ),如图3中,当点M 运动到点B ′落在CD 时,22221310NB C N C B ''''=++=DB ′(即DE ″)=10﹣110=(910)(cm ),-)∴点E的运动轨迹E→E′→E″,运动路径=EE′+E′B′=6﹣4+6﹣(9﹣10)=(101(cm).-.故答案为:101【点睛】本题考查翻折变换,矩形的性质,解直角三角形等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于中考填空题中的压轴题.17.72;【分析】连接AO、BO、CO,过O作FO⊥AO,交AB的延长线于F,判定△AOC≌△FOB(ASA),即可得出AO=FO,FB=AC=6,进而得到AF=8+6=14,∠FAO=45°,根据AO=AF×cos45°进行计算即可.【详解】解:连接AO、BO、CO,过O作FO⊥AO,交AB的延长线于F,∵O是正方形DBCE的对称中心,∴BO=CO,∠BOC=90°,∵FO⊥AO,∴∠AOF=90°,∴∠BOC=∠AOF,即∠AOC+∠BOA=∠FBO+∠BOA,∴∠AOC=∠FBO,∵∠BAC=90°,∴在四边形ABOC中,∠ACO+∠ABO=180°,∵∠FBO+∠ABO=180°,∴∠ACO=∠FBO,在△AOC和△FOB中,AOC FOB AO FOACO FBO ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△AOC ≌△FOB (ASA ),∴AO=FO ,FB=FC=6,∴AF=8+6=14,∠FAO=∠OFA=45°,∴AO=AF×cos45°=14×2=故答案为.【点睛】本题考查了正方形的性质和全等三角形的判定与性质.本题的关键是通过作辅助线来构建全等三角形,然后将已知和所求线段转化到直角三角形中进行计算. 18.6【分析】过点P 作PE ⊥AD 交AD 的延长线于点E ,根据四边形ABCD 是平行四边形,得到 AB ∥CD ,推出PE=12PD ,由此得到当PB+PE 最小时2PB+ PD 有最小值,此时P 、B 、E 三点在同一条直线上,利用∠DAB =30°,∠AEP=90°,AB=6求出PB+PE 的最小值=12AB=3,得到2PB+ PD 的最小值等于6.【详解】过点P 作PE ⊥AD 交AD 的延长线于点E ,∵四边形ABCD 是平行四边形,∴AB ∥CD ,∴∠EDC=∠DAB =30°,∴PE=12PD , ∵2PB+ PD=2(PB+12PD )=2(PB+PE), ∴当PB+PE 最小时2PB+ PD 有最小值,此时P 、B 、E 三点在同一条直线上,∵∠DAB =30°,∠AEP=90°,AB=6,∴PB+PE 的最小值=12AB=3, ∴2PB+ PD 的最小值等于6,故答案为:6.【点睛】此题考查平行四边形的性质,直角三角形含30°角的问题,动点问题,将线段2PB+PD转化为三点共线的形式是解题的关键.19.120 13【分析】设MN与BC交于点O,连接AO,过点O作OH⊥AC于H点,根据等腰三角形的性质和勾股定理可求AO和OH长,若MN最小,则MO最小即可,而O点到AC的最短距离为OH 长,所以MN最小值是2OH.【详解】解:设MN与BC交于点O,连接AO,过点O作OH⊥AC于H点,∵四边形MCNB是平行四边形,∴O为BC中点,MN=2MO.∵AB=AC=13,BC=10,∴AO⊥BC.在Rt△AOC中,利用勾股定理可得AO2222135AC CO-=-12.利用面积法:AO×CO=AC×OH,即12×5=13×OH,解得OH=60 13.当MO最小时,则MN就最小,O点到AC的最短距离为OH长,所以当M点与H点重合时,MO最小值为OH长是60 13.所以此时MN最小值为2OH=120 13.故答案为:120 13.【点睛】本题主要考查了平行四边形的性质、垂线段最短、勾股定理、等腰三角形的性质,解题的关键是分析出点到某线段的垂线段最短,由此进行转化线段,动中找静.20.【分析】作AB的中点E,连接EM、CE,根据直角三角形斜边上的中线等于斜边的一半以及三角形的中位线定理求得CE和EM的长,然后确定CM的范围.【详解】解:作AB的中点M,连接EM、CM.在Rt△ABC中,AB=22AC BC+=2286+=10,∵M是直角△ABC斜边AB上的中点,∴CM=12AB=5.∵E是BD的中点,M是AB的中点,∴ME=12AD=2.∴5﹣2≤CE≤5+2,即3≤CE≤7.∴最大值为7,故答案为:7.【点睛】本题考查了三角形的中位线定理,勾股定理,直角三角形斜边中线的性质等知识,掌握基本性质定理是解题的关键.三、解答题21.(1)见解析;(211【分析】(1)根据题意先证明四边形ABCD是平行四边形,再由AB=AD可得平行四边形ABCD是菱形;(2)根据菱形的性质得出OA的长,根据直角三角形斜边中线定理得出OE=12AC,在Rt ACE∆应用勾股定理即可解答.【详解】(1)证明:∵AB CD∥,∴OAB DCA∠=∠,∵AC 为DAB ∠的平分线,∴OAB DAC ∠=∠,∴DCA DAC ∠=∠,∴CD AD AB ==,∵AB CD ∥,∴四边形ABCD 是平行四边形,∵AD AB =,∴ABCD 是菱形;(2)∵四边形ABCD 是菱形∴AO CO =∵CE AB ⊥∴90AEC ∠=︒∴26AC OE ==在Rt ACE ∆中,2211CE AC AE -故答案为(211.【点睛】本题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,熟练掌握菱形的判定与性质是解题的关键.22.(1)112;(2)112或4;(3)四边形PBQD 不能成为菱形 【分析】(1)由∠B=90°,AP ∥BQ ,由矩形的判定可知当AP=BQ 时,四边形ABQP 成为矩形; (2)由(1)可求得点P 、Q 与点A 、B 为顶点的四边形为平行四边形;然后由当PD=CQ 时,CDPQ 是平行四边形,求得t 的值;(3)由PD ∥BQ ,当PD=BQ=BP 时,四边形PBQD 能成为菱形,先由PD=BQ 求出运动时间t 的值,再代入求BP ,发现BP≠PD ,判断此时四边形PBQD 不能成为菱形;设Q 点的速度改变为vcm/s 时,四边形PBQD 在时刻t 为菱形,根据PD=BQ=BP 列出关于v 、t 的方程组,解方程组即可求出点Q 的速度.【详解】(1)如图1,∵∠B=90°,AP ∥BQ ,∴当AP=BQ 时,四边形ABQP 成为矩形,此时有t=22﹣3t ,解得t=112.∴当t=112时,四边形ABQP成为矩形;故答案为11 2;(2)如图1,当t=112时,四边形ABQP成为矩形,如图2,当PD=CQ时,四边形CDPQ是平行四边形,则16﹣t=3t,解得:t=4,∴当t=112或4时,以点P、Q与点A、B、C、D中的任意两个点为顶点的四边形为平行四边形;故答案为112或4;(3)四边形PBQD不能成为菱形.理由如下:∵PD∥BQ,∴当PD=BQ=BP时,四边形PBQD能成为菱形.由PD=BQ,得16﹣t=22﹣3t,解得:t=3,当t=3时,PD=BQ=13,BP=22AB AP+ =228t+=2283+=73≠13,∴四边形PBQD不能成为菱形;如果Q点的速度改变为vcm/s时,能够使四边形PBQD在时刻ts为菱形,由题意,得221622168t vtt t-=-⎧⎪⎨-=+⎪⎩,解得62tv=⎧⎨=⎩.故点Q的速度为2cm/s时,能够使四边形PBQD在某一时刻为菱形.【点睛】此题属于四边形的综合题.考查了矩形的判定、菱形的判定以及勾股定理等知识.注意掌握分类讨论思想与方程思想的应用是解此题的关键.23.(1)AG2=GE2+GF2,理由见解析;(2)3266【分析】(1)结论:AG2=GE2+GF2.只要证明GA=GC,四边形EGFC是矩形,推出GE=CF,在Rt△GFC中,利用勾股定理即可证明;(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.易证AM=BM=2x,3,在Rt△ABN中,根据AB2=AN2+BN2,可得1=x2+(3x)2,解得x=624,推出BN=624,再根据BG=BN÷cos30°即可解决问题.【详解】解:(1)结论:AG2=GE2+GF2.理由:连接CG.∵四边形ABCD是正方形,∴A、C关于对角线BD对称,∵点G在BD上,∴GA=GC,∵GE⊥DC于点E,GF⊥BC于点F,∴∠GEC=∠ECF=∠CFG=90°,∴四边形EGFC是矩形,∴CF=GE,在Rt△GFC中,∵CG2=GF2+CF2,∴AG2=GF2+GE2.(2)作BN⊥AG于N,在BN上截取一点M,使得AM=BM.设AN=x.∵∠AGF=105°,∠FBG=∠FGB=∠ABG=45°,∴∠AGB=60°,∠GBN=30°,∠ABM=∠MAB=15°,∴∠AMN=30°,∴AM=BM=2x,3x,在Rt△ABN中,∵AB2=AN2+BN2,∴1=x2+(3x)2,解得x=624,∴BN=624+, ∴BG=BN÷cos30°=326+.【点睛】本题考查正方形的性质,矩形的判定和性质,勾股定理,直角三角形30度的性质.24.(1)见解析;(2)四边形EGCF 为平行四边形,理由见解析;(3)AC=2AB .【分析】(1)根据平行四边形的性质得到OE=OF 即可证得结论;(2)利用AOE COF ∆≅∆得到∠EAO=∠FCO ,AE=CF ,由此推出AE ∥CF ,EG=CF 即可证得四边形EGCF 是平行四边形;(3)AC=2AB ,根据平行四边形的性质推出AB=AO ,利用点E 是OB 的中点,得到AG ⊥OB ,即可得到四边形EGCF 是矩形.【详解】(1)四边形ABCD 为平行四边形,OA OC ∴=,OB OD =,点E 、F 分别为OB 、OD 的中点,12OE OB ∴=,12OF OD =, 则OE OF =,在AOE ∆与COF ∆中OA OC AOE COF OE OF =⎧⎪∠=∠⎨⎪=⎩AOE COF ∴∆≅∆;(2)AOE COF ∆≅∆,EAO FCO ∴∠=∠,AE CF =,//AE CF ∴,又GE AE =,GE CF ∴=,∴四边形EGCF 为平行四边形;。
中考数学⼀轮复习平⾏四边形知识点及练习题及答案中考数学⼀轮复习平⾏四边形知识点及练习题及答案⼀、解答题1.已知,四边形ABCD是正⽅形,点E是正⽅形ABCD所在平⾯内⼀动点(不与点D重合),AB=AE,过点B作DE的垂线交DE所在直线于F,连接CF.提出问题:当点E运动时,线段CF与线段DE之间的数量关系是否发⽣改变?探究问题:(1)⾸先考察点E的⼀个特殊位置:当点E与点B重合(如图①)时,点F与点B也重合.⽤等式表⽰线段CF与线段DE之间的数量关系:;(2)然后考察点E的⼀般位置,分两种情况:情况1:当点E是正⽅形ABCD内部⼀点(如图②)时;情况2:当点E是正⽅形ABCD外部⼀点(如图③)时.在情况1或情况2下,线段CF与线段DE之间的数量关系与(1)中的结论是否相同?如果都相同,请选择⼀种情况证明;如果只在⼀种情况下相同或在两种情况下都不相同,请说明理由;拓展问题:(3)连接AF,⽤等式表⽰线段AF、CF、DF三者之间的数量关系:.2.已知正⽅形ABCD.(1)点P 为正⽅形ABCD 外⼀点,且点P 在AB 的左侧,45APB ∠=?.①如图(1),若点P 在DA 的延长线上时,求证:四边形APBC 为平⾏四边形.②如图(2),若点P 在直线AD 和BC 之间,以AP ,AD 为邻边作APQD □,连结AQ .求∠PAQ 的度数.(2)如图(3),点F 在正⽅形ABCD 内且满⾜BC=CF ,连接BF 并延长交AD 边于点E ,过点E 作EH ⊥AD 交CF 于点H ,若EH=3,FH=1,当13AE CF =时.请直接写出HC 的长________.3.(1)如图①,在正⽅形ABCD 中,AEF ?的顶点E ,F 分别在BC ,CD 边上,⾼AG 与正⽅形的边长相等,求EAF ∠的度数;(2)如图②,在Rt ABD ?中,90,BAD AD AB ?∠==,点M ,N 是BD 边上的任意两点,且45MAN ?∠=,将ABM ?绕点A 逆时针旋转90度⾄ADH ?位置,连接NH ,试判断MN ,ND ,DH 之间的数量关系,并说明理由;(3)在图①中,连接BD 分别交AE ,AF 于点M ,N ,若正⽅形ABCD 的边长为12,GF=6,BM= 32,求EG ,MN 的长.4.如图,在长⽅形ABCD 中,8,6AB AD ==.动点P Q 、分别从点、D A 同时出发向点C B 、运动,点P 的运动速度为每秒2个单位,点Q 的运动速度为每秒1个单位,当点P 运动到点C 时,两个点都停⽌运动,设运动的时间为()t s .(1)请⽤含t 的式⼦表⽰线段PC BQ 、的长,则PC ________,BQ =________.(2)在运动过程中,若存在某时刻使得BPQ ?是等腰三⾓形,求相应t 的值. 5.如图,矩形ABCD 中,AB=4,AD=3,∠A 的⾓平分线交边CD 于点E .点P 从点A 出发沿射线AE 以每秒2个单位长度的速度运动,Q 为AP 的中点,过点Q 作QH ⊥AB 于点H ,在射线AE 的下⽅作平⾏四边形PQHM (点M 在点H 的右侧),设P 点运动时间为t 秒.(1)直接写出AQH 的⾯积(⽤含t 的代数式表⽰).(2)当点M 落在BC 边上时,求t 的值.(3)在运动过程中,整个图形中形成的三⾓形是否存在全等三⾓形?若存在,请写出所有全等三⾓形,并求出对应的t 的值;若不存在请说明理由(不能添加辅助线). 6.已知,如图,在三⾓形ABC ?中,20AB AC cm ==,BD AC ⊥于D ,且16BD cm =.点M 从点A 出发,沿AC ⽅向匀速运动,速度为4/cm s ;同时点P 由B点出发,沿BA ⽅向匀速运动,速度为1/cm s ,过点P 的动直线//PQ AC ,交BC 于点Q ,连结PM ,设运动时间为()t s ()05t <<,解答下列问题:(1)线段AD =_________cm ;(2)求证:PB PQ =;(3)当t 为何值时,以P Q D M 、、、为顶点的四边形为平⾏四边形?7.如图1,点E 为正⽅形ABCD 的边AB 上⼀点,EF EC ⊥,且EF EC =,连接AF ,过点F 作FN 垂直于BA 的延长线于点N .(1)求EAF ∠的度数;(2)如图2,连接FC 交BD 于M ,交AD 于P ,试证明:2BD BG DG AF DM =+=+.8.问题背景若两个等腰三⾓形有公共底边,则称这两个等腰三⾓形的顶⾓的顶点关于这条底边互为顶针点;若再满⾜两个顶⾓的和是180°,则称这两个顶点关于这条底边互为勾股顶针点.如图1,四边形ABCD 中,BC 是⼀条对⾓线,AB AC =,DB DC =,则点A 与点D 关于BC 互为顶针点;若再满⾜180A D +=?∠∠,则点A 与点D 关于BC 互为勾股顶针点.初步思考(1)如图2,在ABC 中,AB AC =,30ABC ∠=?,D 、E 为ABC 外两点,EB EC =,45EBC ∠=?,DBC △为等边三⾓形.①点A 与点______关于BC 互为顶针点;②点D 与点______关于BC 互为勾股顶针点,并说明理由.实践操作(2)在长⽅形ABCD 中,8AB =,10AD =.①如图3,点E 在AB 边上,点F 在AD 边上,请⽤圆规和⽆刻度的直尺作出点E 、F ,使得点E 与点C 关于BF 互为勾股顶针点.(不写作法,保留作图痕迹) 思维探究②如图4,点E是直线AB上的动点,点P是平⾯内⼀点,点E与点C关于BP互为勾股顶针点,直线CP与直线AD交于点F.在点E运动过程中,线段BE与线段AF的长度是否会相等?若相等,请直接写出AE的长;若不相等,请说明理由.9.如图,在长⽅形ABCD中,AB=CD=6cm,BC=10cm,点P从点B出发,以2cm/秒的速度沿BC向点C运动,设点P的运动时间为t秒:(1)PC=cm.(⽤t的代数式表⽰)(2)当t为何值时,△ABP≌△DCP?(3)当点P从点B开始运动,同时,点Q从点C出发,以vcm/秒的速度沿CD向点D运动,是否存在这样v的值,使得△ABP与△PQC全等?若存在,请求出v的值;若不存在,请说明理由.10.在四边形ABCD中,对⾓线AC、BD相交于点O,过点O的直线EF,GH分别交边AB、CD,AD、BC于点E、F、G、H.(1)观察发现:如图①,若四边形ABCD是正⽅形,且EF⊥GH,易知S△BOE=S△AOG,⼜因为S△AOB=14S四边形ABCD,所以S四边形AEOG=S正⽅形ABCD;(2)类⽐探究:如图②,若四边形ABCD是矩形,且S四边形AEOG=14S矩形ABCD,若AB=a,AD=b,BE=m,求AG的长(⽤含a、b、m的代数式表⽰);(3)拓展迁移:如图③,若四边形ABCD是平⾏四边形,且S四边形AEOG=14S?ABCD,若AB=3,AD=5,BE=1,则AG=.【参考答案】***试卷处理标记,请不要删除⼀、解答题1.(1)DE2CF;(2)在情况1与情况2下都相同,详见解析;(3)AF+CF=DF 或|AF -CF | 【分析】(1)易证△BCD 是等腰直⾓三⾓形,得出CB ,即可得出结果;(2)情况1:过点C 作CG ⊥CF ,交DF 于G ,设BC 交DF 于P ,由ASA 证得△CDG ≌△CBF ,得出DG=FB ,CG=CF ,则△GCF 是等腰直⾓三⾓形,CF ,连接BE ,设∠CDG=α,则∠CBF=α,∠DEA=∠ADE=90°-α,求出∠DAE=2α,则∠EAB=90°-2α,∠BEA=∠ABE=12(180°-∠EAB )=45°+α,∠CBE=45°-α,推出∠FBE=45°,得出△BEF 是等腰直⾓三⾓形,则EF=BF ,推出EF=DG ,DE=FG ,得出CF ;情况2:过点C 作CG ⊥CF 交DF 延长线于G ,连接BE ,设CD 交BF 于P ,由ASA 证得△CDG ≌△CBF ,得出DG=FB ,CG=CF ,则△GCF 是等腰直⾓三⾓形,得CF ,设∠CDG=α,则∠CBF=α,证明△BEF 是等腰直⾓三⾓形,得出EF=BF ,推出DE=FG ,得出CF ;(3)①当F 在BC 的右侧时,作HD ⊥DF 交FA 延长线于H ,由(2)得△BEF 是等腰直⾓三⾓形,EF=BF ,由SSS 证得△ABF ≌△AEF ,得出∠EFA=∠BFA=12∠BFE=45°,则△HDF 是等腰直⾓三⾓形,得DF ,DH=DF ,∵∠HDF=∠ADC=90°,由SAS 证得△HDA ≌△FDC ,得CF=HA ,即可得出;②当F 在AB 的下⽅时,作DH ⊥DE ,交FC 延长线于H ,在DF 上取点N ,使CN=CD ,连接BN ,证明△BFN 是等腰直⾓三⾓形,得BF=NF ,由SSS 证得△CNF ≌△CBF ,得∠NFC=∠BFC=12∠BFD=45°,则△DFH 是等腰直⾓三⾓形,得,DF=DH ,由SAS证得△ADF ≌△CDH ,得出CH=AF ,即可得出DF ;③当F 在DC 的上⽅时,连接BE ,作HD ⊥DF ,交AF 于H ,由(2)得△BEF 是等腰直⾓三⾓形,EF=BF ,由SSS 证得△ABF ≌△AEF ,得∠EFA=∠BFA=12∠BFE=45°,则△HDF 是等腰直⾓三⾓形,得出DF ,DH=DF ,由SAS 证得△ADC ≌△HDF ,得出AH=CF ,即可得出;④当F 在AD 左侧时,作HD ⊥DF 交AF 的延长线于H ,连接BE ,设AD 交BF 于P ,证明△BFE 是等腰直⾓三⾓形,得EF=BF ,由SSS 证得△ABF ≌△AEF ,得∠EFA=∠BFA=12∠BFE=45°,则∠DFH=∠EFA=45°,△HDF 是等腰直⾓三⾓形,得DH=DF ,,由SAS 证得△HDA ≌△FDC ,得出AF=CF ,即可得出DF .【详解】解:(1)∵四边形ABCD 是正⽅形,∴CD=CB ,∠BCD=90°,∴△BCD 是等腰直⾓三⾓形,∴DB=2CB ,当点E 、F 与点B 重合时,则DE=2CF ,故答案为:DE=2CF ;(2)在情况1或情况2下,线段CF 与线段DE 之间的数量关系与(1)中结论相同;理由如下:情况1:∵四边形ABCD 是正⽅形,∴CD=CB=AD=AB=AE ,∠BCD=∠DAB=∠ABC=90°,过点C 作CG ⊥CF ,交DF 于G ,如图②所⽰:则∠BCD=∠GCF=90°,∴∠DCG=∠BCF ,设BC 交DF 于P ,∵BF ⊥DE ,∴∠BFD=∠BCD=90°,∵∠DPC=∠FPB ,∴∠CDP=∠FBP ,在△CDG 和△CBF 中,DCG BCF CD CBCDG CBF ∠∠??∠∠?===,∴△CDG ≌△CBF (ASA ),∴DG=FB ,CG=CF ,∴△GCF 是等腰直⾓三⾓形,∴2,连接BE ,设∠CDG=α,则∠CBF=α,∠ADE=90°-α,∵AD=AE ,∴∠DEA=∠ADE=90°-α,∴∠DAE=180°-2(90°-α)=2α,∴∠EAB=90°-2α,∵AB=AE ,∴∠BEA=∠ABE=12(180°-∠EAB )=12(180°-90°+2α)=45°+α,∴∠CBE=90°-(45°+α)=45°-α,∴∠FBE=∠CBE+∠CBF=45°-α+α=45°,∵BF ⊥DE ,∴△BEF 是等腰直⾓三⾓形,∴EF=BF ,∴EF=DG ,∴EF+EG=DG+EG ,即DE=FG ,∴DE=2CF ;情况2:过点C 作CG ⊥CF 交DF 延长线于G ,连接BE ,设CD 交BF 于P ,如图③所⽰:∵∠GCF=∠BCD=90°,∴∠DCG=∠BCF ,∵∠FPD=∠BPC ,∴∠FDP=∠PBC ,在△CDG 和△CBF 中,DCG BCF CD CBCDG CBF ∠∠??∠∠?===,∴△CDG ≌△CBF (ASA ),∴DG=FB ,CG=CF ,∴△GCF 是等腰直⾓三⾓形,∴2,设∠CDG=α,则∠CBF =α,同理可知:∠DEA=∠ADE=90°-α,∠DAE=2α,∴∠EAB=90°+2α,∵AB=AE ,∴∠BEA=∠ABE=45°-α,∴∠FEB=∠DEA-∠AEB=90°-α-(45°-α)=45°,∵BF ⊥DE ,∴△BEF 是等腰直⾓三⾓形,∴EF=BF ,∴EF=DG ,∴DE=FG ,∴DE=2CF ;(3)①当F 在BC 的右侧时,作HD ⊥DF 交FA 延长线于H ,如图④所⽰:由(2)得:△BEF 是等腰直⾓三⾓形,EF=BF ,在△ABF 和△AEF 中,AB AE AF AF BF EF ??===,∴△ABF ≌△AEF (SSS ),∴∠EFA=∠BFA=12∠BFE=45°,∴△HDF 是等腰直⾓三⾓形,∴2,DH=DF ,∵∠HDF=∠ADC=90°,∴∠HDA=∠FDC ,在△HDA 和△FDC 中,DH DF HDA FDC DA DC ??∠∠===,∴△HDA ≌△FDC (SAS ),∴CF=HA ,2,即2DF ;②当F 在AB 的下⽅时,作DH ⊥DE ,交FC 延长线于H ,在DF 上取点N ,使CN=CD ,连接BN ,如图⑤所⽰:设∠DAE=α,则∠CDN=∠CND=90°-α,∴∠DCN=2α,∴∠NCB=90°-2α,∵CN=CD=CB ,∴∠CNB=∠CBN=12(180°-∠NCB )=12(180°-90°+2α)=45°+α,∵∠CNE=180°-∠CND=180°-(90°-α)=90°+α,∴∠FNB=90°+α-(45°+α)=45°,∴△BFN 是等腰直⾓三⾓形,∴BF=NF ,在△CNF 和△CBF 中,CN CBCF CF NF BF ??===,∴△CNF ≌△CBF (SSS ),∴∠NFC=∠BFC=12∠BFD=45°,∴△DFH 是等腰直⾓三⾓形,∴2,DF=DH ,∵∠ADC=∠HDE=90°,∴∠ADF=∠CDH ,在△ADF 和△CDH 中,AD CD ADF CDH DF DH ??∠∠===,∴△ADF ≌△CDH (SAS ),∴CH=AF ,∴FH=CH+CF=AF+CF ,∴AF+CF=2DF ;③当F 在DC 的上⽅时,连接BE ,作HD ⊥DF ,交AF 于H ,如图⑥所⽰:由(2)得:△BEF 是等腰直⾓三⾓形,EF=BF ,在△ABF 和△AEF 中,AB AE AF AF BF EF ??===,∴△ABF ≌△AEF (SSS ),∴∠EFA=∠BFA=12∠BFE=45°,∴△HDF 是等腰直⾓三⾓形,∴2,DH=DF ,∵∠ADC=∠HDF=90°,∴∠ADH=∠CDF ,在△ADC 和△HDF 中,AD CD ADH CDF DH DF ??∠∠===,∴△ADC ≌△HDF (SAS ),∴AH=CF ,∴HF=AF-AH=AF-CF ,∴2DF ;④当F 在AD 左侧时,作HD ⊥DF 交AF 的延长线于H ,连接BE ,设AD 交BF 于P ,如图⑦所⽰:∵AB=AE=AD ,∴∠AED=∠ADE ,∵∠PFD=∠PAB=90°,∠FPD=∠BPA ,∴∠ABP=∠FDP ,∴∠FEA=∠FBA ,∵AB=AE ,∴∠AEB=∠ABE ,∴∠FEB=∠FBE ,∴△BFE 是等腰直⾓三⾓形,∴EF=BF ,在△ABF 和△AEF 中,AB AE AF AF BF EF ??===,∴△ABF ≌△AEF (SSS ),∴∠EFA=∠BFA=12∠BFE=45°,∴∠DFH=∠EFA=45°,∴△HDF 是等腰直⾓三⾓形,∴DH=DF ,2DF ,∵∠HDF=∠CDA=90°,∴∠HDA=∠FDC ,在△HDA 和△FDC 中,DH DF HDA FDC AD CD ??∠∠===,∴△HDA ≌△FDC (SAS ),∴AF=CF ,∴AH-AF=CF-AF=HF ,∴CF-AF=2DF ,综上所述,线段AF 、CF 、DF 三者之间的数量关系:AF+CF=2DF 或|AF-CF|=2DF ,故答案为:AF+CF=2DF 或|AF-CF|=2DF .【点睛】本题是四边形综合题,主要考查了正⽅形的性质、等腰直⾓三⾓形的判定与性质、全等三⾓形的判定与性质、三⾓形内⾓和定理、等腰三⾓形的性质等知识;熟练掌握全等三⾓形的判定与性质和等腰直⾓三⾓形的判定与性质是解题的关键. 2.(1)①证明见详解;②45PAQ ∠=?,见解析;(2)5.【分析】(1)①只要证明//PB AC 即可解决问题;②如图2中,连接QC ,作DT DQ ⊥交QC 的延长线于T ,利⽤全等三⾓形的性质解决问题即可;(2)如图3中,延长EH 交BC 于点G ,设AE=x ,由题意易得AB=BC=CF=EG=3x ,然后可得CG=2x ,HG=3x-3,CH=3x-1,利⽤勾股定理求解即可.【详解】(1)①证明:四边形ABCD 是正⽅形,∴//B DP C ,45DAC ∠=?,∴135PAC ∠=? 45APB ∠=?,∴+180APB PAC ∠∠=?,∴//PB AC∴四边形APBC 是平⾏四边形;②四边形PADQ 是平⾏四边形,∴DQ//,//,AP AD PQ AD PQ BC ==,AD//B C ,∴,//PQ BC PQ BC =,∴四边形PQCB 是平⾏四边形,∴QC//BP ,∴45APQ DQC ∠=∠=?,90ADC QDT ∠=∠=?,∴DQ=DT ,45,T DQT ADQ CDT ∠=∠=?∠=∠,AD=DC ,∴ADQ CDT ≌,∴45AQD T ∠=∠=?, AP//DQ ,∴45PAQ DQA ∠=∠=?;(3)CH=5,理由如下:如图3所⽰:延长EH 交BC 于点G ;四边形ABCD 是正⽅形,∴AB=BC ,90D ∠=?,⼜EH=3,FH=1,EH ⊥AD ,∴EH//CD ,∴90HGC ∠=?设AE=x ,1,3AE CF BC CF ==,∴AB=BC=CF=EG=3x ,∴CG=2x ,HG=3x-3,CH=3x-1在Rt HGC △中,()()22222243331CG HG CH x x x +=+-=-即,解得121,2x x ==当x=1时,AB=3(不符合题意,舍去);当x=2时,AB=6,∴CH=5.故答案为5.【点睛】本题主要考查正⽅形的综合问题、三⾓形全等及勾股定理,关键是利⽤已知条件及四边形的性质得到它们之间的联系,然后利⽤勾股定理求解线段的长即可. 3.(1)见解析;(2)MN 2=ND 2+DH 2,理由见解析;(3)EG=4,MN=52【分析】(1)根据⾼AG 与正⽅形的边长相等,证明三⾓形全等,进⽽证明⾓相等,从⽽求出解.(2)⽤三⾓形全等和正⽅形的对⾓线平分每⼀组对⾓的知识可证明结论.(3)设EG=BE=x ,根据正⽅形的边长得出CE ,CF ,EF ,在Rt △CEF 中利⽤勾股定理得到⽅程,求出EG 的长,设MN=a ,根据MN 2=ND 2+BM 2解出a 值即可.【详解】解:(1)在Rt △ABE 和Rt △AGE 中,AB=AG ,AE=AE ,∴Rt △ABE ≌Rt △AGE (HL ).∴∠BAE=∠GAE .同理,∠GAF=∠DAF .∴∠EAF =12∠BAD =45°;(2)MN 2=ND 2+DH 2.∵∠BAM=∠DAH ,∠BAM+∠DAN=45°,∴∠HAN=∠DAH+∠DAN=45°.∴∠HAN=∠MAN ,⼜∵AM=AH ,AN=AN ,∴△AMN ≌△AHN (SAS ).∵∠BAD=90°,AB=AD ,∴∠ABD=∠ADB=45°,∴∠HDN=∠HDA+∠ADB=90°,∴NH 2=ND 2+DH 2,∴MN 2=ND 2+DH 2;(3)∵正⽅形ABCD 的边长为12,∴AB=AG=12,由(1)知,BE=EG ,DF=FG .设EG=BE=x ,则CE=12-x ,∵GF=6=DF ,∴CF=12-6=6,EF=EG+GF=x+6,在Rt △CEF 中,∵CE 2+CF 2=EF 2,∴(12-x )2+62=(x+6)2,解得x=4,即EG=BE=4,在Rt △ABD 中, 22AB AD +2,在(2)中,MN 2=ND 2+DH 2,BM=DH ,∴MN 2=ND 2+BM 2.设MN=a ,则a 2=()(2212222a +,即a 2=()(22232a+,∴a=52MN =52 【点睛】本题考查正⽅形的性质,四边相等,对⾓线平分每⼀组对⾓,以及全等三⾓形的判定和性质,勾股定理的知识点等. 4.(1)8-2t ,8-t ;(2)83或74【分析】(1)根据P 、Q 的运动速度以及AB 和CD 的长即可表⽰;(2)分PQ=PB 、BP=BQ 和QP=QB 三种情况进⾏分析即可.解:(1)由题意可得: DP=2t ,AQ=t ,∴PC=8-2t ,BQ=8-t ,故答案为:8-2t ,8-t ;(2)当PQ=PB 时,如图①,QH=BH ,则t+2t=8,解得,t=83,当PQ=BQ 时,(2t-t )2+62=(8-t )2,解得,t=74,当BP=BQ 时,(8-2t )2+62=(8-t )2,⽅程⽆解;∴当t=83或74时,△BPQ 为等腰三⾓形.【点睛】本题考查的是矩形的性质、等腰三⾓形的判定,掌握性质并灵活运⽤性质是解题的关键,注意分情况讨论思想的应⽤.5.(1)214t ;(2)t =;(3)存在,如图2(见解析),当AHQ HBM ?时,t =3(见解析),当ADE AHE ?时,t =4(见解析),当EGQ HBF ?时,t =【分析】(1)先根据线段中点的定义可得12AQ AP =,再根据矩形的性质、⾓平分线的定义可得45HAQ ∠=?,从⽽可得AQH 是等腰直⾓三⾓形,然后根据等腰直⾓三⾓形的性质可得AH 的长,最后根据等腰直⾓三⾓形的⾯积公式即可得;(2)先根据平⾏四边形的性质可得//HQ MP ,从⽽可得//HQ BP ,再根据三⾓形中位线定理可得HQ 是ABP △的中位线,从⽽可得122AH AB ==,然后与(1)所求的2AH =建⽴等式求解即可得;(3)分①当点H 是AB 的中点时,AHQ HBM ?;②当点Q 与点E 重合时,ADE AHE ?;③当EG HB =时,EGQ HBF ?三种情况,分别求解即可得.(1)由题意得:2AP t =,点Q 为AP 的中点,12AQ AP t ∴==,四边形ABCD 是矩形,90B D BAD ∴∠=∠=∠=?, AE ∵是BAD ∠的⾓平分线,1452HAQ DAE BAD ∴∠=∠=∠=?,QH AB ⊥,AQH ∴是等腰直⾓三⾓形,22AH HQ AQ t ∴===,则AQH 的⾯积为21124AH HQ t ?=;(2)如图1,四边形PQHM 是平⾏四边形,//HQ MP ∴,点M 在BC 边上,//HQ BP ∴,点Q 为AP 的中点,HQ ∴是ABP △的中位线,122AH BH AB ∴===,由(1)知,2AH =,则22t =,解得t =;(3)由题意,有以下三种情况:①如图2,当点H 是AB 的中点时,则AH HB =,四边形PQHM 是平⾏四边形,//HM PQ ∴, HAQ BHM ∴∠=∠,在AHQ 和HBM △中,90HAQ BHM AH HB AHQ HBM ∠=∠??=??∠=∠=??,()AHQ HBM ASA ∴?,由(2)可知,此时22t =;②如图3,当点Q 与点E 重合时,在ADE 和AHE 中,9045D AHE DAE HAE AE AE ∠=∠=∠=∠==?,()ADE AHE AAS ∴?,3AD AH ∴==,则232=,解得32t =;③如图4,当EG HB =时,四边形ABCD 是矩形,四边形PQHM 是平⾏四边形,//,//CD AB HM PQ ∴,,90GEQ HAQ BHF EGQ AHQ B ∴∠=∠=∠∠=∠=?=∠,在EGQ 和HBF 中,GEQ BHF EG HB EGQ B ∠=∠?? =??∠=∠?,()EGQ HBF ASA ∴?,2,42AH AB ==, 242HB AB AH ∴=-=-,在Rt ADE △中,45,3DAE AD ∠=?=,Rt ADE ∴是等腰直⾓三⾓形,232AE ==32EQ AQ AE t ∴=-=-,在Rt GEQ 中,45GEQ HAQ ∠=∠=?,Rt GEQ ∴是等腰直⾓三⾓形,22622t EG EQ -==,则由EG HB =2624t -=-,解得7 22t =。
第一部分第五章第22讲命题点1 多边形及其性质(2018年玉林考,2017年4考,2016年5考)1.(2016·来宾4题3分)如果一个正多边形的一个外角为30°,那么这个正多边形的边数是( C )A.6 B.11C.12 D.182.(2018·玉林8题3分)在四边形ABCD中:①AB∥CD,②AD∥BC,③AB=CD,④AD=BC,从以上选择两个条件使四边形ABCD为平行四边形的选法共有( B )A.3种B.4种C.5种D.6种3.(2016·桂林16题3分)正六边形的每个外角是__60__度.4.(2017·来宾19题3分)已知一个多边形的内角和等于其外角和的2倍,则该多边形是__六__边形.命题点2 平行四边形的性质与判定(2018年百色考,2017年4考,2016年5考)5.(2016·河池8题3分)如图,在平行四边形ABCD中,∠ABC的平分线交AD于E,∠BED=150°,则∠A的大小为( C )A.150°B.130°C.120°D.100°6.(2016·柳州17题3分)如图,若□ABCD的面积为20,BC=5,则边AD与BC间的距离为__4__.7.(2016·钦州21题8分)如图,DE是△ABC的中位线,延长DE到F,使EF=DE,连接BF.(1)求证:BF=DC;(2)求证:四边形ABFD是平行四边形.证明:(1)如答图,连接DB,CF.∵DE是△ABC的中位线,∴CE=BE.∵EF=DE,∴四边形CDBF是平行四边形,∴BF=CD.(2)∵四边形CDBF是平行四边形,∴CD∥FB,∴AD∥BF.∵DE是△ABC的中位线,∴DE∥AB,∴DF∥AB,∴四边形ABFD是平行四边形.8.(2016·百色22题8分)已知平行四边形ABCD中,CE平分∠BCD且交AD于点E,AF∥CE,且交BC于点F.(1)求证:△ABF ≌△CDE ;(2)如图,若∠1=65°,求∠B 的大小. (1)证明:∵四边形ABCD 是平行四边形, ∴AB =CD ,AD ∥BC ,∠B =∠D ,∴∠1=∠BCE . ∵AF ∥CE ,∴∠AFB =∠ECB . ∵CE 平分∠BCD ,∴∠DCE =∠ECB , ∴∠AFB =∠1.在△ABF 和△CDE 中,⎩⎪⎨⎪⎧∠B =∠D ,∠AFB =∠1,AB =CD ,∴△ABF ≌△CDE (AA S).(2)解:由(1)得,∠1=∠ECB ,∠DCE =∠ECB , ∴∠1=∠DCE =65°,∴∠B =∠D =180°-2×65°=50°.9.(2018·百色22题8分)平行四边形ABCD 中,∠A =60°,AB =2AD ,BD 的中垂线分别交AB ,CD 于点E ,F ,垂足为O .(1)求证:OE =OF ;(2)若AD =6,求t an ∠ABD 的值. (1)证明:如答图,∵四边形ABCD 是平行四边形, ∴AB ∥DC ,∴∠1=∠2. ∵EF 是BD 的中垂线, ∴OD =OB ,∠3=∠4=90°. 在△DOF 和△BOE 中,⎩⎪⎨⎪⎧∠1=∠2,OD =OB ,∠3=∠4,∴△DOF ≌△BOE (A S A ),∴OE =OF .(2)解:过点D 作DG ⊥AB ,垂足为G .∵∠A =60°,AD =6,∴∠ADG =30°,∴AG =12AD =3,∴DG =62-32=3 3.∵AB =2AD ,∴AB =2×6=12,∴BG =AB -AG =12-3=9, ∴t an ∠ABD =DG BG =339=33.。
第五章四边形
第一节多边形与平行四边形
姓名:________ 班级:________ 用时:______分钟
1.(2018·大庆中考)一个正n边形的每一个外角都是36°,则n=( ) A.7 B.8 C.9 D.10
2.(2019·易错题)若平行四边形的两条对角线长为6 cm和16 cm,则下列长度的线段可作为平行四边形边长的是( )
A.5 cm B.8 cm
C.12 cm D.16 cm
3.(2018·黔南州中考)如图在▱ABCD中,已知AC=4 cm,若△ACD的周长为
13 cm,则▱ABCD的周长为( )
A.26 cm B.24 cm
C.20 cm D.18 cm
4.如图,在四边形ABCD中,AD∥BC,要使四边形ABCD成为平行四边形,则应增加的条件是( )
A.AB=CD
B.∠BAD=∠DCB
C.AC=BD
D.∠ABC+∠BAD=180°
5.(2018·呼和浩特中考)顺次连接平面上A,B,C,D四点得到一个四边形,从①AB∥CD;②BC=AD;③∠A=∠C;④∠B=∠D四个条件中任取其中两个,可以得出“四边形ABCD是平行四边形”这一结论的情况共有( )
A.5种B.4种
C.3种D.1种
6.一个n边形的每个内角都为144°,则边数n为________.7.(2018·山西中考)图1是我国古代建筑中的一种窗格,其中冰裂纹图案象征着坚冰出现裂纹并开始消融,形状无一定规则,代表一种自然和谐美.图2是从图1冰裂纹窗格图案中提取的由五条线段组成的图形,则∠1+∠2+∠3+∠4+∠5=__________度.
8.(2018·邵阳中考)如图所示,在四边形ABCD中,AD⊥AB,∠C=110°,它的一个外角∠ADE=60°,则∠B的大小是__________.
9.(2018·衡阳中考)如图,▱ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M.如果△CDM的周长为8,那么▱ABCD的周长是________.
10.(2017·牡丹江中考)如图,点E,F分别放在▱ABCD的边BC,AD上,
AC,EF交于点O,请你添加一个条件(只添一个即可),使四边形AECF是平行四边形,你所添加的条件是____________________________.
11.(2018·岳阳中考)如图,在平行四边形ABCD中,AE=CF,求证:四边形BFDE是平行四边形.
12.(2018·孝感中考)如图,B,E,C,F在一条直线上,已知AB∥DE,AC∥DF,BE=CF,连接AD.
求证:四边形ABED是平行四边形.
13.(2019·易错题)在平行四边形ABCD中,∠A的平分线把BC边分成长度是3和4的两部分,则平行四边形ABCD的周长是( )
A.22 B.20
C.22或20 D.18
14.(2018·眉山中考)如图,在▱ABCD中,CD=2AD,BE⊥AD于点E,F为DC的中点,连接EF,BF,下列结论:①∠ABC=2∠ABF;②EF=BF;③S四2S△EFB;④∠CFE=3∠DEF,其中正确结论的个数共有( )
边形DEBC=
A.1个B.2个
C.3个D.4个
15.(2019·原创题)一个多边形有44条对角线,那么这个多边形内角和是________________.
16.(2018·南京中考)如图,五边形ABCDE是正五边形,若l1平行l2,则
∠1-∠2=__________.
17.(2018·株洲中考)如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=______.
18.(2018·永州中考)如图,在△ABC中,∠A CB=90°,∠CAB=30°,以线段AB为边向外作等边△ABD,点E是线段AB的中点,连接CE并延长交线段AD于点F.
(1)求证:四边形BCFD为平行四边形;
(2)若AB=6,求平行四边形BCFD的面积.
19.(2019·创新题)阅读理解:如图1,在平面内选一定点O,引一条有方向的射线ON,再选定一个单位长度,那么平面上任一点M的位置可由∠MON的度数θ与OM的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.
应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线ON上,则正六边形的顶点C的极坐标应记为( )
A.(60°,4) B.(45°,4)
C.(60°,22) D.(50°,22)
参考答案
【基础训练】
1.D 2.B 3.D 4.B 5.C
6.10 7.360 8.40°9.16 10.AF=CE(答案不唯一)
11.证明:∵四边形ABCD是平行四边形,
∴AB∥CD,且AB=CD.
又∵AE=CF,∴BE=DF.
∵BE∥DF,且BE =DF , ∴四边形BFDE 是平行四边形. 12.证明:∵AB∥DE,AC∥DF, ∴∠B=∠DEF,∠ACB=∠F. ∵BE=CF ,∴BE+CE =CF +CE , ∴BC=EF.
在△ABC 和△DEF 中,⎩⎪⎨⎪
⎧∠B=∠DEF,BC =EF ,∠ACB=∠F,
∴△ABC≌△DEF(A S A),∴AB=DE.
又∵AB∥DE,∴四边形ABED 是平行四边形. 【拔高训练】 13.C 14.D
15.1 620° 16.72° 17.6
18.(1)证明:在△ABC 中,∵∠ACB=90°, ∠CAB=30°, ∴∠ABC=60°.
在等边△ABD 中,∵∠BAD=60°, ∴∠BAD=∠ABC=60°,∴BC∥AD. ∵E 为AB 的中点, ∴CE=12AB ,BE =1
2AB ,
∴CE=BE ,
∴∠BCE=∠EBC=60°, ∴∠BEC=∠AEF, ∴∠AFE=∠D=60°, ∴FC∥BD,
∴四边形BCFD 是平行四边形.
(2)解:在Rt △ABC 中,∵∠BAC=30°,AB =6, ∴BC=1
2AB =3,AC =3BC =33,
∴S 平行四边形BCFD =3×33=9 3. 【培优训练】 19.A。