均值不等式应用
- 格式:doc
- 大小:139.00 KB
- 文档页数:3
均值不等式应用一.均值不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”) 2.(1)若*,R b a ∈,则ab b a ≥+2 (2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”)注:(1)当两个正数的积为定值时,可以求它们的和的最小值,当两个正数的和为定值时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”.(2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.应用:1、求下列函数的值域:(1)y =3x 2+12x 2 (2)y =x +1x2、求2710(1)1x x y x x ++=>-+的值域。
3、若对任意0x >,231x a x x ≤++恒成立,则a 的取值范围是 。
4、已知t o >,则函数2t 41t y t -+=的最小值为 5、已知54x <,求函数14245y x x =-+-的最大值。
6、已知0,0x y >>,且191x y+=,求x y +的最小值。
7、设x ,y 满足约束条件⎪⎩⎪⎨⎧≥≥≥+-≤--0,002063y x y x y x ,若目标函数z=ax+by (a>0,b>0)的值是最大值为12, 则23a b+的最小值为 8、求函数2254x y x +=+的值域。
9、设0a b >>,则()211a ab a a b ++-的最小值是多少。
10、已知a =(cos α,sin α),b =(cos β,sin β),a 与b 之间有关系|k a +b |=3|a -k b |,其中k>0,(1)用k 表示a ·b ;(2)求a ·b 的最小值,并求此时a ·b 的夹角的大小。
均值不等式在生活中的应用
平均值不等式是一种重要的数学不等式,它的应用非常广泛,在生活中也有着重要的作用。
首先,平均值不等式可以用来分析一组数据的分布情况,它可以用来确定一组数据的中位数、众数、最大值和最小值等。
例如,在一组数据中,如果我们知道其中的平均值和方差,那么我们就可以用平均值不等式来确定这组数据的中位数、众数、最大值和最小值。
其次,平均值不等式可以用来分析一个系统的稳定性。
例如,在一个系统中,如果我们知道其中的平均值和方差,那么我们就可以用平均值不等式来分析这个系统的稳定性,从而判断这个系统是否稳定。
此外,平均值不等式还可以用来分析一个系统的可靠性。
例如,在一个系统中,如果我们知道其中的平均值和方差,那么我们就可以用平均值不等式来分析这个系统的可靠性,从而判断这个系统是否可靠。
最后,平均值不等式还可以用来分析一个系统的效率。
例如,在一个系统中,如果我们知道其中的平均值和方差,那么我们就可以用平均值不等式来分析这个系统的效率,从而判断这个系统的效率是否达到预期的要求。
总之,平均值不等式在生活中有着重要的作用,它可以用来分析一组数据的分布情况,也可以用来分析一个系统的稳定性、可靠性和效率等。
均值不等式推广的应用举例以均值不等式推广的应用举例:1. 优化生产过程:假设某公司有多个工厂,每个工厂的产量不同。
为了提高整体产量,可以将生产任务分配给产量较低的工厂,以提高整体平均产量。
2. 管理团队的绩效评估:假设一个公司有多个部门,每个部门的绩效不同。
为了提高整体绩效,可以将资源和项目分配给绩效较低的部门,以提高整体平均绩效。
3. 资源分配:假设一个国家有多个地区,每个地区的发展水平不同。
为了促进整体发展,可以将资源和投资分配给相对较落后的地区,以提高整体平均水平。
4. 教育资源的分配:假设一个城市有多所学校,每所学校的教育质量不同。
为了提高整体教育水平,可以将更多的教育资源分配给教育质量较差的学校,以提高整体平均水平。
5. 投资组合优化:在投资组合中,不同的资产具有不同的收益和风险水平。
为了降低整体风险,可以将资金分配给风险较低的资产,以提高整体平均风险水平。
6. 健康管理:假设一个社区中有多个家庭,每个家庭的健康状况不同。
为了改善整体健康水平,可以将医疗资源和健康服务优先提供给健康状况较差的家庭,以提高整体平均健康水平。
7. 环境保护:假设一个地区有多个工业企业,每个企业的环境影响不同。
为了改善整体环境质量,可以加强对环境影响较大的企业的监管和管理,以提高整体平均环境质量。
8. 城市规划:在城市规划中,不同的地区具有不同的功能和发展潜力。
为了实现整体均衡发展,可以将资源和投资分配给发展潜力较大的地区,以提高整体平均发展水平。
9. 食品安全:假设一个国家有多个农田,每个农田的农产品质量不同。
为了保障整体食品安全,可以加强对农产品质量较低的农田的监管和管理,以提高整体平均食品质量。
10. 社会福利分配:假设一个社会有多个群体,每个群体的福利水平不同。
为了实现整体社会公平,可以将福利资源分配给福利水平较低的群体,以提高整体平均福利水平。
以上是以均值不等式推广的应用举例,通过合理的资源分配和管理,可以提高整体水平,实现更好的平衡和发展。
第6节 均值不等式及其应用知识梳理1.均值不等式如果a ,ba =b 时,等号成立.数a +b2称为a ,b a ,b 的几何平均值. 2.两个重要的不等式(1)a 2+b 2≥2ab (a ,b ∈R ),当且仅当a =b 时取等号. (2)ab ≤⎝⎛⎭⎪⎫a +b 22(a ,b ∈R ),当且仅当a =b 时取等号. (3)(a +b )2≥4ab ;2(a 2+b 2)≥(a +b )2. 当且仅当a =b 时,等号成立. 3.利用均值不等式求最值 已知x ≥0,y ≥0,则(1)如果积xy 是定值p ,那么当且仅当x =y 时,x +y 有最小值是2p (简记:积定和最小).(2)如果和x +y 是定值s ,那么当且仅当x =y 时,xy 有最大值是s 24(简记:和定积最大).1.b a +ab ≥2(a ,b 同号),当且仅当a =b 时取等号. 2.ab ≤⎝ ⎛⎭⎪⎫a +b 22≤a 2+b 22.3.21a +1b≤ab ≤a +b2≤a 2+b 22(a >0,b >0).4.应用均值不等式求最值要注意:“一定,二正,三相等”,忽略某个条件,就会出错.5.在利用不等式求最值时,一定要尽量避免多次使用均值不等式.若必须多次使用,则一定要保证它们等号成立的条件一致.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)两个不等式a 2+b 2≥2ab 与a +b2≥ab 成立的条件是相同的.( ) (2)函数y =x +1x 的最小值是2.( ) (3)函数f (x )=sin x +4sin x 的最小值为4.( ) (4)x >0且y >0是x y +yx ≥2的充要条件.( ) 答案 (1)× (2)× (3)× (4)×解析 (1)不等式a 2+b 2≥2ab 成立的条件是a ,b ∈R ; 不等式a +b2≥ab 成立的条件是a ≥0,b ≥0.(2)函数y =x +1x 的值域是(-∞,-2]∪[2,+∞),没有最小值. (3)函数f (x )=sin x +4sin x 没有最小值. (4)x >0且y >0是x y +yx ≥2的充分不必要条件.2.若x >0,y >0,且x +y =18,则xy 的最大值为( ) A.9 B.18C.36D.81答案 A解析 因为x +y =18,所以xy ≤x +y2=9,当且仅当x =y =9时,等号成立.3.(多选题)若x ≥y ,则下列不等式中正确的是( ) A.3x ≥3y B.x +y2≥xy C.x 2≥y 2D.x 2+y 2≥2xy答案 AD解析 由指数函数的单调性可知,当x ≥y 时,有3x ≥3y ,故A 正确; 当0>x ≥y 时,x +y2≥xy 不成立,故B 错误; 当0≥x ≥y 时,x 2≥y 2不成立,故C 错误;x 2+y 2-2xy =(x -y )2≥0成立,即x 2+y 2≥2xy 成立,故D 正确.4.(2021·滨州三校联考)若函数f (x )=x +1x -2(x >2)在x =a 处取最小值,则a 等于( ) A.1+2 B.1+3 C.3D.4答案 C解析 当x >2时,x -2>0,f (x )=(x -2)+1x -2+2≥2(x -2)×1x -2+2=4,当且仅当x -2=1x -2(x >2),即x =3时取等号,即当f (x )取得最小值时,x =3,即a =3,故选C.5.(2020·长沙月考)一段长为30 m 的篱笆围成一个一边靠墙的矩形菜园,墙长 18 m ,则这个矩形的长为________m ,宽为________m 时菜园面积最大. 答案 15 152解析 设矩形的长为x m ,宽为y m.则x +2y =30(0<x ≤18),所以S =xy =12x ·(2y )≤12⎝ ⎛⎭⎪⎫x +2y 22=2252,当且仅当x =2y ,即x =15,y =152时取等号.6.(2018·天津卷)已知a,b∈R,且a-3b+6=0,则2a+18b的最小值为________.答案1 4解析由题设知a-3b=-6,又2a>0,8b>0,所以2a+18b≥22a·18b=2·2a-3b2=1 4,当且仅当2a=18b,即a=-3,b=1时取等号.故2a+18b的最小值为14.考点一 利用均值不等式求最值角度1 配凑法求最值【例1】 (1)(2021·乐山模拟)设0<x <32,则函数y =4x (3-2x )的最大值为________. (2)已知x <54,则f (x )=4x -2+14x -5的最大值为________.(3)已知函数f (x )=-x 2x +1(x <-1),则( )A.f (x )有最小值4B.f (x )有最小值-4C.f (x )有最大值4D.f (x )有最大值-4答案 (1)92 (2)1 (3)A解析 (1)y =4x (3-2x )=2[2x (3-2x )] ≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92, 当且仅当2x =3-2x ,即x =34时,等号成立.∵34∈⎝ ⎛⎭⎪⎫0,32,∴函数y =4x (3-2x )⎝ ⎛⎭⎪⎫0<x <32的最大值为92.(2)因为x <54,所以5-4x >0,则f (x )=4x -5+14x -5+3=-⎝⎛⎭⎪⎫5-4x +15-4x +3≤-2(5-4x )·15-4x+3=-2+3=1,当且仅当5-4x =15-4x,即x =1时,取等号. 故f (x )=4x -2+14x -5的最大值为1. (3)f (x )=-x 2x +1=-x 2-1+1x +1=-⎝⎛⎭⎪⎫x -1+1x +1=-⎝ ⎛⎭⎪⎫x +1+1x +1-2 =-(x +1)+1-(x +1)+2.因为x <-1,所以x +1<0,-(x +1)>0, 所以f (x )≥21+2=4, 当且仅当-(x +1)=1-(x +1),即x =-2时,等号成立.故f (x )有最小值4.角度2 常数代换法求最值【例2】(2021·武汉模拟)已知正数m ,n 满足m +2n =8,则2m +1n 的最小值为________,等号成立时m ,n 满足的等量关系是________. 答案 1 m =2n解析 因为m +2n =8,所以2m +1n =⎝ ⎛⎭⎪⎫2m +1n ×m +2n 8=18⎝ ⎛⎭⎪⎫4+4n m +m n ≥18⎝⎛⎭⎪⎫4+24n m ×m n =18(4+4)=1,当且仅当4n m =m n ,即m =4,n =2时等号成立. 角度3 消元法求最值【例3】(2020·江苏卷)已知5x 2y 2+y 4=1(x ,y ∈R ),则x 2+y 2的最小值是________. 答案 45解析 由题意知y ≠0.由5x 2y 2+y 4=1,可得x 2=1-y 45y 2,所以x 2+y 2=1-y 45y 2+y 2=1+4y 45y 2=15⎝ ⎛⎭⎪⎫1y 2+4y 2≥15×21y 2×4y 2=45,当且仅当1y 2=4y 2,即y =±22时取等号.所以x 2+y 2的最小值为45.感悟升华 利用均值不等式求最值的方法(1)知和求积的最值:“和为定值,积有最大值”.但应注意以下两点:①具备条件——正数;②验证等号成立.(2)知积求和的最值:“积为定值,和有最小值”,直接应用均值不等式求解,但要注意利用均值不等式求最值的条件.(3)构造不等式求最值:在求解含有两个变量的代数式的最值问题时,通常采用“变量替换”或“常数1”的替换,构造不等式求解.【训练1】(1)已知实数x,y>0,且x2-xy=2,则x+6x+1x-y的最小值为()A.6B.62C.3D.32(2)(多选题)(2021·烟台模拟)下列说法正确的是()A.若x,y>0,x+y=2,则2x+2y的最大值为4B.若x<12,则函数y=2x+12x-1的最大值为-1C.若x,y>0,x+y+xy=3,则xy的最小值为1D.函数y=1sin2x+4cos2x的最小值为9答案(1)A(2)BD解析(1)由x,y>0,x2-xy=2得x-y=2x,则1x-y=x2,所以x+6x+1x-y=x+6x+x 2=3⎝⎛⎭⎪⎫x2+2x≥3×2x2×2x=6,当且仅当x2=2x,即x=2,y=1时等号成立,所以x+6x+1x-y的最小值为6.(2)对于A,取x=32,y=12,可得2x+2y=32>4,A错误;对于B,y=2x+12x-1=-⎝⎛⎭⎪⎫1-2x+11-2x+1≤-2+1=-1,当且仅当x=0时等号成立,B正确;对于C ,易知x =2,y =13满足等式x +y +xy =3,此时xy =23<1,C 错误; 对于D ,y =1sin 2x +4cos 2x =⎝ ⎛⎭⎪⎫1sin 2x +4cos 2x (sin 2x +cos 2x )=cos 2x sin 2x +4sin 2x cos 2x +5≥24+5=9.当且仅当cos 2x =23,sin 2x =13时等号成立,D 正确.故选BD. 考点二 均值不等式的综合应用【例4】 (1)(2020·湘东七校联考)已知f (x )=13x 3+ax 2+(b -4)x +1(a >0,b >0)在x =1处取得极值,则2a +1b 的最小值为( ) A.3+223 B.3+22 C.3D.9(2)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,则正实数a 的最小值为( ) A.2B.4C.6D.8答案 (1)C (2)B解析 (1)因为f (x )=13x 3+ax 2+(b -4)x +1(a >0,b >0), 所以f ′(x )=x 2+2ax +b -4. 因为f (x )在x =1处取得极值,所以f ′(1)=0,所以1+2a +b -4=0,解得2a +b =3. 所以2a +1b =⎝ ⎛⎭⎪⎫2a +1b ·13·(2a +b )=13⎝ ⎛⎭⎪⎫5+2b a +2a b ≥13⎝⎛⎭⎪⎫5+22b a ·2a b =3(当且仅当a =b =1时取等号).故选C. (2)已知不等式(x +y )⎝ ⎛⎭⎪⎫1x +a y ≥9对任意正实数x ,y 恒成立,只要求(x +y )⎝ ⎛⎭⎪⎫1x +a y 的最小值大于或等于9, ∵1+a +y x +axy ≥a +2a +1,当且仅当y =ax 时,等号成立, ∴a +2a +1≥9,∴a ≥2或a ≤-4(舍去),∴a ≥4, 即正实数a 的最小值为4,故选B.感悟升华 1.当均值不等式与其他知识相结合时,往往是提供一个应用均值不等式的条件,然后利用常数代换法求最值.2.求参数的值或范围时,要观察题目的特点,利用均值不等式确定相关成立的条件,从而得到参数的值或范围.【训练2】 (1)在△ABC 中,A =π6,△ABC 的面积为2,则2sin C sin C +2sin B+sin Bsin C 的最小值为( ) A.32B.334C.32D.53(2)在△ABC 中,点D 是AC 上一点,且=4,P 为BD 上一点,向量=λ+μ(λ>0,μ>0),则4λ+1μ的最小值为( ) A.16B.8C.4D.2答案 (1)C (2)A解析 (1)由△ABC 的面积为2,所以S △ABC =12bc sin A =12bc sin π6=2,得bc =8, 在△ABC 中,由正弦定理得 2sin C sin C +2sin B +sin B sin C =2c c +2b +bc=2·8b8b +2b +b 8b=168+2b2+b 28=84+b2+b 2+48-12 ≥284+b 2·b 2+48-12=2-12=32, 当且仅当b =2,c =4时,等号成立,故选C.(2)由题意可知,=λ+4μ,又点B ,P ,D 共线,由三点共线的充要条件可得λ+4μ=1,又因为λ>0,μ>0,所以4λ+1μ=⎝ ⎛⎭⎪⎫4λ+1μ·(λ+4μ)=8+16μλ+λμ≥8+216μλ·λμ=16,当且仅当λ=12,μ=18时等号成立,故4λ+1μ的最小值为16.故选A. 考点三 均值不等式的实际应用【例5】网店和实体店各有利弊,两者的结合将在未来一段时期内,成为商业的一个主要发展方向.某品牌行车记录仪支架销售公司从2019年1月起开展网络销售与实体店体验安装结合的销售模式.根据几个月运营发现,产品的月销量x 万件与投入实体店体验安装的费用t 万元之间满足函数关系式x =3-2t +1.已知网店每月固定的各种费用支出为3万元,产品每1万件进货价格为32万元,若每件产品的售价定为“进货价的150%”与“平均每件产品的实体店体验安装费用的一半”之和,则该公司最大月利润是________万元. 答案 37.5 解析 由题意知t =23-x-1(1<x <3),设该公司的月利润为y 万元,则y =⎝ ⎛⎭⎪⎫48+t 2x x -32x -3-t =16x -t 2-3=16x -13-x +12-3=45.5-⎣⎢⎡⎦⎥⎤16(3-x )+13-x ≤45.5-216=37.5,当且仅当x =114时取等号,即最大月利润为37.5万元.感悟升华 1.设变量时一般要把求最大值或最小值的变量定义为函数. 2.根据实际问题抽象出函数的解析式后,只需利用均值不等式求得函数的最值.3.在求函数的最值时,一定要在定义域(使实际问题有意义的自变量的取值范围)内求解.【训练3】某公司一年购买某种货物600吨,每次购买x 吨,运费为6万元/次,一年的总存储费用为4x 万元.要使一年的总运费与总存储费用之和最小,则x 的值是________.答案 30解析 一年的总运费与总存储费用之和为y =6×600x +4x =3 600x +4x ≥2 3 600x ·4x =240,当且仅当3 600x =4x ,即x =30时,y 有最小值240.A 级 基础巩固一、选择题1.已知a ,b ∈R ,且ab ≠0,则下列结论恒成立的是( )A.a +b ≥2abB.a b +b a ≥2C.⎪⎪⎪⎪⎪⎪a b +b a ≥2 D.a 2+b 2>2ab答案 C解析 因为a b 和b a 同号,所以⎪⎪⎪⎪⎪⎪a b +b a =⎪⎪⎪⎪⎪⎪a b +⎪⎪⎪⎪⎪⎪b a ≥2. 2.若3x +2y =2,则8x +4y 的最小值为( )A.4B.42C.2D.22 答案 A解析 因为3x +2y =2,所以8x +4y ≥28x ·4y =223x +2y =4, 当且仅当3x +2y =2且3x =2y ,即x =13,y =12时等号成立.故选A.3.(多选题)(2021·山东新高考模拟)已知正实数a ,b 满足a +b =2,下列式子中,最小值为2的有( )A.2abB.a 2+b 2C.1a +1bD.2ab答案 BCD 解析 因为a ,b >0,所以2=a +b ≥2ab ,所以0<ab ≤1,当且仅当a =b =1时等号成立.由ab ≤1,得2ab ≤2,所以2ab 的最大值为2,A 错误;a 2+b 2=(a+b )2-2ab ≥4-2=2,B 正确;1a +1b =a +b ab =2ab ≥2,C 正确;2ab ≥2,D 正确,故选BCD.4.已知x >0,y >0,且1x +1+1y =12,则x +y 的最小值为( ) A.3B.5C.7D.9 答案 C解析 ∵x >0,y >0,且1x +1+1y =12,∴x +1+y =2⎝ ⎛⎭⎪⎫1x +1+1y (x +1+y )=2⎝ ⎛⎭⎪⎪⎫1+1+y x +1+x +1y ≥2⎝ ⎛⎭⎪⎪⎫2+2y x +1·x +1y =8,当且仅当y x +1=x +1y ,即x =3,y =4时取等号,∴x +y ≥7,故x +y 的最小值为7.5.要制作一个容积为4 m 3,高为1 m 的无盖长方体容器.已知该容器的底面造价是每平方米20元,侧面造价是每平方米10元,则该容器的最低总造价是( )A.80元B.120元C.160元D.240元答案 C解析 由题意知,体积V =4 m 3,高h =1 m ,所以底面积S =4 m 2,设底面矩形的一条边长是x m ,则另一条边长是4x m ,又设总造价是y 元,则y =20×4+10×(2x +8x )≥80+202x ·8x =160,当且仅当2x =8x ,即x =2时取得等号. 6.若实数x ,y 满足x 2+y 2+xy =1,则x +y 的最大值是( )A.6B.233C.4D.23答案 B解析 x 2+y 2+xy =1⇒(x +y )2-xy =1,∵xy ≤⎝ ⎛⎭⎪⎫x +y 22,当且仅当x =y 时取等号, ∴(x +y )2-⎝ ⎛⎭⎪⎫x +y 22≤1, 即34(x +y )2≤1,∴-233≤x +y ≤233,∴x +y 的最大值是233.故选B.7.(2021·沈阳一模)若log 2x +log 4y =1,则x 2+y 的最小值为( )A.2B.23C.4D.22 答案 C解析 因为log 2x +log 4y =log 4x 2+log 4y =log 4(x 2y )=1,所以x 2y =4(x >0,y >0),则x 2+y ≥2x 2y =4,当且仅当x 2=y =2时等号成立,即x 2+y 的最小值为4.故选C.8.(2020·重庆联考)对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,则实数a 的最大值为( ) A.2B.22C.4D.92 答案 B解析 ∵对任意m ,n ∈(0,+∞),都有m 2-amn +2n 2≥0,∴m 2+2n 2≥amn ,即a ≤m 2+2n 2mn =m n +2n m 恒成立,∵m n +2n m ≥2m n ·2n m =22,当且仅当m n =2n m 即m =2n 时取等号,∴a ≤22,故a 的最大值为22,故选B.二、填空题 9.若直线x a +y b =1(a >0,b >0)过点(1,2),则2a +b 的最小值为________.答案 8解析 由题设可得1a +2b =1,∵a >0,b >0,∴2a +b =(2a +b )⎝ ⎛⎭⎪⎫1a +2b =4+b a +4a b ≥4+2b a ·4ab=8⎝ ⎛⎭⎪⎫当且仅当b a =4a b ,即b =2a =4时,等号成立. 故2a +b 的最小值为8.10.已知x >0,y >0,x +3y +xy =9,则x +3y 的最小值为________.答案 6解析 法一(换元消元法)由已知得x +3y =9-xy ,因为x >0,y >0, 所以x +3y ≥23xy ,所以3xy ≤⎝ ⎛⎭⎪⎫x +3y 22, 当且仅当x =3y ,即x =3,y =1时取等号,即(x +3y )2+12(x +3y )-108≥0,令x +3y =t ,则t >0且t 2+12t -108≥0,得t ≥6,即x +3y 的最小值为6.法二 (代入消元法)由x +3y +xy =9,得x =9-3y 1+y, 所以x +3y =9-3y 1+y +3y=9+3y 21+y =3(1+y )2-6(1+y )+121+y=3(1+y )+121+y -6≥23(1+y )·121+y-6 =12-6=6,当且仅当3(1+y )=121+y,即y =1,x =3时取等号, 所以x +3y 的最小值为6.11.(2020·天津卷)已知a >0,b >0,且ab =1,则12a +12b +8a +b的最小值为__________.答案 4解析 因为a >0,b >0,ab =1,所以原式=ab 2a +ab 2b +8a +b =a +b 2+8a +b≥2a +b 2·8a +b =4,当且仅当a +b 2=8a +b ,即a +b =4时,等号成立.故12a +12b +8a +b的最小值为4. 12.函数y =x 2+2x -1(x >1)的最小值为________. 答案 23+2解析 ∵x >1,∴x -1>0,∴y =x 2+2x -1=(x 2-2x +1)+(2x -2)+3x -1=(x -1)2+2(x -1)+3x -1=(x -1)+3x -1+2≥23+2.当且仅当x -1=3x -1,即x =3+1时,等号成立.B 级 能力提升13.(多选题)(2021·石家庄一模)若a ,b ,c ∈R ,且ab +bc +ca =1,则下列不等式成立的是( )A.a +b +c ≤3B.(a +b +c )2≥3C.1a +1b +1c ≥23D.a 2+b 2+c 2≥1答案 BD解析 由均值不等式可得a 2+b 2≥2ab ,b 2+c 2≥2bc ,c 2+a 2≥2ca ,∴2(a 2+b 2+c 2)≥2(ab +bc +ca )=2,∴a 2+b 2+c 2≥1,当且仅当a =b =c =±33时,等号成立.∴(a +b +c )2=a 2+b 2+c 2+2(ab +bc +ca )≥3,∴a +b +c ≤-3或a +b +c ≥ 3.若a =b =c =-33,则1a +1b +1c =-33<2 3.因此,A ,C 错误,B ,D 正确.故选BD.14.(2020·山东名校联考)正实数a ,b 满足a +3b -6=0,则1a +1+43b +2的最小值为( ) A.13B.1C.2D.59 答案 B解析 由题意可得a +3b =6,所以1a +1+43b +2=19[(a +1)+(3b +2)]⎝ ⎛⎭⎪⎫1a +1+43b +2=19⎣⎢⎢⎡⎦⎥⎥⎤5+3b +2a +1+4(a +1)3b +2≥1, 当且仅当⎩⎪⎨⎪⎧2(a +1)=3b +2,a +3b =6,即a =2,b =43时等号成立.故1a +1+43b +2的最小值为1,选B.15.若a ,b ∈R ,ab >0,则a 4+4b 4+1ab的最小值为________. 答案 4解析 ∵a ,b ∈R ,ab >0,∴a 4+4b 4+1ab ≥4a 2b 2+1ab =4ab +1ab ≥24ab ·1ab =4,当且仅当⎩⎨⎧a 2=2b 2,4ab =1ab ,即⎩⎪⎨⎪⎧a 2=22,b 2=24时取得等号. 16.已知函数f (x )=x 2+ax +11x +1(a ∈R ),若对于任意的x ∈N *,f (x )≥3恒成立,则a 的取值范围是________.答案 ⎣⎢⎡⎭⎪⎫-83,+∞ 解析 对任意x ∈N *,f (x )≥3,即x 2+ax +11x +1≥3恒成立,即a ≥-⎝ ⎛⎭⎪⎫x +8x +3. 设g (x )=x +8x ,x ∈N *,则g (x )=x +8x ≥42,当且仅当x =22时等号成立,又g (2)=6,g (3)=173,∵g (2)>g (3),∴g (x )min =173.∴-⎝ ⎛⎭⎪⎫x +8x +3≤-83,∴a ≥-83,故a 的取值范围是⎣⎢⎡⎭⎪⎫-83,+∞.。
均值不等式的正确使用及例题利用不等式求最值,要注意不等式成立的条件、等号成立的条件以及定值的条件,初学不等式时容易用错,现通过比较来说明均值不等式的正确使用。
(一)均值不等式有许多变形式子,使用哪一个不等式要选准 均值不等式是指),(2+∈≥+R b a ab b a ,它的变形式子有2)2(b a ab +≤,222b a ab +≤,≤+2)(b a)(222b a +等。
由此可知,在求ab 的最大值时至少有两个不等式可供选择,那么选择哪一个更好呢?通过比较发现,若已知b a +是定值,求ab 的最大值可使用第一个不等式;若已知22b a +是定值,求ab 的最大值可用第二个不等式,若求b a +的最大值可用第三个不等式。
(二)使用均值不等式求最值,定值是前提例1. 已知正数a 、b 满足3222=+b a ,求12+b a 的最大值。
(三)连续使用不等式(连续放缩)求最值,等号必须同时成立例2. 已知0>>b a ,求)(42b a b a -+的最小值。
二. 均值不等式的应用(一)用于比较大小例1.若b a >1>,b a P lg lg ⋅=,)lg (lg 21b a Q +⋅=,2lg b a R +=,则( ) A .P R <Q <B. Q P <R <C. P Q <R <D. R P <Q < 例2.若)0(21>++=a aa p ,≤-=1(arccos t q )1≤t 则下列不等式恒成立的是( ) A. q p >≥π B. 0≥>q p C. q p ≥>4 D. 0>≥q p(二)用于求取值范围例3. 若正数a 、b 满足3++=b a ab ,则ab 的取值范围是 。
(三)用于证明不等式例4. 已知i 、m 、n 是正整数,且<1n m i <≤,求证:.)1()1(m n n m +>+三. 均值不等式中等号不成立时最值的求法利用均值不等式求最值是高中数学中常用方法之一,应注意“一正二定三相等”。
均值不等式及其应用教学设计1. 引言嘿,大家好!今天咱们聊聊一个看似复杂,其实挺简单的数学话题——均值不等式。
别担心,我不是要让你们头疼,只是想让大家轻松地了解这个有趣的概念。
说到均值不等式,首先要明白它是啥。
简单来说,它就像是数学界的“公平游戏”,告诉我们不同的平均数之间的关系。
你们有没有发现,生活中其实随处可见均值的影子?比如,吃饭的时候,大家点的菜,最后账单一分,大家心里都算得明明白白的,这就是个平均数的例子啊!2. 均值不等式的基础2.1 什么是均值不等式?那么,什么是均值不等式呢?很简单,均值不等式告诉我们,如果我们把一些数相加,算出平均值后,再和其中的最大值和最小值进行比较,会发现一些有趣的事情。
比如说,如果你们有三个数字,像是3、5、7,算出平均数是5。
而这时候,你会发现5比3和7都要“处于中间”,这就是均值不等式的妙处。
它好比说,你这碗汤太咸了,得加点水,才能让味道更均衡。
2.2 均值不等式的种类均值不等式也分几种,比如算术平均数和几何平均数。
算术平均数就像是我们平时算的平均分,而几何平均数就有点像魔法了,它可以用来处理一些指数关系。
举个例子,如果你有两个数,想算它们的几何平均数,你就得先把它们相乘,然后开方。
这听起来有点复杂,但实际上,它能帮我们更好地理解一些数的关系,就像在跟朋友聊天,分享生活的点点滴滴一样。
3. 均值不等式的应用3.1 生活中的应用均值不等式可不止是在数学书上见到的概念,生活中到处都能用得上。
比如在购物的时候,我们常常会考虑性价比,也就是用价格和质量的“平均”来判断哪个商品更划算。
这样一来,我们的生活也变得更简单、更方便了,买东西也不至于像头猪一样乱撞。
还有啊,在制定计划的时候,我们常常会用到均值不等式,来帮助我们分配时间和资源。
3.2 教学中的应用在教学中,如何将均值不等式生动地传达给学生呢?首先,老师可以通过生活中的实例引入,比如用大家喜欢的游戏来做比喻,告诉他们在游戏中,获取最高分和最低分的关系,以及它们如何影响整体的表现。
二元均值不等式及其应用引例:如图,在半径为1的⊙O 内,弦CD ∥弦EF ,并且与直径AB 成45角,,C D A B P E F⋂=⋂=,求证:2PC QE PD QF ⋅+⋅<。
本专题意在提升同学们基于二元均值不等式求解最大值、最小值以及证明简单不等式的灵活性。
一、基础知识定理:(1)任取0,0a b >>,则2a b+≥,“=”当且仅当a b =时成立; (2)任取,a b R ∈,则222a b ab +≥,“=”成立的条件是a b =;(3)不等式链:任取0a b ≥>,则2112a b b a a b+≤≤≤≤+,“=”成立的条件是a b =。
二、典型例题1.应用二元均值不等式求最值:一正、二定、三相等。
例1求()()111f x x x x =+>-的最小值。
例2当0>>b a 时,求()bb a a -+27的最小值是 ,()216a b a b +-的最小值是 。
例3设a + b = 2, b >0, 则当a = 时, 1||2||a a b+取得最小值 。
2.逢失败恰当调整,重建结构 例4求下列函数的最小值:(1)()sin 202sin 2x f x x x π⎛⎫=+<≤ ⎪⎝⎭; (2)ax a x y +++=221的最小值,其中常数R a ∈。
3.应用二元均值不等式求多元极值 例5设x y z >>,求()11f x z x y y z ⎛⎫=+⋅-⎪--⎝⎭的最小值。
例6设,,0x y z >,求()()()()15435618xyzf x x y y z z =++++的最大值。
4.应用二元均值不等式探究二次分式函数极值例7求函数2251x x y x -+=-在区间()1,+∞上的最小值。
5.应用二元均值不等式探求高次“对勾函数”与高次“单勾函数”极值(1)形如()m n bf x ax x=+的函数图像形状。
均值不等式是不等式的重要内容之一,常常用来求函数的最值。
在应用其求最值的时候必须注意成立的条件,否则就会走入种种误区从而导致解题错误。
关键词:均值不等式;注意;问题不等式是历年高考中必不可少的内容,而均值不等式是不等式中的重要内容之一。
均值不等式常常用来求函数的最值。
在应用均值不等式时,需注意同时满足以下三个条件:(1)各项均为正数;(2)和或积为定值;(3)具有等号成立的条件;(即一正二定三等)。
忽视以上条件必然导致解题的错误。
现举例加以说明:一、忽视了均值不等式成立的前提条件,导致解题错误例1 求函数y=的最值[错解] 当x=0时,y=0当x≠0时,y=≤=(即当x=时)=,y没有最小值y[分析] x≠0时,x可能大于零,也可能小于零,则x,可能同正,也可能同负,而此解法只考虑了x大于零的情况,即忽视了均值不等式成立的前提条件——各项均为正数,从而导致解题错误。
[正解] 当x=0时,y=0当x≠0时,===当且仅当=即x=2时等号成立y=- y=二、忽视了均值不等式定值的选取,造成解题用均值不等式求函数的最值时要注意构造出定值关系,首先应分清楚是求和式的最值还是求积式的最值,然后构造出相应积(和)的定值。
若未构造出定值来,则容易造成解题的错误。
同时还应记住,若和为定值,则积有最大值,若积为定值,则和有最小值。
例2 求函数y=x+(x大于零)的最小值2=2[错解] ∵x+当且仅当x=即当x=2时上式中等号成立∴ x+2=4∴当x=2时,y=4[分析] x=不是定值,所以不能直接应用均值不等式。
[正解] 为了利用均值不等式,就要出现定植,所以要先进行适当的“凑,配”:=++3=3y=x+当且仅当=即当x=2时,y=3三、忽视了等号成立的条件,导致解题错误例3 求函数y=的最小值[错解] y==++ 2y 2故此函数的最小值为22中的等号要成立,必须满足=[分析] +即x+4=1,即x= — 3,没有实数解,故不能取得最小值2。
均值不等式应用
一.均值不等式
1.(1)若Rba,,则abba222 (2)若Rba,,则222baab(当且仅当ba时取“=”)
2. (1)若*,Rba,则abba2 (2)若*,Rba,则abba2(当且仅当ba时取“=”)
(3)若*,Rba,则22baab (当且仅当ba时取“=”)
3.若0x,则12xx (当且仅当1x时取“=”);若0x,则12xx (当且仅当1x时取“=”)
若0x,则11122-2xxxxxx即或 (当且仅当ba时取“=”)
3.若0ab,则2abba (当且仅当ba时取“=”)
若0ab,则22-2abababbababa即或 (当且仅当ba时取“=”)
4.若Rba,,则2)2(222baba(当且仅当ba时取“=”)
注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的
积的最小值,正所谓“积定和最小,和定积最大”.
(2)求最值的条件“一正,二定,三取等”
(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用.
解题技巧:
技巧一:凑项
例1:已知54x,求函数14245yxx的最大值。
技巧二:凑系数
例1. 当时,求(82)yxx的最大值。
变式:设230x,求函数)23(4xxy的最大值。
技巧三
: 分离
例3. 求2710(1)1xxyxx的值域。
技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()afxxx的单调性。
例:求函数2254xyx的值域。
练习.求下列函数的最小值,并求取得最小值时,x 的值.
(1)231,(0)xxyxx (2)12,33yxxx (3)12sin,(0,)sinyxxx
2.已知01x,求函数(1)yxx的最大值.;3.203x,求函数(23)yxx的最大值.
条件求最值
1.若实数满足2ba,则ba33的最小值是 .
技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。。
2:已知0,0xy,且191xy,求xy的最小值。
变式: (1)若Ryx,且12yx,求yx11的最小值
(2)已知Ryxba,,,且1ybxa,求yx的最小值
技巧七、已知x,y为正实数,且x 2+y 22 =1,求x1+y 2 的最大值.
技巧八:已知a,b为正实数,2b+ab+a=30,求函数y=1ab 的最小值.
变式:1.已知a>0,b>0,ab-(a+b)=1,求a+b的最小值。
2.若直角三角形周长为1,求它的面积最大值。
技巧九、取平方
5、已知x,y为正实数,3x+2y=10,求函数W=3x +2y 的最值.
应用三:均值不等式与恒成立问题
例:已知0,0xy且191xy,求使不等式xym恒成立的实数m的取值范围。