实用文档之高中排列组合知识点汇总及典型例题(全)
- 格式:doc
- 大小:102.01 KB
- 文档页数:10
辅导讲义―排列组合教学内容1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有m n种不同的方法,则完成这件事共有N=m1+m2+…+m n种不同的方法.2.分步乘法计数原理完成一件事需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有m n种不同的方法,那么完成这件事共有N=m1×m2×…×m n种不同的方法.3.分类加法计数原理与分步乘法计数原理,都涉及完成一件事的不同方法的种数.它们的区别在于:分类加法计数原理与分类有关,各种方法相互独立,用其中的任一种方法都可以完成这件事;分步乘法计数原理与分步有关,各个步骤相互依存,只有各个步骤都完成了,这件事才算完成.1.三个人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过3次传递后,毽子又被踢回给甲.则不同的传递方式共有()A.5种B.2种C.3种D.4种2.用0,1,…,9十个数字,可以组成有重复数字的三位数的个数为()A.243 B.252 C.261 D.2793.满足a,b∈{-1,0,1,2},且关于x的方程ax2+2x+b=0有实数解的有序数对(a,b)的个数为()A.14 B.13 C.12 D.104.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有________个.(用数字作答)题型一分类加法计数原理的应用例1高三一班有学生50人,男生30人,女生20人;高三二班有学生60人,男生30人,女生30人;高三三班有学生55人,男生35人,女生20人.(1)从高三一班或二班或三班中选一名学生任学生会主席,有多少种不同的选法?分类计数原理与分步计数原理(2)从高三一班、二班男生中,或从高三三班女生中选一名学生任学生会体育部长,有多少种不同的选法?在所有的两位数中,个位数字大于十位数字的两位数共有多少个?题型二分步乘法计数原理的应用例2有六名同学报名参加三个智力竞赛项目,在下列情况下各有多少种不同的报名方法?(不一定六名同学都能参加)(1)每人恰好参加一项,每项人数不限;(2)每项限报一人,且每人至多参加一项;(3)每项限报一人,但每人参加的项目不限.思维升华(1)利用分步乘法计数原理解决问题要按事件发生的过程合理分步,即分步是有先后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事.(2)分步必须满足两个条件:一是步骤互相独立,互不干扰;二是步与步确保连续,逐步完成.已知集合M={-3,-2,-1,0,1,2},若a,b,c∈M,则:(1)y=ax2+bx+c可以表示多少个不同的二次函数;(2)y=ax2+bx+c可以表示多少个图象开口向上的二次函数.题型三两个原理的综合应用例3如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法总数.如图,正五边形ABCDE中,若把顶点A、B、C、D、E染上红、黄、绿三种颜色中的一种,使得相邻顶点所染颜色不相同,则不同的染色方法共有()A.30种B.27种C.24种D.21种方法与技巧1.分类加法和分步乘法计数原理,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.2.分类标准要明确,做到不重复不遗漏.3.混合问题一般是先分类再分步.4.要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.失误与防范1.切实理解“完成一件事”的含义,以确定需要分类还是需要分步进行.2.分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.3.确定题目中是否有特殊条件限制.A 组 专项基础训练1.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为( ) A .3 B .4 C .6 D .82.小明有4枚完全相同的硬币,每个硬币都分正反两面.他想把4个硬币摆成一摞,且满足相邻两枚硬币的正面与正面不相对,不同的摆法有( ) A .4种 B .5种 C .6种 D .9种3.集合P ={x,1},Q ={y,1,2},其中x ,y ∈{1,2,3,…,9},且P ⊆Q .把满足上述条件的一对有序整数对(x ,y )作为一个点的坐标,则这样的点的个数是( ) A .9 B .14 C .15 D .214.从1,3,5,7,9这五个数中,每次取出两个不同的数分别记为a ,b ,共可得到lg a -lg b 的不同值的个数是( ) A .9 B .10 C .18 D .205.从-2、-1、0、1、2、3这六个数字中任选3个不重复的数字作为二次函数y =ax 2+bx +c 的系数a 、b 、c ,则可以组成顶点在第一象限且过原点的抛物线条数为( ) A .6 B .20 C .100 D .120. B 组 专项能力提升1.已知集合M ={1,2,3},N ={1,2,3,4},定义函数f :M →N .若点A (1,f (1))、B (2,f (2))、C (3,f (3)),△ABC 的外接圆圆心为D ,且DA →+DC →=λDB →(λ∈R ),则满足条件的函数f (x )有( ) A .6种 B .10种 C .12种 D .16种2.直角坐标xOy 平面上,平行直线x =n (n =0,1,2,…,5)与平行直线y =n (n =0,1,2,…,5)组成的图形中,矩形共有( )A .25个B .36个C .100个D .225个3.如图,一环形花坛分成A ,B ,C ,D 四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .484.五名学生报名参加四项体育比赛,每人限报一项,则报名方法的种数为________.五名学生争夺四项比赛的冠军(冠军不并列),获得冠军的可能性有________种.1.排列与组合的概念名称定义排列从n个不同元素中取出m(m≤n)个元素按照一定的顺序排成一列组合合成一组2.排列数与组合数(1)排列数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同排列的个数叫做从n个不同元素中取出m个元素的排列数,用A m n表示.(2)组合数的定义:从n个不同元素中取出m(m≤n)个元素的所有不同组合的个数,叫做从n个不同元素中取出m个元素的组合数,用C m n表示.3.排列数、组合数的公式及性质公式(1)A m n=n(n-1)(n-2)…(n-m+1)=n!(n-m)!(2)C m n=A m nA m m=n(n-1)(n-2)…(n-m+1)m!=n!m!(n-m)!性质(1)0!=1;A n n=n!.(2)C m n=C n-mn;C m n+1=C m n+C m-1n.1.用数字1、2、3、4、5组成的无重复数字的四位偶数的个数为()A.8 B.24 C.48 D.1202.6把椅子摆成一排,3人随机就座,任何两人不相邻的坐法种数为()A.144 B.120 C.72 D.243.将字母a,a,b,b,c,c排成三行两列,要求每行的字母互不相同,每列的字母也互不相同,则不同的排列方法共有()4.某班级要从4名男生、2名女生中选派4人参加某次社区服务,如果要求至少有1名女生,那么不同的选派方案有________种.排列组合题型一排列问题例1有4名男生、5名女生,全体排成一行,问下列情形各有多少种不同的排法?(1)甲不在中间也不在两端;(2)甲、乙两人必须排在两端;(3)男女相间.由0,1,2,3,4,5这六个数字组成的无重复数字的自然数,求:(1)有多少个含有2,3,但它们不相邻的五位数?(2)有多少个数字1,2,3必须由大到小顺序排列的六位数?题型二组合问题例2某市工商局对35种商品进行抽样检查,已知其中有15种假货.现从35种商品中选取3种.(1)其中某一种假货必须在内,不同的取法有多少种?(2)其中某一种假货不能在内,不同的取法有多少种?(3)恰有2种假货在内,不同的取法有多少种?(4)至少有2种假货在内,不同的取法有多少种?(5)至多有2种假货在内,不同的取法有多少种?从10位学生中选出5人参加数学竞赛.(1)甲必须入选的有多少种不同的选法?(2)甲、乙、丙不能同时都入选的有多少种不同的选法?题型三排列与组合的综合应用问题例34个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?(3)恰有2个盒不放球,共有几种放法?思维升华排列、组合综合题目,一般是将符合要求的元素取出(组合)或进行分组,再对取出的元素或分好的组进行排列.其中分组时,要注意“平均分组”与“不平均分组”的差异及分类的标准.(1)将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的放法共有()A.12种B.18种C.36种D.54种(2)(2014·重庆)某次联欢会要安排3个歌舞类节目,2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是()A.72 B.120C.144 D.168排列、组合问题计算重、漏致误典例:有20个零件,其中16个一等品,4个二等品,若从20个零件中任意取3个,那么至少有1个一等品的不同取法有________种.温馨提醒(1)排列、组合问题由于其思想方法独特,计算量庞大,对结果的检验困难,所以在解决这类问题时就要遵循一定的解题原则,如特殊元素、位置优先原则、先取后排原则、先分组后分配原则、正难则反原则等,只有这样我们才能有明确的解题方向.同时解答组合问题时必须心思细腻,考虑周全,这样才能做到不重不漏,正确解题.(2)“至少、至多”型问题不能利用分步乘法计数原理求解,多采用分类求解或转化为它的对立事件求解.方法与技巧1.对于有附加条件的排列、组合应用题,通常从三个途径考虑:(1)以元素为主考虑,即先满足特殊元素的要求,再考虑其他元素;(2)以位置为主考虑,即先满足特殊位置的要求,再考虑其他位置;(3)先不考虑附加条件,计算出排列数或组合数,再减去不合要求的排列数或组合数.2.排列、组合问题的求解方法与技巧:(1)特殊元素优先安排;(2)合理分类与准确分步;(3)排列、组合混合问题先选后排;(4)相邻问题捆绑处理;(5)不相邻问题插空处理;(6)定序问题排除法处理;(7)分排问题直排处理;(8)“小集团”排列问题先整体后局部;(9)构造模型;(10)正难则反,等价条件.失误与防范求解排列与组合问题的三个注意点:(1)解排列与组合综合题一般是先选后排,或充分利用元素的性质进行分类、分步,再利用两个原理做最后处理.(2)解受条件限制的组合题,通常用直接法(合理分类)和间接法(排除法)来解决,分类标准应统一,避免出现重复或遗漏.(3)对于选择题要谨慎处理,注意等价答案的不同形式,处理这类选择题可采用排除法分析选项,错误的答案都有重复或遗漏的问题.A组专项基础训练1.六个人从左至右排成一行,最左端只能排甲或乙,最右端不能排甲,则不同的排法共有()A.192种B.216种C.240种D.288种2.将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有()A.12种B.10种C.9种D.8种3.10名同学合影,站成了前排3人,后排7人.现摄影师要从后排7人中抽2人站前排,其他人的相对顺序不变,则不同调整方法的种数为()A.C27A55B.C27A22C.C27A25D.C27A354.某台小型晚会由6个节目组成,演出顺序有如下要求:节目甲必须排在前两位,节目乙不能排在第一位,节目丙必须排在最后一位.该台晚会节目演出顺序的编排方案共有()A.36种B.42种C.48种D.54种5.如图所示,要使电路接通,开关不同的开闭方式有()1。
排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=L L L 注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
排列与组合1.排列与排列数“排列”的定义包含两个基本内容: 一是“取出元素;二是“按一定的书序排列。
“排列数”是指“从n 个不同元素中取出m 个元素的所有排列的个数”, 它是所有排列的个数, 是一个数值。
)1()2)(1(+---=m n n n n A m n 或)!(!m n n A m n -= (其中m ≤n m,n ∈Z ) 全排列、阶乘的意义;规定 0!=12.组合与组合数“一个组合”是指“从n 个不同元素中取出m 个元素合成一组”, 它是一件事情, 不是一个数;(隐含n ≥m )“组合数”是指“从n 个不同元素中取出m 个元素的所有组合的个数”, 它是一个数值。
基本公式: 或)!(!!m n m n C mn -=),,(n m N m n ≤∈*且 组合数公式具有的两个性质: (1)常用的等式:(3)0132n n n n n n C C C C ++++= (由二项式定理知)证明: ∵又)!(!!m n m n C m n -=∴m n n m n C C -= )]!1([)!1(!)!(!!1---+-=+-m n m n m n m n C C m n m n)!1(!!)1(!+-++-=m n m m n m n n)!1(!!)1(+-++-=m n m n m m n)!1(!)!1(+-+=m n m nm n C 1+=∴ = + .式(1)说明从n 个不同元素中取出m 个元素, 与从n 个不同元素中取出n-m 个元素是一一对应关系, 即“取出的”与“留下的”是一一对应关系;式(2)说明从a, b, c ……(n+1个元素)中取出m 个元素的组合数可以分为两类: 第一类含某个有元素( ), 第二类不含这个元素( )要解决的问题是排列问题还是组合问题, 关键是看是否与顺序有关排列问题的主要题型⑴ 有特殊元素或特殊位置的排列问题, 通常是先排特殊元素或特殊位置, 称为优先处理特殊元素(位置)法(优先法);⑵ 某些元素要求必须相邻时, 可以先将这些元素看作一个元素, 与其他元素排列后, 再考虑相邻元素的内部排列, 这种方法称为“捆绑法”;⑶ 某些元素不相邻排列时, 可以先排其他元素, 再将这些不相邻元素插入空挡, 这种方法称为“插空法”;⑷ 在处理排列问题时, 一般可采用直接和间接两种思维形式, 从而寻求有效的解题途径, 这是学好排列问题的根基.第一部分1.⑴ 7位同学站成一排, 共有多少种不同的排法?⑵ 7位同学站成两排(前3后4), 共有多少种不同的排法? ⑶ 7位同学站成一排, 其中甲站在中间的位置, 共有多少种不同的排法?⑷7位同学站成一排, 甲、乙只能站在两端的排法共有多少种?⑸7位同学站成一排, 甲、乙不能站在排头和排尾的排法共有多少种?2.7位同学站成一排.⑴甲、乙两同学必须相邻的排法共有多少种?⑵甲、乙和丙三个同学都相邻的排法共有多少种?⑶甲、乙两同学必须相邻, 而且丙不能站在排头和排尾的排法有多少种?3.7位同学站成一排.⑴甲、乙两同学不能相邻的排法共有多少种?⑵甲、乙和丙三个同学都不能相邻的排法共有多少种?4.从10个不同的文艺节目中选6个编成一个节目单, 如果某女演员的独唱节目一定不能排在第二个节目的位置上, 则共有多少种不同的排法?5.⑴八个人排成前后两排, 每排四人, 其中甲、乙要排在前排, 丙要排在后排, 则共有多少种不同的排法?⑵不同的五种商品在货架上排成一排, 其中a, b两种商品必须排在一起, 而c, d两种商品不排在一起, 则不同的排法共有多少种?⑶6张同排连号的电影票, 分给3名教师与3名学生, 若要求师生相间而坐, 则不同的坐法有多少种?6.⑴由数字1, 2, 3, 4, 5可以组成多少个没有重复数字的正整数?⑵由数字1, 2, 3, 4, 5可以组成多少个没有重复数字, 并且比13 000大的正整数?7、用1, 3, 6, 7, 8, 9组成无重复数字的四位数, 由小到大排列.⑴第114个数是多少?⑵ 3 796是第几个数?8、用0, 1, 2, 3, 4, 5组成无重复数字的四位数, 其中⑴能被25整除的数有多少个?⑵十位数字比个位数字大的有多少个?9、现有8名青年, 其中有5名能胜任英语翻译工作;有4名青年能胜任德语翻译工作(其中有1名青年两项工作都能胜任), 现在要从中挑选5名青年承担一项任务, 其中3名从事英语翻译工作, 2名从事德语翻译工作, 则有多少种不同的选法?10、甲、乙、丙三人值周, 从周一至周六, 每人值两天, 但甲不值周一, 乙不值周六, 问可以排出多少种不同的值周表?11.6本不同的书全部送给5人, 每人至少1本, 有多少种不同的送书方法?变题1: 6本不同的书全部送给5人, 有多少种不同的送书方法?变题2: 5本不同的书全部送给6人, 每人至多1本, 有多少种不同的送书方法?变题3: 5本相同的书全部送给6人, 每人至多1本, 有多少种不同的送书方法?12、6本不同的书, 按下列要求各有多少种不同的选法:⑴分给甲、乙、丙三人, 每人两本;⑵分为三份, 每份两本;⑶分为三份, 一份一本, 一份两本, 一份三本;⑷分给甲、乙、丙三人, 一人一本, 一人两本, 一人三本;⑸分给甲、乙、丙三人, 每人至少一本.13.身高互不相同的7名运动员站成一排, 甲、乙、丙三人自左向右从高到矮排列且互不相邻的排法有多少种?14.⑴四个不同的小球放入四个不同的盒中, 一共有多少种不同的放法?⑵四个不同的小球放入四个不同的盒中且恰有一个空盒的放法有多少种?15、马路上有编号为1, 2, 3, …, 10的十盏路灯, 为节约用电又不影响照明, 可以把其中3盏灯关掉, 但不可以同时关掉相邻的两盏或三盏, 在两端的灯都不能关掉的情况下, 有多少种不同的关灯方法?16.九张卡片分别写着数字0, 1, 2, …, 8, 从中取出三张排成一排组成一个三位数, 如果6可以当作9使用, 问可以组成多少个三位数?17、平均分组问题除法策略6本不同的书平均分成3堆,每堆2本共有多少分法?18、重排问题求幂策略把6名实习生分配到7个车间实习,共有多少种不同的分法19、排列组合混合问题先选后排策略有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.20、小集团问题先整体后局部策略用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1, 5在两个奇数之间,这样的五位数有多少个?第二部分一. 选择题1.3名医生和6名护士被分配到3所学校为学生体检, 每校分配1名医生和2名护士, 不同分配方法共有()(A)90种(B)180种(C)270种(D)540种2.从8盒不同的鲜花中选出4盆摆成一排, 其中甲、乙两盆不同时展出的摆法种数为()A. 1320B. 960C. 600D. 3603.20个不加区别的小球放入编号为1号, 2号, 3号三个盒子中, 要求每个盒子内的球数不小于盒子的编号数, 则不同的放法总数是()(A)760 (B)764 (C)120(D)914. 从10名女学生中选2名, 40名男生中选3名, 担任五种不同的职务, 规定女生不担任其中某种职务, 不同的分配方案有()A. B. C. D.5.编号1, 2, 3, 4, 5, 6的六个球分别放入编号为1, 2, 3, 4, 5, 6的六个盒子中, 其中有且只有三个球的编号与盒子的编号一致的放法种数有()A. 20B. 40C. 120D. 4806.如果一个三位正整数形如“”满足, 则称这样的三位数为凸数(如120、363.374等), 那么所有凸数个数为()A. 240B. 204C. 729D. 9207.有两排座位, 前排11个座位, 后排12个座位, 现安排2人就座, 规定前排中间的3个座位不能坐, 并且这2人不左右相邻, 那么不同排法的种数是( )A. 234B. 346C. 350D. 3638. 某校高二年级共有六个班级, 现从外地转入4名学生, 要安排到该年级的两个班级且每班安排2名, 则不同的安排方案种数( )A. B. C. D.9.4名教师分配到3所中学任教, 每所中学至少1名教师, 则不同的分配方案共有( )A. 12 种B. 24 种 C 36 种 D. 48 种10.从5位男教师和4位女教师中选出3位教师, 派到3个班担任班主任(每班1位班主任)要求这3位班主任中男、女教师都要有, 则不同的选派方案共有A. 210种B. 420种C. 630种D. 840种11.从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种, 分别种在不同土质的三块土地上, 其中黄瓜必须种植, 不同的种植方法共有( )A. 24种B. 18种C. 12种D. 6种12.用0、1.2.3.4这五个数字组成无重复数字的五位数, 其中恰有一个偶数数字夹在两个奇数数字之间的五位数的个数是()A. 48B. 36C. 28D. 1213.已知集合A={1, 2, 3, 4}, B={5, 6}, 设映射, 使集合B中的元素在A中都有原象, 这样的映射个数共有()A. 16B. 14C. 15D. 12 14.ABCD—A1B1C1D1是单位正方体, 黑白两个蚂蚁从点A出发沿棱向前爬行, 每走完一条棱称为“走完一段”.白蚂蚁爬地的路线是AA1→A1D1→……, 黑蚂蚁爬行的路是AB→BB1→……, 它们都遵循如下规则: 所爬行的第段所在直线必须是异面直线(其中i是自然数).设白、黑蚂蚁都走完2005段后各停止在正方体的某个顶点处, 这时黑、白两蚂蚁的距离是A. 1B.C.D. 015.5本不同的书,全部分给四个学生,每个学生至少1本,不同分法的种数为.. )A.480B.240C.120D.9616.从1, 2, 3, 4, 5, 6中任取3个数字组成无重复数字的三位数,其中若有1和3时,3必须排在1的前面,若只有1和3其中一个时,也应排在其它数字的前面,这样的不同三位数个数有( )A321144432A A C C++ B.311443A A C+ C.3612A+24A D.36A17.有7名同学站成一排照毕业照, 其中甲必须站在中间, 并且乙、丙两位同学要站在一起, 则不同的站法有( )(A)240 (B)192 (C)96 (D)48二. 填空题1. 五个不同的球放入四个不同的盒子, 每盒不空, 共有____ 种放法。
排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
g a o o 2. ! ①;②;③;④[解析] 因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2 28步,那么共有C=28种走法.6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有( )A.24种B.36种 C.38种D.108种[解析] 本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有213种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有C种分法,然132后再分到两部门去共有C A种方法,第三步只需将其他3人分成两组,一组1人另一组213人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有C种13213方法,由分步乘法计数原理共有2C A C=36(种).7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )A.33 B.34 C.35 D.36123[解析] ①所得空间直角坐标系中的点的坐标中不含1的有C·A=12个;1233②所得空间直角坐标系中的点的坐标中含有1个1的有C·A+A=18个;13③所得空间直角坐标系中的点的坐标中含有2个1的有C=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( ) A.72 B.96 C.108 D.144213223[解析] 分两类:若1与3相邻,有A·C A A=72(个),若1与3不相邻有forsos的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选。
一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A mn -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-;(3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nm nm mm ==--+=-11……!!!! 10=nC 规定:组合数性质:.2 nn n n n m n m n m n m n n mnC C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12mm 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
一.基本原理1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2. 规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n nn n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211r r r r r r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注: 若12m m 1212m =m m +m n n n C C ==则或 四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
排列组合考纲要求1.了解排列的意义,理解排列数公式,并能用它们解决一些简单的实际问题.2.了解组合的意义,理解组合数公式,并能用它们解决一些简单的实际问题.3. 了解组合数性质. 知识点一:排列1.排列的定义:从n 个不同元素中,任取m (m ≤n )个不同的元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列.若m <n ,这样的排列叫选排列;若m =n ,这样的排列叫全排列.2.排列数公式:从n 个不同元素中取出m (m ≤n )个不同的元素的所有排列的个数,从n 个不同元素中取出m 元素的排列数,记作mn P .(1) P m n =n (n -1)(n -2) … (n -m +1); (2) ==!P n n n n (n -1)(n -2) … 3×2×1; (3) P m n =()!!n n m -; 规定:0!=1.知识点二:解决排列问题的基本方法.1. 优限法:即先排特殊的元素,或者特殊的位置.2.捆绑法:相邻问题,把相邻的元素看成一个整体,然后再参与其他元素的排列. 3.插空法:对元素互不相邻的排列问题,常常采用插空法,首先考虑不受限制的元素的排列,再将不相邻的元素插在前面元素排列的空位中.4. 排除法:即从正面难以考虑时可以考虑它的对立面,用全部结果数减去对立事件的方法数.5.枚举法:即将所有排列按照一定的规律,一一列举出来的方法. 知识点三:组合1.组合的定义:从n 个不同元素中,任取m (m ≤n )个不同的元素,组成一组,叫做从n 个不同元素中取出m 个元素的一个组合.2.组合数公式:从n 个不同元素中取出m (m ≤n )个不同的元素的所有组合的个数,从n个不同元素中取出m 元素的组合数,记作mn C .(1)()()()121P C P !mm nnmn n n n n m m ---+==;(2)()!C !!mn n m n m =-(n ,*N ∈m ,且m ≤n ).3. 组合数性质:(1) C =C m n mn n-; (2) 111C +C C m m m n n n +++=.知识点四:解组合问题的方法1.分类讨论:即分析题中的限定条件将所给元素按性质适当分类,并侧重其中一类,相应各类分类讨论,分类时要做到不重不漏.2.等价转化:即把所求问题转化为与之等价的组合问题去解决.3.排除法.4.枚举法.知识点五:计数需注意问题1.排列为有序问题,组合为无序问题,两者都是不重复问题.2.排列包括两个要素,一个是不同的元素,另一个是确定的顺序. 即排列可分成两步,第一步取出元素,第二步排列顺序.3.组合只有一个要素,就是取出元素即可,与元素的排列顺序无关.4.要注意区分分类和分步计数原理,排列和组合,元素允许重复是直接用计数原理,而元素不允许重复的是排列和组合问题. 题型一 排列定义例1 五个同学站一排照相,共多少种排法?分析:把5个元素放在5个位置上,相当于5的全排列,也共有120P 55=种排法. 解答:N =120P 55=种排法题型二 排列数公式例2 设x N *∈,10x <,(20)(21)(30)().x x x --⋅⋅⋅-=A. 1020P x -B. 1120P x -C. 1030P x -D. 1130P x -分析:排列数公式 P m n =n (n -1)(n -2)…(n -m +1)的特点: (1)等号右边最大的数是n ; (2)等号右边最小的数是n -m +1; (3)共有m 个连续自然数相乘. 解答:30n x =-,(30)(20)111m x x =---+=,∴ (20)(21)(30)x x x --⋅⋅⋅-=1130P x -题型三 解决排列应用题 例3 用1、2、3、4、5、6个数. (1)可以组成多少个五位数?(2)可以组成多少个没有重复数字的五位数? (3)可以组成多少个1和2相邻的六位数? (4)可以组成多少个1和2不相邻的六位数?分析:先考虑是用分类分步还是用排列组合,就是要观察一下数字是否允许重复,数字允许重复用分类分步计数原理,数字不允许重复用排列组合,数字相邻用捆绑法,数字不相邻用插空法.解答:(1)数字可以重复,所以用分步计数原理,每个数位上都有6个数字可选,因此共有5666666⨯⨯⨯⨯=个.(2)数字不可以重复,还有顺序,所以用排列,共720P 56==N 个.(3)1和2相邻,用捆绑法,先排1和2共22P 种,与余下的4个元素共有55P 种,则共有240P P 5522=个.(4)1和2不相邻,插空法,先排余下的4个元素44P 种,,再从5个空中挑选2个即25P 种,则共有480P P 2544=个.题型四 组合定义及组合数公式例4 从8名男生2名女生中任选5人, (1)共有多少种不同的选法? (2)恰好有一名女生的不同选法? 分析:选取元素干同一件事就组合问题.解答:(1)所有不同选法数就从10人中任选5人的组合数即252C 510=种.(2)从2名女生中任选1人的选法有12C 种,从8名男生中选出4人的选法有48C 种,由分步计数原理,恰有一名女生的选法有140C C 4812=种.题型五 组合数公式例5 (1)已知321818C C -=x x 则x =____. (2)=+97999899C C _____.分析:灵活运用组合数性质.解答:(1)根据题意得 23x x =-或(23)18x x +-=则3x =或7x =.(2)4950299100C C C C 21009810097999899=⨯===+. 题型六 解组合应用题例6 从8件不同的服装快递,2件不同的食品快递中任选5件. (1)至少有一件食品快递的不同选法总数? (2)最多有一件食品快递的不同选法总数?分析:解决带有限制条件的组合应用题要根据题意正确地分类或分步,巧妙运用直接法或间接法.解答:(1)法一(直接法)分两类情况求解,第一类恰有一件食品快递选法有4812C C 种,第二类恰有两件食品快递选法有3822C C 种,由分类计数原理得至少有一件食品快递的不同选法共有196C C C C 38224812=+种.法二(排除法)从10件快递中任选5件选法总数减去选出的5件全为服装快递的总数即至少有一件为食品快递的不同选法有55108196C C -=种.(2) 最多有一件食品快递可分为以下两类,第一类选出的五件快递中恰有一件食品快递有1428C C 种选法,第二类选出的五件快递中恰有0件食品快递,有0528C C 种选法,由分类计数原理知最多有一件食品快递的选法有14052828196C C C C +=种.一、选择题1.设*x N ∈,10x <,则(10)(11)(17)x x x --⋅⋅⋅-用排列数符号表示为( ).A.x x --1017PB.817P x -C. 717P x -D. 810P x -2.从4人中任选2人担任正副班长,结果共有( )种.A. 4B. 6C. 12D. 243.将5本不同的笔记本分配给4个三好学生(每个学生只能拥有一本笔记本),则所有的分法种数为( ).A. 5!B. 20C. 54D. 454.5名学生报考4所不同的学校(每名学生只能报考一所学校),则所有的报考方法有( )种.A. 5!B. 20C. 54D. 455.将6名优秀教师分配到4个班级,要求每个班有1名教师,则不同的分法种数有( )种.A. 46PB. 46C. 46CD. 646.为抗击郑州水患,某医院派3名医生和6名护士支援郑州,他们被分配到郑州的三所医院,每个医院分配1名医生和2名护士,共有( )种不同的分配方法.A. 24122613P P P P +B. 221124122613P P P P P P ++ C. 121212362412C C C C C C ⋅⋅⋅⋅⋅ D. 121212362412C C C C C C ⋅+⋅+⋅7.从4名男生和5名女生中任取3人,其中男生至多有一人,则不同的取法共有( )种 . A. 30 B. 50 C. 70 D. 808.某小组有男生7人,女生3人,选出3人中有1名男生,2名女生的不同选法有( )种.A. 310CB. 310PC. 1273C C ⋅D. 2173C C ⋅9.10件产品中有2件次品,任取3件至少有1件次品的不同抽法为( )种.A. 1229C C ⋅ B. 312828C C C +⋅ C. 33108C C - D. 12122928C C C C ⋅-⋅10.式子(1)(2)(15)16!x x x x ++⋅⋅⋅+(x N *∈,1x >)可表示为( ).A. 1615P +xB. 1615x C +C. 16x CD. 17x C妙记巧学,归纳感悟 二、判断题:1. 34567⨯⨯⨯⨯等于37P .( )2. 从甲、乙、丙、丁中任选两人做正、副班长,共有12种.( )3. 6个座位,3个人去坐,每人坐一个座位,则共36C 种.( ) 4. 6个点最多可确定26C 条直线.( ) 5. 6个点最多可确定26C 条有向线段.( ) 6. 某铁路有十个站点,共需准备210P 种车票.( )7. 某铁路有十个站点,有210P 种不同票价(同样的两个站点的票价相同).( ) 8. 某组学生约定,假期每两人互通一封信,共计12封,这个小组学生有5人.( ) 9. 把语文、数学、英语、美术、历史这五门课排在一天的五节课中,数学必须比美术先上的排法总数为44C 种.( )10.从3、5、7、9中任选两个,可以组成12个不同的分数值.( ) 妙记巧学,归纳感悟 三、填空题1.若57n n C C =,则n =_______..2.若56P 2=n ,则n =_______.3.从数字0、1、2、3、4、5中任选3个数,可组成______个无重复数字的三位偶数.4.将4本同样的书分给5名同学,每名同学至多分一本,而且书必须分完则不同的分法总数有______种.5.2名教师和5名学生中选3人去旅游,教师不能不去,也不能全去,则共有______种选法. 妙记巧学,归纳感悟 四、解答1.将5名学生排成一排照相,其中3名男生,2名女生,则以下情况各有多少种不同的排法?(1)甲乙必须相邻; (2)甲乙互不相邻; (3)甲乙必须站两端; (4)甲乙不在两端; (5)男女相间.2. 将6本不同的书,在下列情况下有多少种分法? (1)分成相等的三份; (2)平均分给甲乙丙三位同学;(3)分成三份,一份一本,一份两本,一份三本; (4)甲分一本,乙分两本,丙分三本;(5)如果一人分一本,一人分两本,一人分三本,分给甲乙丙. 高考链接1.(2018)某年级有四个班,每班组成一个篮球队,每队分别同其他三个队比赛一场,共需要比赛( )场.A. 4B. 6C. 5D. 7 2. 某段铁路共有9个车站,共需准备( )种不同的车票. A. 36 B. 42 C.64 D. 723. 甲袋中装有6个小球,乙袋中装有4个小球,所有小球颜色各不相同,现从甲袋中取两个小球,乙袋中取一个小球,则取出三个小球的不同取法共有( )种. A. 30 B. 60 C.120 D. 3604. 某学校举行元旦曲艺晚会,有5个小品节目,3个相声节目,要求相声节目不能相邻,则不同的出场顺序有______种. 积石成山10件产品中有2件次品任取3件,至多有一件次品的不同取法总数为( )种.A. 312828C C C +B. 1229C C C. 33108C C - D. 12122928C C C C -2. 从4名男生和5名女生中任取3人,其中至少有男生,女生各一名,则不同的取法有( )种.A. 140B. 84C. 70D. 353. 某医疗小队有护士7人,医生3人,任选3人的不同选法有( ).A. 310CB. 310PC. 1273C C ⋅D. 2173C C ⋅4. 将4名优秀教师分配到3个班级,每个班至少分到一名教师,则不同的分配方案有( )种.A. 72B. 36C. 18D. 125. 5个人站成一排照相,甲不站排头,乙不站排尾的排法总数有( )种. A. 36 B. 78 C. 60 D. 486. 5个人站成一排照相,甲站中间的排法总数有( )种. A .24 B. 36 C. 60 D. 487. 5个人站成2排照相,第一排2人,第二排3人则不同的排法总数有( )种. A. 48 B. 78 C. 60 D. 1208. 从1、2、3、4中任选2个,再从5、6、7、8、9中任选2个可组成无重复的四位数的个数是( )个.A .720 B. 2880 C. 1440 D .1449. 某工作小组有9名工人,3名优秀工人,各抽5人参加比赛,要求优秀工人都参加不同的选法共有( )种.A. 12B.15C. 30D. 36 10. 式子(1)(2)(15)1!x x x x x ++⋅⋅⋅+-()(x N *∈,1x >)可表示为( ).A. 1615P +xB. 1615x C +C.16x C D .17x C排列组合答案一、选择题二、判断题三、填空题1.12 解析:根据组合数性质1得5712n =+=2.8 解析:2(1)56n P n n =-= 8n ∴=3. 52 解析:分两类,第一类个位是零则有2520P =个;第二类,个位不是零,则有11124432P P P =个,所以共有20+32=52个.4.5 解析:只需在五人中选四人得到书即可,书相同无需排序,则有455C =种. 5.20 解析:老师不能不去,也不能全去,则只能去一人即122520C C =种.妙记巧学,归纳感悟:答案全,结果简. 四、解答题1.解:(1)把甲乙捆绑在一起有22P 种,与余下的3名学生共有44P 种,则甲乙必须相邻,有242448P P =种排法.(2)先把余下的3名学生排好有33P 种,再从形成的4个空中任选两个甲乙来排有24P 种,则甲乙不相邻有323472P P =种排法.(3)甲乙必须站两端,先排甲乙有22P 种,再把余下的3名学生排在余下的3个位置有33P 种,则甲乙必须站两端有323212P P =种排法.(4)先从3个位置中选2个甲乙来排有23P 种,再把余下的3名学生排在余下的3个位置有33P 种,则甲乙不在两端有233336P P =种. (5)男女相间则有323212P P =种排法.2. 解:(1)平均分堆问题.有2226423315C C C P =种方法. (2)平均分配问题,每人均分得2本.甲先取两本26C 种,乙再取两本24C 种,丙最后取两本22C 种,由分步计数原理得222642C C C =90种方法.(3)不平均分堆问题,第一份16C 种,第二份25C 种,第三份33C 种,则共有123653C C C =60种方法.(4)不平均分配问题,甲先选一本16C 种,乙再选两本25C 种,丙最后选三本33C 种,则共有123653C C C =60种方法.(5)不平均分配问题,且没有指定对象,先分三份123653C C C 种,再把这三份分给甲乙丙三人有33P 种,则共有种12336533360C C C P =方法.妙记巧学,归纳感悟: 排列组合来相遇,先组后排无争议. 高考链接1.B2.D3.B4.2400 解析:相声节目不相邻,则用插空法先排5个小品节目共有55P 种,五个小品节目共形成六个空选三个空插入相声节目有36P 种,则共有53562400P P =种.积石成山。
排列组合知识点总结+典型例题及答案解析一.基本原理1.加法原理:做一件事有n 类方法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m 〔m ≤n 〕个元素,按照一定的顺序排成一.m n mn A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式:1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1=(1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+ (2) ![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-; (3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m 〔m ≤n 〕个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式: ()()()C A A n n n m m n m n m nmn m mm ==--+=-11……!!!! 10=n C 规定:组合数性质:.2 n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,, ①;②;③;④11112111212211r r r r r r r rr r r rr r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:假设12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事〔审题〕 ②有序还是无序 ③分步还是分类。
实用文档之"一.基本原理"1.加法原理:做一件事有n 类办法,则完成这件事的方法数等于各类方法数相加。
2.乘法原理:做一件事分n 步完成,则完成这件事的方法数等于各步方法数相乘。
注:做一件事时,元素或位置允许重复使用,求方法数时常用基本原理求解。
二.排列:从n 个不同元素中,任取m (m ≤n )个元素,按照一定的顺序排成一.m n m n A 有排列的个数记为个元素的一个排列,所个不同元素中取出列,叫做从1.公式: 1.()()()()!!121m n n m n n n n A m n -=+---=……2.规定:0!1= (1)!(1)!,(1)!(1)!n n n n n n =⨯-+⨯=+(2)![(1)1]!(1)!!(1)!!n n n n n n n n n ⨯=+-⨯=+⨯-=+-;(3)111111(1)!(1)!(1)!(1)!!(1)!n n n n n n n n n +-+==-=-+++++ 三.组合:从n 个不同元素中任取m (m ≤n )个元素并组成一组,叫做从n 个不同的m 元素中任取 m 个元素的组合数,记作 Cn 。
1. 公式:()()()C A A n n n m m n m n m nm n m m m==--+=-11……!!!! 10=n C 规定:组合数性质:.2n n n n n m n m n m n m n n m n C C C C C C C C 21011=+++=+=+--……,,①;②;③;④11112111212211rr rrr r r r r r r r r r r r r r n n r r r n n r r n n n C C C C C C C C C C C C C C C +++++-+++-++-+++++=++++=+++=注:若12m m 1212m =m m +m n n n C C ==则或四.处理排列组合应用题 1.①明确要完成的是一件什么事(审题) ②有序还是无序 ③分步还是分类。
2.解排列、组合题的基本策略(1)两种思路:①直接法;②间接法:对有限制条件的问题,先从总体考虑,再把不符合条件的所有情况去掉。
这是解决排列组合应用题时一种常用的解题方法。
(2)分类处理:当问题总体不好解决时,常分成若干类,再由分类计数原理得出结论。
注意:分类不重复不遗漏。
即:每两类的交集为空集,所有各类的并集为全集。
(3)分步处理:与分类处理类似,某些问题总体不好解决时,常常分成若干步,再由分步计数原理解决。
在处理排列组合问题时,常常既要分类,又要分步。
其原则是先分类,后分步。
(43.排列应用题:(1)穷举法(列举法):将所有满足题设条件的排列与组合逐一列举出来; (2)、特殊元素优先考虑、特殊位置优先考虑;(3).相邻问题:捆邦法:对于某些元素要求相邻的排列问题,先将相邻接的元素“捆绑”起来,看作一“大”元素与其余元素排列,然后再对相邻元素内部进行排列。
(4)、全不相邻问题,插空法:某些元素不能相邻或某些元素要在某特殊位置时可采用插空法.即先安排好没有限制条件的元素,然后再将不相邻接元素在已排好的元素之间及两端的空隙之间插入。
(5)、顺序一定,除法处理。
先排后除或先定后插解法一:对于某几个元素按一定的顺序排列问题,可先把这几个元素与其他元素一同进行全排列,然后用总的排列数除于这几个元素的全排列数。
即先全排,再除以定序元素的全排列。
解法二:在总位置中选出定序元素的位置不参加排列,先对其他元素进行排列,剩余的几个位置放定序的元素,若定序元素要求从左到右或从右到左排列,则只有1种排法;若不要求,则有2种排法;(6)“小团体”排列问题——采用先整体后局部策略对于某些排列问题中的某些元素要求组成“小团体”时,可先将“小团体”看作一个元素与其余元素排列,最后再进行“小团体”内部的排列。
(7)分排问题用“直排法”把元素排成几排的问题,可归纳为一排考虑,再分段处理。
(8).数字问题(组成无重复数字的整数)①能被2整除的数的特征:末位数是偶数;不能被2整除的数的特征:末位数是奇数。
②能被3整除的数的特征:各位数字之和是3的倍数;③能被9整除的数的特征:各位数字之和是9的倍数④能被4整除的数的特征:末两位是4的倍数。
⑤能被5整除的数的特征:末位数是0或5。
⑥能被25整除的数的特征:末两位数是25,50,75。
⑦能被6整除的数的特征:各位数字之和是3的倍数的偶数。
4.组合应用题:(1).“至少”“至多”问题用间接排除法或分类法: (2).“含”与“不含”用间接排除法或分类法:3.分组问题:均匀分组:分步取,得组合数相乘,再除以组数的阶乘。
即除法处理。
非均匀分组:分步取,得组合数相乘。
即组合处理。
混合分组:分步取,得组合数相乘,再除以均匀分组的组数的阶乘。
4.分配问题:定额分配:(指定到具体位置)即固定位置固定人数,分步取,得组合数相乘。
随机分配:(不指定到具体位置)即不固定位置但固定人数,先分组再排列,先组合分堆后排,注意平均分堆除以均匀分组组数的阶乘。
5.隔板法:不可分辨的球即相同元素分组问题例1.电视台连续播放6个广告,其中含4个不同的商业广告和2个不同的公益广告,要求首尾必须播放公益广告,则共有种不同的播放方式(结果用数值表示).例3.6人排成一行,甲不排在最左端,乙不排在最右端,共有多少种排法?例.有4个男生,3个女生,高矮互不相等,现将他们排成一行,要求从左到右,女生从矮到高排列,有多少种排法?1.从4台甲型和5台乙型电视机中任取3台,其中至少要甲型和乙型电视机各一台,则不同的取法共有2.从5名男生和4名女生中选出4人去参加辩论比赛(1)如果4人中男生和女生各选2人,有种选法;(2)如果男生中的甲与女生中的乙必须在内,有种选法;(3)如果男生中的甲与女生中的乙至少要有1人在内,有种选法;(4)如果4人中必须既有男生又有女生,有种选法1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为( )A.40 B.50 C.60 D.702.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有( )A.36种B.48种 C.72种D.96种3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有( )A.6个B.9个 C.18个D.36个4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有( )A.2人或3人 B.3人或4人 C.3人 D.4人5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有( )A.45种B.36种 C.28种D.25种6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有( )A.24种B.36种 C.38种D.108种7.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为( )8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是( )A.72 B.96 C.108 D.1449.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有( ) A.50种B.60种 C.120种D.210种10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).14. 将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有(A )12种 (B )18种 (C )36种(D )54种15. 某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有A. 504种B. 960种C. 1008种 D. 1108种解析:分两类:甲乙排1、2号或6、7号 共有4414222A A A ⨯种方法甲乙排中间,丙排7号或不排7号,共有)(43313134422A A A A A +种方法故共有1008种不同的排法排列组合 二项式定理1,分类计数原理 完成一件事有几类方法,各类办法相互独立每类办法又有多种不同的办法(每一种都可以独立的完成这个事情)分步计数原理 完成一件事,需要分几个步骤,每一步的完成有多种不同的方法2,排列元素(被取出的元素各不相同),按照一定的顺序排成一3,组合组合定义 从n 个不同元素中,任取m (m ≤n )个元素并成一组,叫做从n 个不同元素中取出m 个元素的一个组合组合数 从n 个不同元素中,任取m (m ≤n )个元素的所有组合个数 m n C m n C =!!()!n m n m - 性质 m n C =n m n C - 11m m m n n n C C C -+=+排列组合题型总结一.直接法1 .特殊元素法例1用1,2,3,4,5,6这6个数字组成无重复的四位数,试求满足下列条件的四位数各有多少个(1)数字1不排在个位和千位(2)数字1不在个位,数字6不在千位。
Eg有五张卡片,它的正反面分别写0与1,2与3,4与5,6与7,8与9,将它们任意三张并排放在一起组成三位数,共可组成多少个不同的三位数?Eg 三个女生和五个男生排成一排(1)女生必须全排在一起有多少种排法(捆绑法)(2)女生必须全分开(插空法须排的元素必须相邻)(3)两端不能排女生(4)两端不能全排女生(5)如果三个女生占前排,五个男生站后排,有多少种不同的排法二.插空法当需排元素中有不能相邻的元素时,宜用插空法。
例3 在一个含有8个节目的节目单中,临时插入两个歌唱节目,且保持原节目顺序,有多少中插入方法?捆绑法 当需排元素中有必须相邻的元素时,宜用捆绑法。
1.四个不同的小球全部放入三个不同的盒子中,若使每个盒子不空,则不同的放法有 种,2,某市植物园要在30天内接待20所学校的学生参观,但每天只能安排一所学校,其中有一所学校人数较多,要安排连续参观2天,其余只参观一天,则植物园30天内不同的安排方法有(1928129A C )(注意连续参观2天,即需把30天种的连续两天捆绑看成一天作为一个整体来选有129C 其余的就是19所学校选28天进行排列)三. 阁板法 名额分配或相同物品的分配问题,适宜采阁板用法例5 某校准备组建一个由12人组成篮球队,这12个人由8个班的学生组成,每班至少一人,名额分配方案共种 。