分离工程思考题1
- 格式:doc
- 大小:1.57 MB
- 文档页数:22
Chapter 1Downstream processing(DSP):The isolation and purification of a biotechnological product to a form suitable for its intended use. The separation and purification of products synthesized by bioprocesses:Biotechnology:the use of cultured microorganisms, animal cells, and plant cells to produce products useful to humans.Modern biotechnology:Built on genetic engineering to produce commercial products or processes.Chapter 2Coagulation:the chemical alteration of the colloidal partic les to make them stick together凝聚值:表示电解质的凝聚能力,使胶粒发生凝聚作用的最小电解质浓度m mol/L. Flocculation: a process whereby particles are aggregated into clusters.Filtration separates solid from a liquid by forcing the liquid through a filter medium. Conventional or dead-end filtration: the fluid flows perpendicular to the medium which result in a cake of solids depositing on the filter medium.Crossflow filtration:The fluid flows parallel to the medium to minimize buildup to solids on the medium.Centrifugation is a process that involves the use of the centrifugal force for the separation of mixtures.分离因数(Z):离心力与重力的比值。
⽣化分离⼯程电⼦版课本1-591 绪论1.1 ⽣物技术与⽣物分离⽣物技术(biotechnology)即有机体的操作和应⽤有机体⽣产有⽤物质、改善⼈类⽣存环境的技术。
1953年,Watson和Crick提出了脱氧核糖核酸(DNA)的双螺旋结构模型.阐明了DNA是⽣物遗传信息(基因)的携带者,开辟了现代分⼦⽣物学的新纪元,为⽣物技术及其产业的发展开辟了⼴阔的空间。
20世纪70年代,重组DNA(recombinant DNA,rDNA)技术[1]和蛔/蝗融合技术[:]相继建⽴,现代⽣物技术步⼊了崭新的发展时期。
1980年前后,世界主要发达国家先后实施⽣物技术发展计划,⽣物技术迎来了⽇新⽉异的⾼速发展阶段。
进⼊21世纪,⼈类基因组研究取得巨⼤成就,各染⾊体测序⼯作逐步完成[1]迎来了⽣物技术的后基因组时代,蛋⽩质组学L5]、药物基因组学、⽣物信息学和系统⽣物学研究蓬勃兴起.为⽣物技术的发展注⼈了巨⼤的⽣机和活⼒。
⽣物技术的主要⽬标是⽣物物质的⾼效⽣产,⽽分离纯化是⽣物产品⼯程(bioproduct engineering)的重要环节。
因此,⽣物分离(bloseparation)是⽣物技术的重要组成部分[61。
在⽣物技术领域,⼀般将⽣物产品的⽣产过程称为⽣物加⼯过程(bioprocess),包括优良⽣物物种的选育、基因⼯程、细胞⼯程、⽣物反应过程(酶反应、微⽣物发酵、动植物细胞培养等)及⽬标产物的分离纯化过程,后者⼜称下游加⼯过程(downstream processing)。
⽣物分离过程包括⽬标产物的提取(isolation)、浓缩(concentration)、纯化(purification)及成品化(product polishing)等过程.⽣物分离过程特性主要体现在⽣物产物的特殊性、复杂性和对⽣物产品要求的严格性上,其结果导致分离过程成本往往占整个⽣产过程成本的⼤部分[71。
例如,⼤多数⼯业酶(enzyme)的分离过程成本约占⽣产过程的?o%,⽽对纯度要求更⾼的医⽤酶如天冬酰胺酶(asparaginase),分离过程成本⾼达⽣产过程的85%;基因重组蛋⽩质药物的分离过程成本⼀般占85%⼀90%以上.与此相⽐,⼩分⼦⽣物产物的分离成本较低,如青霉素的分离过程成奉约占50%,⽽⼄醇的分离过程成本仅占“%.因此,在⽣物⼤分⼦药物的⽣产过程中,分离过程的质量往往决定整个⽣物加⼯过程的成败。
(—)⏹1 生物工程下游技术的主要内容、根本任务和主要目标?⏹2 生物产品与普通化工产品分离过程有何不同?⏹3 设计生物产品的分离工艺应考虑哪些因素?⏹4 初步纯化与高度纯化分离效果有何不同?⏹5 分离纯化的得率与纯化倍数如何计算?⏹6 现化生物分离技术研究方向有哪些特点?(二)1.为什么要进行发酵液预处理?处理的目标及内容分别是什么?①.发酵液多为黏度大的悬浮液;②.目标产物在发酵液中的浓度常较低;③.成分复杂,固体粒子可压缩性大,悬浮物颗粒小,相对密度与液相相差不大。
因此,不易通过过滤或离心进行细胞分离。
对发酵液进行适当的预处理,以便于固液分离,使后续的分离纯化工序顺利进行。
发酵液的预处理过程包括:①发酵液杂质的去除,包括除去杂蛋白、无机盐离子以及色素、热原、毒性物质等有机物质;②改善发酵液的处理性能,主要通过降低发酵液的黏调节适宜的PH值和温度、絮凝和凝聚。
2.发酵液金属离子的去除方法分别有哪些?(1)钙离子的去除⏹加入草酸,生成草酸钙,沉淀去除。
⏹草酸与镁离子结合生成草酸镁,去除Mg2+⏹草酸酸化发酵液,改变其胶体状态,有助于目标产物转入液相。
⏹在用量大时,可用其可溶性盐。
⏹反应生成的草酸钙还能促使蛋白质凝固,提高滤液质量。
(2)镁离子的去除⏹可加入三聚磷酸钠,形成络合物。
⏹还可用磷酸盐处理,大大降低钙和镁离子。
(3)铁离子的去除⏹一般用黄血盐去除,形成普鲁士蓝沉淀。
3.杂蛋白去除的方法和机理分别是什么?去除方法主要有:盐析法、等电点沉淀法、加热法、有机溶剂沉淀法、吸附法等盐析:在蛋白质溶液中加入一定量的中性盐(如硫酸铵、硫酸钠、氯化钠等)使蛋白质溶解度降低并沉淀析出的现象称为盐析(salting out)。
这是由于这些盐类离子与水的亲和性大,又是强电解质,可与蛋白质争夺水分子,破坏蛋白质颗粒表面的水膜。
另外,大量中和蛋白质颗粒上的电荷,使蛋白质成为既不含水膜又不带电荷的颗粒而聚集沉淀。
等电点沉淀法:处于等电点时,蛋白质分子之间的静电排斥力最小,使它失去了作为胶体体系稳定的基本因素,迅速结合成聚集体,极易沉淀析出。
有机溶剂法:有机溶剂和水的亲和力大,能夺取蛋白质表面的水分子,即破坏蛋白质胶体的水化膜,同时也可降低溶液的介电常数,导致蛋白质分子间的静电引力增大,产生凝聚和沉淀。
发酵液处理性能的改善有哪些方法?①降低发酵液的黏度,包括加热法和加水稀释法;②调节pH值;③絮凝絮凝和凝聚的概念、机理分别是什么?⑴絮凝是指在某些高分子絮凝剂存在下,基于架桥作用,使胶粒形成粗大的絮凝团的过程,是一种以物理的集合为主的过程。
⑵凝聚是指在中性盐作用下,由于双电层排斥电位的降低(或由于微粒所带电荷被加入的带有相反电荷的高价离子中和),而使胶体体系不稳定,微粒互相黏着在一起的现象。
有哪些絮凝剂可以使用?从化学结构看,主要分为三类:高聚物、无机盐、有机溶剂和表面活性剂。
目前最常见的高聚物絮凝剂是有机合成的聚丙烯酰胺类衍生物、壳聚糖絮凝剂、聚苯乙烯类衍生物等。
高聚物絮凝剂具有长链状的结构,利用长链上的活性基团,通过静电引力,形成桥架连接,从而生成菌团沉淀。
有机溶剂如乙醇、丙酮和甲醛等对发酵液的絮凝有一定的作用。
表面活性剂如三异丙醇胺聚氧乙烯聚氧丙烯醚,也可以提高絮凝处理效果。
(三)1. 固液分离的方法有哪些?其原理分别是什么?固液分离的方法有分离筛、悬浮分离、重力沉降以及离心和过滤等。
用于发酵液固液分离的主要是离心和过滤。
过滤就是利用多孔性介质(如滤布)截留固液悬浮液中的固体颗粒,从而实现固液分离。
离心:依靠惯性离心力的作用而实现的沉降过程。
适用于两相密度差较小,颗粒粒度较细,在重力场中的沉降效率很低的非均相体系。
2. 生物产业过滤和离心分离常用的设备是什么?在生物工业中,常用的过滤发酵液的设备主要有板框过滤机、加压过滤机和真空过滤机三类。
工业生产中主要采用沉降式离心机,包括碟片式离心机、管式离心机和倾析式离心机。
3. 改善过滤过程的方法有哪些?①絮凝;②助滤剂,助滤剂是一种不可压缩的多孔微粒,悬浮液中的大量胶体粒子吸附在助滤剂表面,改变滤饼的结构,从而降低过滤的阻力;③反应剂,反应剂之间能互相作用或能和发酵液中的杂质反应,生成CaSO4、AlPO4等不溶性沉淀,从而提高过滤速率。
(四)⏹1.微生物细胞、植物细胞的细胞壁都分别具有哪些特点?⏹植物细胞壁:对于已生长结束的植物细胞壁可分为初生壁和次生壁两部分。
初生壁由多糖和蛋白质构成,多糖主要成分为纤维素、半纤维素和果胶类物质。
纤维素是长链D-葡聚糖,许多这样的长链形成微纤丝。
在次生壁中,纤维素和半纤维素含量比初生壁增加很多,纤维素的微纤丝排列得更紧密和有规则,而且存在木质素的沉积。
⏹2.珠磨法、高压匀浆法、超声波破碎法分别是什么原理?常用什么设备?①珠磨法原理:细胞悬浮液与极小的研磨剂[如玻璃小珠、石英砂、氧化铝(d<1mm)]一起高速搅拌,细胞与研磨剂之间相互碰撞、剪切,使细胞达到某种程度破碎,释放内含物。
②高压匀浆法原理:利用高压迫使悬浮液通过针形阀,由于突然减压和高速冲撞造成细胞破裂。
③超声波破碎法原理:利用频率高于20kHz的超声波在水中传播,产生能释放巨大能量的激化和突发,即空穴作用。
空穴作用产生的空穴泡由于受到超声波的冲击而闭合,从而产生一个高达数百个大气压的冲击力压力,由此引起悬浮细胞上产生剪切力,使细胞液体产生流动而破碎细胞。
⏹3.酶溶法的原理是什么?对细菌和酵母分别常用什么酶?酶溶法:利用酶反应分解、破坏细胞壁上特殊的化学健而达到破壁的目的。
对细菌主要采用溶菌酶;酵母和真菌由于细胞壁的组分主要是纤维素、葡聚糖、几丁质等,常用蜗牛酶、纤维素酶、多糖酶等;植物细胞壁的主要成分是纤维素,常采用纤维素酶和半纤维素酶裂解。
⏹1.双水相去除细胞碎片分离目标产物的原理和一般过程?将两种不同的水溶性聚合物的水溶液混合时,当聚合物浓度达到一定值,由于高聚物之间的不相溶性,即高聚物分子的空间阻碍作用,相互无法渗透,不能形成均一相,从而具有分离倾向,在一定条件下即可分为二相。
双水相萃取技术的工艺流程主要由三部分构成:目的产物的萃取; PEG的循环; 无机盐的循环。
⏹2.膨胀床的概念?膨胀床吸附分离的特点和原理是什么?一般的操作过程?膨胀床:通过对吸附剂本身物理性质的改进及对层析柱和流体分布器的精心设计,得到了稳定、液固相返混程度较低的液固流化床。
膨胀床吸附技术,亦称扩张床吸附,集澄清、浓缩和初步纯化于一体的吸附分离纯化技术,它兼具流化床和填充床吸附的优点,既能比较容易地让固体颗粒通过填料层,又可以填充床的模式来吸附目标产物。
膨胀床的操作按顺序可分为五个部分:(1)平衡、(2)吸附、(3)冲洗、(4)洗脱和(5)在位清洗。
⏹3.何谓泡沫分离技术?其原理是什么?泡沫分离是一项利用物质在气泡表面上吸附性质的差异进行分离的技术。
泡沫分离是根据吸附的原理,向含表面活性物质的液体中鼓泡,使液体内的表面活性物质聚集在气液界面(气泡的表面)上,在液体主体上方形成泡沫层,将泡沫层和液相主体分开,就可以达到浓缩表面活性物质(在泡沫层)和净化液相主体的目的。
被浓缩的物质可以是表面活性物质,也可以是能与表面活性物质相络合的物质,但它们必须具备和某一类型的表面活性物质能够络合或鳌合的能力。
⏹4.比较双水相分离技术、膨胀床分离技术和泡沫分离技术的优缺点。
(五)1、何谓超临界流体萃取?其特点有哪些?利用超临界流体作为萃取剂的萃取操作称为超临界萃取。
优点:①操作温度低。
能较好地使萃取物的由此成分不被破坏,可在接近常温下完成萃取工艺。
②在高压、密闭、惰性环境中,选择性萃取分离天然产物。
③萃取工艺简单,效率高且无污染。
局限性:缺乏生物化合物在超临界流体中的溶解度和相平衡数据,使工艺设计不好掌握。
(原理:流体在临界区域附近,压力和温度的微小变化,会引起流体密度的大幅度变化,而非挥发性溶质在超临界流体中的溶解度大致和流体的密度成正比,保持温度恒定,压力增加,超临界流体的密度变大,对溶质的溶解度增大,对溶质的萃取能力也就增强。
)2、何谓双水相萃取?常见的双水相构成体系有哪些?某些亲水性高分子聚合物的水溶液超过一定浓度后可以形成两相,并且在两相中水分均占很大比例,即形成双水相系统,利用蛋白质在两个水相中的溶解度的差别进行萃取操作的技术。
常用的双水相体系有聚乙二醇/葡聚糖,聚乙二醇/盐体系。
3、反胶团的构成以及反胶团萃取的基本原理反胶团体系由水、有机相及表面活性剂组成,是表面活性剂分散于连续有机相中自发形成的一种具有微水池结构的油包水微乳液。
原理:蛋白质能溶于反胶团的“水池”中。
在有机溶剂相和水相两宏观相界面间的表面活性剂层,同临近的蛋白质分子发生静电吸引而变形,接着两界面形成含有蛋白质的反胶团,然后扩散到有机相中,从而实现了蛋白质的萃取。
(六)⏹什么是沉淀法?沉淀是指在溶液中加入沉淀剂使溶质溶解度降低,形成固相从溶液中析出从而达到分离的一种技术。
⏹沉淀法纯化蛋白质的优点、缺点有哪些?优点:过程简单,成本低,原料易得,便于小批量生产,在产物浓度越高的溶液中沉淀越有利,收率越高,对大多数生物分子的分离纯化有独特优势。
缺点:过滤困难,对于复杂产品体系,分离度不高,产品质量较低,需重新精制。
⏹常用的沉淀方法包括哪些?主要包括有机溶剂沉淀、盐析、高聚物沉淀和聚电介质沉淀、等电点沉淀等。
⏹有机溶剂沉淀法的原理是什么?A 降低溶剂介电常数(介电常数D有机< D水),减小溶剂的极性,从而削弱了溶剂分子与蛋白质分子间的相互作用力,增加了酶、蛋白质、核酸等带电粒子之间的作用力,因相互吸引而聚合沉淀。
B 破坏水化膜:由于使用的有机溶剂与水互溶,它们在溶解于水的同时从蛋白质分子周围的水化层中夺走了水分子,破坏水化层,降低蛋白质分子的溶剂化能力,破坏蛋白质的水化层,使蛋白质沉淀。
C 相反力:疏水基团暴露,有机溶剂与疏水基团结合形成疏水层。
⏹影响有机溶剂沉析的主要因素有哪些?温度、pH值、样品浓度、中性盐浓度、某些金属离子⏹何谓盐析?其原理是什么?在高浓度的中性盐存在下,蛋白质(酶)等生物大分子物质在水溶液中的溶解度降低,产生沉淀的过程。
原理:(1)破坏水化膜,分子间易碰撞聚集,将大量盐加到蛋白质溶液中,高浓度的盐离子有很强的水化力,于是蛋白质分子周围的水化膜层减弱乃至消失,使蛋白质分子因热运动碰撞聚集。
(2)破坏水化膜,暴露出疏水区域,由于疏水区域间作用使蛋白质聚集而沉淀,疏水区域越多,越易沉淀。
(3)中和电荷,减少静电斥力,中性盐加入蛋白质溶液后,蛋白质表面电荷大量被中和,静电斥力降低,导致蛋白溶解度降低,使蛋白质分子之间聚集而沉淀。
⏹何谓“Ks”分级盐析法?何谓“β”分级盐析法?第一类叫Ks分段盐析法,在一定PH和温度下通过改变离子强度实现,(固定pH, 温度,改变盐浓度),由于蛋白质对离子强度的变化非常敏感,易产生共沉淀现象,用于早期的粗提液;第二种叫β分段盐析法,在一定离子强度下通过改变PH和温度来实现,(固定离子强度,改变pH及温度),由于溶质溶解度变化缓慢,且变化幅度小,因此分辨率更高,用于后期进一步分离纯化和结晶。