废锌的回收利用
- 格式:docx
- 大小:20.54 KB
- 文档页数:2
有色金属的再循环和回收资源利用的创新方法随着全球产业的快速发展和人们消费习惯的改变,有色金属成为了不可或缺的原材料。
然而,有色金属的开采和加工不仅对自然环境造成了巨大的破坏,而且导致了原材料的枯竭。
因此,实现有色金属的再循环和回收资源利用成为了当今社会亟待解决的问题。
本文将介绍几种创新的方法,帮助实现有色金属的再循环利用。
一、溶剂萃取法溶剂萃取法是一种常见的有色金属回收方法,通过使用溶剂将金属离子从废料中萃取出来。
这种方法具有高效、环保和经济的特点。
例如,对于废弃的锂离子电池,可以使用酸性溶剂将其中的有色金属分离出来。
然后,通过进一步的处理和纯化,可以将这些金属用于生产新的电池或其他用途。
二、电解法电解法是另一种常见的有色金属回收方法,利用电解原理将金属离子还原为金属。
这种方法适用于废旧电子设备中的金属回收,例如废旧电路板中的铜和金。
首先,将废旧电路板进行破碎和分离处理,然后使用电解槽将其中的金属离子还原为金属。
这种方法能够高效地回收金属,同时减少了对环境的污染。
三、生物技术生物技术是一种新兴的有色金属回收方法,利用生物体的特殊能力将金属从废料中分离出来。
例如,一些特殊的微生物可以通过吸附和富集过程将金属离子从废物中吸收并沉积到细胞内。
研究人员可以利用这种特性,将这些微生物应用于有色金属的分离和回收。
这种方法具有环保、低成本和高效的优点。
四、气固法气固法是一种通过气媒来分离和回收有色金属的方法。
例如,废弃的锌-铝电池可以通过气固法中的气体浮选分离技术,将其中的锌和铝分离出来。
这种方法能够高效地回收有色金属,并且不会对环境造成二次污染。
总结起来,有色金属的再循环和回收资源利用是当今社会亟待解决的问题。
通过溶剂萃取法、电解法、生物技术和气固法等创新的方法,我们能够有效地回收和利用有色金属。
这些方法在实践中不仅提高了金属回收的效率,还减少了对环境的破坏,为可持续发展做出了贡献。
参考文献:1. Chen, Q., et al. (2017). Recent developments in recovery of valuable metals from spent lithium-ion batteries. Journal of Power Sources, 367, 301-320.2. Deng, X., et al. (2014). Recent advances in hydrometallurgical recovery of valuable metals from spent lithium-ion batteries. Journal of Power Sources, 260, 332-342.3. El Haggar, S. (2016). Sustainable Industrial Design and Waste Management: Cradle-to-Cradle for Sustainable Development. Academic Press.。
1.前言锌是一种在地球上储量较为丰富的重金属资源。
我国锌矿资源储量居世界第二位[1] ,锌资源并广泛应用于现代工业生产如冶炼、制药及食品行业之中。
锌是人体健康不可缺少的元素,它广泛存在于人体肌肉及骨骼中[2] ,但是含量甚微,如果超量就会发生严重后果。
含锌废水的排放对人体健康和工农业活动具有严重危害,具有持久性、毒性大、污染严重等危害,一旦进入环境后不能被生物降解,大多数参与食物链循环,并最终在生物体内积累,破坏生物体正常生理代谢活动,危害人体健康。
随着人类对重金属的开采、冶炼、加工等生产活动的日益增加,产生的重金属废水无论是从数量上还是种类上都大大增加,造成了严重的环境污染和资源浪费。
因此含锌废水的治理仍然是世界环保领域的重大研究课题。
2 国内外处理含锌废水的研究现状目前,国内外根据其处理手段的不同,可分为物化法和生物法,根据锌在溶液中存在的形态不同,常用的处理方法分两类[3]:第一类是使废水中呈溶解状态的锌(II)离子转变为不溶的重金属化合物,经过沉淀或浮上法从废水中除去,具体方法有化学沉淀法、离子交换法、吸附法等;第二类是使废水中的重金属在不改变其化学形态的条件下进行浓缩和分离,具体方法有反渗透法、电渗析法、蒸发浓缩法。
通常多采用第一种方法,第二种方法只有在特殊情况下才采用。
从90 年代开始,世界各国致力于研究微生物法处理含锌废水,有些已得到了较好的运用。
2.1 化学沉淀法锌是一种两性元素,它的氢氧化物不溶于水,并具有弱碱性和弱酸性,故其化学式可写作:碱式:Zn(OH)2,酸式:H2ZnO2。
由于它呈两性、故在强酸或强碱中能溶解。
在锌酸盐溶液中加适量的碱可折出Zn(0H)2 白色沉淀,再加过量的碱,沉淀又复溶解;但反之,在锌酸盐溶液中,加适量酸也可析出Zn(0H)2 白色沉淀,再加过量的酸、沉淀又复溶解。
锌的氢氧化合物为两性化合物,pH 值过高或过低,均能使沉淀返溶而使出水超标。
所以在用化学沉淀法处理含锌废水的过程中,要注意pH 值的控制。
锌之冶炼法与资源再生一、前言锌之冶炼法有湿式冶炼法(电解法)与干式冶炼法(水平蒸馏法、垂直蒸馏法、电热蒸馏法、ISP 法、电炉蒸馏法等)。
水平蒸馏法又称横罐法及垂直蒸馏法又称竖罐法,因为是劳力密集,作业环境差,效率低,现已被淘汰。
目前80%的锌系由电解法生产。
锌的矿石主要为硫化矿石,氧化矿石一般都是次生矿石。
自然界主要还是硫化矿石存在者多。
主要矿石有闪锌矿(Zinc Blende,ZnS)、异极矿(Calamine,Zn(OH)2.ZnSiO3)、菱锌矿(Smithsonite,ZnCO3)等,但实际上作为冶炼用的矿石多为闪锌矿。
一般的硫化矿石以单硫化矿石在自然界存在者非常少,一般都与其它金属硫化物伴生。
常见的有铅锌矿、铅锌铁矿、铜锌矿、铜铅锌矿等。
硫化锌矿的含锌量约为8~15%,直接冶炼不很经济,通常都经浮游选矿(flotation)提高锌含量,浮游精矿(concentrate)含锌量为50%以上(S约30%)。
锌在地壳中的平均含量为0.2%,世界的锌产量(或消费量)年年增加,锌矿床的发现又不多,锌已成为资源枯竭的金属。
今后对于含锌废料之锌再生将是一个重要的课题,不但可以减少锌资源的消耗,尚可解决废弃物处理等环保问题。
其中尤以含有20~25%锌之炼钢电炉集尘灰最被重视。
本文将对电炉集尘灰中所含之Fe、Pb、F、Cl等在冶炼过程中之反应为重心,同时对粗氧化锌之再生处理也考虑在内,以简述目前被采用的锌之冶炼法及资源再生。
二、锌之冶炼法1. 湿式冶炼法(电解法)本法系以硫酸为电解液之电解法,综合后述的溶解工程之反应式与电解工程之反应式,爰将电解法之基本原理简述如下:ZnO(原料)=Zn(阴极)+1/2 O2(阳极)可以说,基本上不需硫酸以及其它任何补充,即可自行循环之方法。
(1) 焙烧(roasting)工程将硫化锌精矿利用流体焙烧炉在约1,000℃下加热氧化焙烧,使成容易溶解于硫酸之氧化锌(焙烧矿)。
锌冶炼渣综合回收有价金属工艺综述与展望摘要:我国的锌冶炼企业每年均会产生数百万吨渣料,例如炼锌渣和铅烟灰,铅泥等。
该废料中铅、金、银、铟等金属含量较高,具有巨大的回收价值。
近年来有方法研究从锌冶炼渣料中回收铅、金、银、铟等金属。
本文通过对从锌冶炼渣料中回收贵金属工艺的综述,对未来的综合回收工艺进行展望。
关键词:锌冶炼;渣料;综合回收;冶炼工艺引言对国内主流的湿法锌冶炼锌浸出渣处理工艺技术进行简要阐述,并结合某锌冶炼公司具体应用实例对改造效果进行分析。
企业通过积极进行技术升级改造,冶炼渣料中的贵金属综合回收能力大幅提高,经济效益显著增加,市场竞争力得到进一步加强。
同时,企业的技术升级改造也在向更大的深度和广度上发展。
通过生产工艺技术改造实现综合回收,既是一种有效的创效方式,又是企业可持续发展的有效途径,已经得到企业的普遍认同。
文中将对锌冶炼渣料处理工艺技术在实际工程中的应用效果进行重点分析。
1锌冶炼渣料回收贵金属1.1锌冶炼渣料来源锌冶炼工艺分为火法工艺和湿法工艺,火法炼锌过程中,主要的渣料为冶炼炉的炉渣和收尘器中的烟尘,铅、金、银、铟等贵金属大部分分布在炉渣中。
湿法炼锌工艺中,主要的渣料为常规工艺中的浸出渣、硫酸锌溶液的净化渣、电解过程的阳极泥以及回转窑氧化锌浸出渣(铅泥)等;高温沸腾浸出工艺中产生的黄钾铁矾渣、针铁矿渣、赤铁矿渣等。
1.2火法渣料回收有价金属火法炼锌的炉渣,一般通过在浮选的方式回收有价金属,将炉渣通过筛分、球磨后,用水配成矿浆加浮选药剂采用精密浮选机进行浮选,回收渣料中的金、银、铜、锌等有价金属。
烟尘一般通过火法窑炉在处理或通过湿法工艺将贵金属及常规有价金属进行分离富集,再进一步提炼成成品。
1.3湿法渣料回收有价金属在常规湿法炼锌两段浸出过程中,产出的浸出渣一般通过回转窑焙烧后变为氧化锌焙砂,再通过三段浸出分离贵金属及锌。
一段中性浸出将大部分锌浸出至溶液中返回主系统;浸出渣采用低酸浸出,将金属铟浸出至溶液中通过中和置换进行富集,富集后的高铟渣再通过浸出、萃取、反萃、电解等工序产出成品铟锭;酸性浸出渣通过高温高酸浸出,将金、银等贵金属富集至高铅渣中,高铅渣再通过铅冶炼系统或火法窑炉进行处理,进一步分离回收金、银等贵金属。
冶锌废渣次氧化锌的综合利用冶锌废渣是指在锌冶炼过程中产生的废渣,主要成分是锌矾石、氯化锌和炉渣。
冶锌废渣中含有大量的次氧化锌(ZnO),这是一种重要的工业原料。
综合利用冶锌废渣中的次氧化锌,不仅可以减少资源浪费,降低环境污染,还可以获得一定的经济效益。
1.次氧化锌回收利用:冶锌废渣中的次氧化锌可以通过溶解、浸出、水洗等工艺步骤进行回收。
先将冶锌废渣经过研磨后与酸溶液反应,使次氧化锌溶解出来,然后通过沉淀、过滤、洗涤等工艺步骤,得到纯净的次氧化锌。
2.次氧化锌的再次冶炼:回收得到的次氧化锌可以进一步进行冶炼处理,以提高其纯度和质量。
冶炼过程中,可以采用电解、浸出、分离等技术手段,将次氧化锌中的杂质去除,提高锌的回收率和质量。
3.次氧化锌的商业化利用:回收得到的纯净次氧化锌可用于生产涂料、橡胶助剂、橡胶制品、油漆、陶瓷、塑料、化纤、酸洗废液处理、防腐剂、电镀、荧光剂、橡胶添加剂等均可应用,用途广泛。
4.余热回收利用:冶锌废渣中的炉渣也可以经过处理后用于余热回收。
冶炼过程中产生的大量余热可以通过热交换器和余热锅炉等设备进行回收利用,用于提供工艺热能,减少能源消耗和环境污染。
综合利用冶锌废渣次氧化锌的好处是多方面的:1.资源综合利用:冶锌废渣中的次氧化锌是一种重要的工业原料,通过回收利用,可以有效地利用资源,避免浪费。
2.减少环境污染:冶锌废渣中的次氧化锌含有有害物质,如果不加以利用或处理,可能会对环境造成污染。
通过综合利用,可以有效地降低环境污染的风险。
3.经济效益:冶锌废渣中的次氧化锌是有一定经济价值的,通过回收利用,可以获得一定的经济效益。
4.能源回收利用:冶锌废渣中产生的余热可以经过处理后用于提供工艺热能,减少能源消耗和环境污染。
综合利用冶锌废渣次氧化锌的主要技术和设备包括研磨设备、溶解设备、沉淀设备、过滤设备、洗涤设备、冶炼设备、热交换器、余热锅炉等。
在实施过程中,需要严格控制工艺参数,优化工艺流程,确保次氧化锌的回收率和质量。
废锌的回收利用
四针状氧化锌晶须,不仅名字听起来十分冷僻,而且生产技术也相当复杂,迄今全世界只有日本松下公司利用高纯锌为原料实现了工业化生产。
我国在热镀锌过程中,每年产生的20万吨锌渣,要么只能生产高耗高污染低档产品,要么废弃不用,听任“风吹雨打去”。
湖南冶金职业技术学院陈艺锋博士,在其导师、中南大学唐模塘教授的指导下,历经3年艰难攻关,采用热镀锌渣为原料直接制备成功四针状氧化锌晶须,并投入规模工业生产,演绎了变废为宝循环经济的动人传奇。
所谓四针状氧化锌晶须,通俗讲就是一种复合材料添加剂。
随着人类社会科学技术的巨大进步,传统的铝、镁、钦等材料已很难满足现代工业发展的需要。
于是,发明新材料或对传统材料改性升级就提到了材料科学的议事日程。
四针状氧化锌晶须是1944年被发现的。
由于其所具备的特性,在复合材料增强剂、涂料、导电材料、吸波材料、光电材料等领域具有广泛的应用前景。
比如利用它吸声吸波的特点而生产制造战机或导弹的材料,就能达到“隐形”的目的。
发挥它优良的耐磨性,就可以使高档橡胶轮胎的使用寿命从2年延长至5年。
因此受到国际治金材料界的追捧。
在此领域,日本松下电器公司的研发引人注目。
他们于土世纪80年代末开发,90年代初实现工业化生产。
由于松下公司采用的是锌粉预氧化法,不仅对原材料的纯度要求很高,而且晶须收得率很低,加之处理工艺过于繁杂,致使生产成本居高不下,每吨高达18万元人民币。
据报道,全球40%%的锌产量用于钢铁工业的热镀锌。
我国是世界第一产锌大国和第一钢铁大国,在热镀锌作业中,要产生大量铁含量、锌含量都很高的废渣。
为了从废渣中提取锌,各地通常由手工作坊式小企业甚至是农民采用近似原始的蒸馏法处理,回收率低,耗能大,污染重,一些地方遍地开花,处处冒烟,造成严重的环境间题。
2001年,陈艺锋将以热镀锌渣为原料直接制备四针状氧化锌晶须的研究,作为自己博士论文的选题。
他在吸取10多年来我国研究成果的基础上,致力于探索氧化锌晶须的生长机理,找出其分级、分散及改性的规律,研究实现工业化
技术与设备。
寒来暑往,冬去春来。
3年多的禅精竭虑、呕心沥血,终于让陈艺锋找到并总结出一种完全有别于日本松下锌粉预氧化的新技术,以及与之匹配的生产装备。
不仅使从热镀锌渣直接制备优质四针状氧化锌晶须成为现实,解决了以往处理废渣时产生的种种弊端,还能够全面满足工业化生产的要求,而且晶须收得率较日本技术有大幅提高,生产成本却只有他们的1/6!
陈艺锋博士介绍,目前他正以自己用热镀锌渣直接制备优质四针状氧化锌晶须技术,与上海米其林公司、株洲时代集团合作,将其首先应用于高级轮胎的生产中,变科技成果为现实生产力。
由省科技厅主持的科技成果鉴定将于下月举行,他满怀信心地准备迎接专家们最严格的评审。