环境工程仿真模拟第四章复杂控制系统
- 格式:ppt
- 大小:2.46 MB
- 文档页数:72
第一章绪论1.1 引言随着世界经济的迅速发展,人类对矿产资源的需求日益增加,资源的开采亦日益加剧,陆地资源正日趋贫化和枯竭,丰富的海底矿产资源将成为人类可持续发展的重要物质基础[1]。
许多国家已经把开发利用海洋资源作为基本国策;许多著名的政治家、经济学家都预言,二十一世纪将是“海洋经济时代”[2]根据国内外科学家多年的勘探和研究表明,占地球表面积约71%的海洋是一个巨大的资源宝库,其矿产资源存储量大大高于陆地的存储量,而且一些新的矿床还不断被发现。
在已发现的深海矿产资源中,对人类生产生活有重大应用价值的主要有多金属结核矿、铁锰结壳矿和海底热液矿等。
其中大洋多金属结核是一种富含锰、铜、钴、镍等多种金属的结核矿,主要分布在世界大洋底部水深3500.6000rn的海底表层,在整个大洋底的储量约为3万亿吨,其中仅太平洋地区就达1.7万亿吨[3],并且其储量还将以每年100万吨的速度增长。
大洋多金属结核所含的锰、铜、钴、镍等金属的储量分别是陆地相应储量的200,40,129和328倍。
可见,深海的矿产资源不仅储量丰富,且矿产的品位极高,其所含的多种矿产都是人类工业生产和国防等工业的必备资源。
因此,深海底丰富的矿产资源已成为世界瞩目的具有商业开发前景的战略资源,对深海环境的研究也成为世界各国的重要研究课题。
1.2 本课题研究的目的和意义1.2.1海洋环境研究的重要性随着社会的发展和进步以及世界人口的急剧增加,陆地资源正日趋贫化和枯竭。
丰富的海底矿产资源将成为人类可持续发展的重要物质基础,许多国家已经把开发利用海洋资源作为基本国策。
与此同时海洋的鱼类资源、海洋风暴以及海浪等许多的海洋气象都对我们人类的发展有着重要的意义。
图1.1 矿藏丰富的海洋据我国国土资源部发布的《全国矿产资源规划 (2008至2015年)》[4]说,中国经济社会发展对矿产资源的需求持续快速增长,矿产资源保障程度总体不足,中国正成为一个能源消费大国。
控制系统建模及仿真综合设计总结
控制系统建模及仿真是现代控制理论和工程实践中非常重要的环节。
通过对系统进行建模和仿真,可以实现对系统行为和性能的分析、优化和预测。
以下是控制系统建模及仿真综合设计的总结:
1. 确定系统的目标和需求:系统的目标和需求是建模和仿真的基础,需要明确系统的控制目标、工作条件、输入输出特性等。
2. 收集系统的信息:收集系统的相关信息,包括系统结构、工作原理、参数等。
可以通过文献调研、实验测试等方式获取。
3. 进行系统建模:根据系统的特性和要求,选择合适的建模方法。
常见的建模方法包括状态空间法、传递函数法、仿真模型法等。
根据建模方法,建立系统的数学模型。
4. 进行系统仿真:利用仿真软件,将系统的数学模型转化为计算机可执行的模型,并设计仿真实验。
根据实验设置系统的输入信号,进行仿真计算并得到系统的输出响应。
5. 分析和优化系统性能:对仿真结果进行分析,评估系统的控制性能。
可以利用仿真结果,进行参数调节、控制算法优化等操作,以提升系统的性能。
6. 验证仿真结果:将仿真结果与实际系统的实验结果进行比较,验证仿真模型的准确性和可靠性。
若有差异,可以对仿真模型进行修正和优化。
7. 编写综合设计报告:根据仿真结果和优化方案,编写综合设计报告,包括系统的建模过程、仿真实验的设置、仿真结果的分析和优化方案的描述等。
第一章绪论1.1引言随着世界经济的迅速发展,人类对矿产资源的需求日益增加,资源的开采亦日益加剧,陆地资源正日趋贫化和枯竭,丰富的海底矿产资源将成为人类可持续发展的重要物质基础[1]。
许多国家已经把开发利用海洋资源作为基本国策;许多著名的政治家、经济学家都预言,二十一世纪将是“海洋经济时代”[2] 根据国内外科学家多年的勘探和研究表明,占地球表面积约71%的海洋是一个巨大的资源宝库,其矿产资源存储量大大高于陆地的存储量,而且一些新的矿床还不断被发现。
在已发现的深海矿产资源中,对人类生产生活有重大应用价值的主要有多金属结核矿、铁锰结壳矿和海底热液矿等。
其中大洋多金属结核是一种富含锰、铜、钴、镍等多种金属的结核矿,主要分布在世界大洋底部水深3500.6000rn的海底表层,在整个大洋底的储量约为3万亿吨,其中仅太平洋地区就达1.7万亿吨[3],并且其储量还将以每年100万吨的速度增长。
大洋多金属结核所含的锰、铜、钴、镍等金属的储量分别是陆地相应储量的200,40,129和328倍。
可见,深海的矿产资源不仅储量丰富,且矿产的品位极高,其所含的多种矿产都是人类工业生产和国防等工业的必备资源。
因此,深海底丰富的矿产资源已成为世界瞩目的具有商业开发前景的战略资源,对深海环境的研究也成为世界各国的重要研究课题。
1.2本课题研究的目的和意义1.2.1海洋环境研究的重要性随着社会的发展和进步以及世界人口的急剧增加,陆地资源正日趋贫化和枯竭。
丰富的海底矿产资源将成为人类可持续发展的重要物质基础,许多国家已经把开发利用海洋资源作为基本国策。
与此同时海洋的鱼类资源、海洋风暴以及海浪等许多的海洋气象都对我们人类的发展有着重要的意义。
图1.1 矿藏丰富的海洋据我国国土资源部发布的《全国矿产资源规划 (2008至2015年)》[4]说,中国经济社会发展对矿产资源的需求持续快速增长,矿产资源保障程度总体不足,中国正成为一个能源消费大国。
环境工程仿真摘要:系统仿真是第二次世界大战后发展起来的一门新技术, 目前已广泛应用于工程与非工程的不同领域, 它与航天技术的关系尤为密切。
本文阐明卫星控制系统仿真在卫星研制中的地位, 并叙述卫星仿真的几种级别数学仿真、半物理仿真和全物理仿真的方法、特点、作用及其基本设备。
关键词:数学仿真丰物理仿真全物理仿真太阳模拟器地球模拟器星模拟器仿真计算机气浮台1,前言仿真环境是一种逐步工作的环境.它包括确定仿真目标,建立系统模型, 建立适 于仿真系统实现的仿真模型、仿真模型校验、仿真实验运行,结果分析、系统模型 校验、再反馈修改模型或实验后再运行.。
仿真(Simulation),即使用项目模拟将待定于某一具体层次的不确定性转化为它们对目标的影响,该影响是在项目仿真项目整体的层次上表示的。
该项目仿真利用计算机模型和某一具体层次的风险险估计,一般采用蒙特卡洛法进行仿真。
在卫星控制系统研制过程中, 仿真是一个不可缺少的环节。
从方案设计, 系统验收到卫星在轨道运行时的故障对策, 无不需要应用仿真的手段。
系统仿真在卫星研制过程中的地位如图所示。
仿真的基础是模型。
模型通常可以分成两种类型。
一类是数学模型, 完全用数学语言来描述系统的行为特性, 并用计算机进行仿真。
另一类是物理模型, 用与系统相似或等价的实物来接入回路进行仿真试验。
在卫星控制系统仿真中, 根据所介人模型的不同, 分为数学仿真、半物理仿真和全物理仿真。
2.仿真分类2.1.数学仿真卫星控制系统数学仿真通常与计算机控制系统辅助分析相结合, 完成卫星轨道动力学和刚体、挠性体、多体卫星姿态动力学的时域仿真及控制系统的稳定性分析。
已有专门的软件包完成上述工作, 并可与国际通用的控制设计软件包MATLAB 和有限元分析软件包NASTRAN接口。
卫星数学仿真软件主要包括下列功能·空间环境模型仿真包括地球重力场、磁场、空气动力、太阳辐射压力, 日一月一地摄动等。
第四章 大气扩散浓度估算模式第一节 湍流扩散的基本理论一、湍流概念简介大气的无规则运动称为大气湍流。
风速的脉动(或涨落)和风向的摆动就是湍流作用的结果。
按照湍流形成原因可分为两种湍流:一是由于垂直方向温度分布不均匀引起的热力湍流,其强度主要取决于大气稳定度;二是由于垂直方向风速分布不均匀及地面粗糙度引起的机械湍流,其强度主要取决于风速梯度和地面粗糙度。
实际的湍流是上述两种湍流叠加的结果。
湍流有极强的扩散能力,比分子扩散快105~106倍。
但在风场运动的主风方向上,由于平均风速比脉动风速大的多,所以在主风方向上风的平流输送作用是主要的。
归结起来,风速越大,湍流越强,大气污染物的扩散速度越快,污染物的浓度就越低。
风和湍流是决定污染物在大气中扩散稀释的最直接最本质的因素,其他一切气象因素都是通过风和湍流的作用来影响扩散稀释的。
二、湍流扩散理论简介大气扩散的基本问题,是研究湍流与烟流传播和物质浓度衰减的关系问题。
目前处理这类问题有三种广泛应用的理论:梯度输送理论、湍流统计理论和相似理论。
1.梯度输送理论梯度输送理论是通过与菲克扩散理论的类比而建立起来的。
菲克认为分子扩散的规律与傅立叶提出的固体中的热传导的规律类似,皆可用相同的数学方程式描述。
湍流梯度输送理论进一步假定,由大气湍流引起的某物质的扩散,类似于分子扩散,并可用同样的分子扩散方程描述。
为了求得各种条件下某污染物的时、空分布,必须对分子扩散方程在进行扩散的大气湍流场的边界条件下求解。
然而由于边界条件往往很复杂,不能求出严格的分析解,只能是在持定的条件下求出近似解,再根据实际情况进行修正。
2.湍流统计理论泰勒首先应用统计学方法研究湍流扩散问题,并于1921年提出了著名的泰勒公式。
图4-1是从污染源放心的粒子,在风沿着x方向吹的湍流大气中的扩散情况。
假定大气湍流场是均匀、稳定的。
从原点放出的一个粒子的位置用y表示,则y随时间而变化,但其平均值为零。
如果从原点放出很多粒子,则在x轴上粒子的浓度最高,浓度分布以x轴为对称轴,并符合正态分布。