钽电容和陶瓷电容esr
- 格式:docx
- 大小:36.24 KB
- 文档页数:1
一、钽电容简介和基本结构固体钽电容是将钽粉压制成型,在高温炉中烧结成阳极体,其电介质是将阳极体放入酸中赋能,形成多孔性非晶型Ta2O5介质膜,其工作电解质为硝酸锰溶液经高温分解形成MnO2 ,通过石墨层作为引出连接用。
钽电容性能优越,能够实现较大容量的同时可以使体积相对较小,易于加工成小型和片状元件,适宜目前电子器件装配自动化,小型化发展,得到了广泛的应用,钽电容的主要特点有寿命长,耐高温,准确度高,但耐电压和电流能力相对较弱,一般应用于电路大容量滤波部分。
2.1.基本结构下图为MnO2为负极的钽电容下图为聚合物(Polymer)为负极的钽电容二、生产工艺按照电解液的形态,钽电解电容有液体和固体钽电解电容之分,液体钽电解用量已经很少,本文仅介绍固体钽电解的生产工艺。
固体钽电解电容其介质材料是五氧化二钽;阳极是烧结形成的金属钽块,由,目前最新的是采用聚合物作为负极材料,性钽丝引出,传统的负极是固态MnO2。
能优于MnO2钽电解电容有引线式和贴片两种安装方式,其制造工艺大致相同,现在以片钽生产工艺为例介绍如下。
一、生产工艺流程图成型烧结试容检验组架赋能涂四氟被膜石墨银浆上片点胶固化点焊模压固化切筋喷砂电镀打标志切边漏电预测老化测试检验编带入库二、主要生产工序说明(一)成型工序:该工序目的是将钽粉与钽丝模压在一起并具有一定的形状,在成型过程中要给钽粉中加入一定比例的粘接剂。
1、什么要加粘接剂?为了改善钽粉的流动性和成型性,避免粉重误差太大,另外避免钽粉堵塞模腔。
低比容粉流动性好可适当多加点粘接剂,高比容粉流动性差可适当少加点粘接剂。
2、加了太多或太少有什么影响?如果太多:脱樟时,樟脑大量挥发,易导致钽坯开裂、断裂,瘦小的钽坯易导致弯曲。
如果太少:起不到改善钽粉流动性的作用。
拌好后的钽粉如果使用时间较长,因为樟脑是易挥发物品,可适量再加入一点粘和剂。
樟脑的加入会导致钽粉中杂质含量增加,影响漏电。
每天使用完毕,需将钽粉装入聚四氟乙烯瓶或真空袋内密封保存,以防樟脑挥发、钽粉中混入杂质、钽粉中吸附空气中的气体。
esr 钽电容陶瓷电容ESR钽电容和陶瓷电容是目前电子产品中常用的两种电容器。
它们在电子电路中扮演着重要的角色,用于储存和释放电能,以及滤波、耦合和去耦等功能。
本文将对ESR钽电容和陶瓷电容进行详细介绍,以便读者对它们有更深入的了解。
ESR钽电容,全称为等效系列电阻钽电容器。
ESR(Equivalent Series Resistance)是指电容器本身所具有的等效电阻。
钽电容是一种电解电容器,它的正极是由钽金属制成的。
钽金属具有良好的化学稳定性和高导电性能,因此钽电容具有较低的ESR。
它的特点是容量大、尺寸小、工作稳定性好和寿命长,适用于高频和大电流的工作环境。
钽电容广泛应用于通信设备、计算机、电源、汽车电子等领域。
陶瓷电容是一种以陶瓷材料为介质的电容器。
陶瓷电容的特点是体积小、价格低廉、工作稳定、精度高和温度特性好。
陶瓷电容的介质常用的有陶瓷材料,如二氧化铁、二氧化钛等。
陶瓷电容的容量范围广泛,从几皮法到几百微法都有。
它适用于电路中的耦合、去耦、滤波和终端等电路。
ESR钽电容和陶瓷电容在使用中有一些区别。
首先是ESR的差异。
ESR钽电容的ESR一般较低,可以达到几个毫欧姆以下;而陶瓷电容的ESR则相对较高,一般在几十毫欧姆到几百毫欧姆之间。
其次是容量范围的不同。
ESR钽电容的容量范围较小,一般在几微法到几百微法之间;而陶瓷电容的容量范围较大,从几皮法到几百微法都有。
此外,ESR钽电容的价格相对较高,而陶瓷电容的价格相对较低。
在电路设计中,选择ESR钽电容还是陶瓷电容要根据具体的应用场景来决定。
如果在高频工作环境下,需要较低的ESR和较高的容量,那么ESR钽电容是一个不错的选择。
而在一般的低频工作环境下,如果对ESR要求不高,且需要较大的容量,那么陶瓷电容是一个经济实用的选择。
ESR钽电容和陶瓷电容在电子电路中有着不同的应用。
ESR钽电容适用于高频和大电流的工作环境,具有较低的ESR和较高的容量;而陶瓷电容适用于低频工作环境,具有较高的ESR和较大的容量范围。
ldo前馈电容【原创版】目录1.LDO 前馈电容的定义和作用2.LDO 前馈电容的类型和选择3.LDO 前馈电容的布局和安装注意事项4.LDO 前馈电容的常见问题和解决方案正文一、LDO 前馈电容的定义和作用LDO(Low Dropout Voltage)前馈电容,又称为输出电容,是一种在低压差线性稳压器(LDO)中使用的电容。
它的主要作用是补偿 LDO 输出电压的波动,降低输出电压的纹波,从而提高输出电压的稳定性。
通过使用前馈电容,可以有效地减小负载电流对输出电压的影响,保证输出电压在负载电流变化时的稳定性。
二、LDO 前馈电容的类型和选择1.类型LDO 前馈电容主要有两种类型:陶瓷电容和钽电容。
(1)陶瓷电容:具有体积小、容量大、稳定性好等特点,适用于高纹波抑制的应用场景。
(2)钽电容:具有低 ESR(等效串联电阻)、高纹波抑制性能和长寿命等特点,适用于对输出电压稳定性要求较高的应用场景。
2.选择在选择 LDO 前馈电容时,需要考虑以下几个因素:(1)容量:根据 LDO 的输出电流和负载电流选择合适的电容容量。
通常情况下,电容容量越大,纹波抑制效果越好,但同时会增加电容的体积和成本。
(2)电压:选择与 LDO 输出电压相匹配的电容电压等级,以保证电容在正常工作范围内可靠运行。
(3)ESR:选择具有低 ESR 的电容,可以减小输出电压的纹波,提高稳定性。
三、LDO 前馈电容的布局和安装注意事项1.布局:LDO 前馈电容应尽量靠近 LDO 的输出端,以减小引线电阻对输出电压的影响。
同时,应避免与其他元件过于靠近,以防止相互干扰。
2.安装:在安装电容时,应注意以下几点:(1)电容的正负极应正确连接,通常长脚为正极,短脚为负极。
(2)电容应牢固地固定在 PCB 上,以防止振动和位移。
(3)确保电容的安装位置不会受到机械应力的影响,以免损坏电容。
四、LDO 前馈电容的常见问题和解决方案1.输出电压纹波大:可能是由于前馈电容容量选小了,可以尝试更换更大容量的电容。
ESR:等效串联电阻理论上,一个完美的电容,自身不会产生任何能量损失,但是实际上,因为制造电容的材料有电阻,电容的绝缘介质有损耗,各种原因导致电容变得不“完美”。
这个损耗在外部,表现为就像一个电阻跟电容串联在一起,所以就起了个名字叫做“等效串联电阻”。
比如,我们认为电容上面电压不能突变,当突然对电容施加一个电流,电容因为自身充电,电压会从0开始上升。
但是有了ESR,电阻自身会产生一个压降,这就导致了电容器两端的电压会产生突变。
无疑的,这会降低电容的滤波效果,所以很多高质量的电源啦一类的,都使用低ESR的电容器。
同样的,在振荡电路等场合,ESR也会引起电路在功能上发生变化,引起电路失效甚至损坏等严重后果。
所以在多数场合,低ESR的电容,往往比高ESR的有更好的表现。
不过事情也有例外,有些时候,这个ESR也被用来做一些有用的事情。
比如在稳压电路中,有一定ESR的电容,在负载发生瞬变的时候,会立即产生波动而引发反馈电路动作,这个快速的响应,以牺牲一定的瞬态性能为代价,获取了后续的快速调整能力,尤其是功率管的响应速度比较慢,并且电容器的体积/容量受到严格限制的时候。
这种情况见于一些使用mos管做调整管的三端稳压或者相似的电路中。
这时候,太低的ESR反而会降低整体性能。
实际上,需要更低ESR的场合更多,而低ESR的大容量电容价格相对昂贵,所以很多开关电源采取的并联的策略,用多个ESR相对高的铝电解并联,形成一个低ESR的大容量电容。
牺牲一定的PCB空间,换来器件成本的减少,很多时候都是划算的。
和ESR类似的另外一个概念是ESL,也就是等效串联电感。
早期的卷制电容经常有很高的ESL,而且容量越大的电容,ESL一般也越大。
ESL经常会成为ESR的一部分,并且ESL也会引发一些电路故障,比如串联谐振等。
但是相对容量来说,ESL的比例太小,出现问题的几率很小,再加上电容制作工艺的进步,现在已经逐渐忽略ESL,而把ESR作为除容量之外的主要参考因素了。
一、钽电容简介和基本结构固体钽电容是将钽粉压制成型,在高温炉中烧结成阳极体,其电介质是将阳极体放入酸中赋能,形成多孔性非晶型Ta2O5介质膜,其工作电解质为硝酸锰溶液经高温分解形成MnO2 ,通过石墨层作为引出连接用。
钽电容性能优越,能够实现较大容量的同时可以使体积相对较小,易于加工成小型和片状元件,适宜目前电子器件装配自动化,小型化发展,得到了广泛的应用,钽电容的主要特点有寿命长,耐高温,准确度高,但耐电压和电流能力相对较弱,一般应用于电路大容量滤波部分。
2.1.基本结构下图为MnO2为负极的钽电容下图为聚合物(Polymer)为负极的钽电容二、生产工艺按照电解液的形态,钽电解电容有液体和固体钽电解电容之分,液体钽电解用量已经很少,本文仅介绍固体钽电解的生产工艺。
固体钽电解电容其介质材料是五氧化二钽;阳极是烧结形成的金属钽块,由,目前最新的是采用聚合物作为负极材料,性钽丝引出,传统的负极是固态MnO2。
能优于MnO2钽电解电容有引线式和贴片两种安装方式,其制造工艺大致相同,现在以片钽生产工艺为例介绍如下。
一、生产工艺流程图成型烧结试容检验组架赋能涂四氟被膜石墨银浆上片点胶固化点焊模压固化切筋喷砂电镀打标志切边漏电预测老化测试检验编带入库二、主要生产工序说明(一)成型工序:该工序目的是将钽粉与钽丝模压在一起并具有一定的形状,在成型过程中要给钽粉中加入一定比例的粘接剂。
1、什么要加粘接剂?为了改善钽粉的流动性和成型性,避免粉重误差太大,另外避免钽粉堵塞模腔。
低比容粉流动性好可适当多加点粘接剂,高比容粉流动性差可适当少加点粘接剂。
2、加了太多或太少有什么影响?如果太多:脱樟时,樟脑大量挥发,易导致钽坯开裂、断裂,瘦小的钽坯易导致弯曲。
如果太少:起不到改善钽粉流动性的作用。
拌好后的钽粉如果使用时间较长,因为樟脑是易挥发物品,可适量再加入一点粘和剂。
樟脑的加入会导致钽粉中杂质含量增加,影响漏电。
每天使用完毕,需将钽粉装入聚四氟乙烯瓶或真空袋内密封保存,以防樟脑挥发、钽粉中混入杂质、钽粉中吸附空气中的气体。
军用高可靠性钽电容和MLCC电容演讲嘉宾:黄勇先生 Vishay电容器部门区域市场经理时间:2009-08-28 13:50:00 至 2009-08-28地点:成都世纪城新国际会展中心蜀风厅黄勇:大家好,很荣幸有这么一个机会给大家介绍一下。
这个技术交流的话,因为电容产品范围是比较广,这次交流只是讲到军用高可靠性的钽电容贴片陶瓷电容器。
我们有很好的电容,相信大家比较关注它的产地在哪里,我们在国内深圳也有一家公司,贴片也是在以色列为主。
在亚洲地区,Vishay有三家办事处,在上海、深圳、北京。
如果大家要找联系窗口的话,在这三个地方都可以找到像我这样的技术人员了解产品信息。
讲到军用产品都有很严格的要求,必须要长期使用的高可靠性产品,所以我们客户选择军用产品的时候,不可能有很宽的范围可以选择,这就有很多限制,Vishay除了长期使用最顶端的范围比较窄的电容器,我们根据客户的要求,也专门开发了可以像民用范围比较广的产品供大家选择。
下面会有详细的系列跟大家讲。
Vishay所有的钽电,生产种类非常齐全,所有这些都有军工产品供大家选择。
固钽的话,这张照片给大家看的是内部的钽芯,钽芯决定了这个钽电主要的参数,比如容值、电压、等效串联电阻,正极作为纯钽,介质是五氧化二钽。
所有这个芯值决定了所有的参数。
这些不同系列只是封装方式的不同所以形成了不同的系列,这个是由金属外壳固定的,它也是固钽,我们有相对不同的序列号,有不同等级的军规产品,工作电压从6V到100V的工作电压范围以及军标不同测试等级。
这个测试等级可以给大家简单的稍微介绍一下,它是加速测试的方法,用1.3倍的额定标准电压值作为加电压的筛选,失效模式有三种,所以分三种不同的等级,失效高一点的一直到失效等级非常低的。
详细参数可以在Vishay网站上找到规格书。
贴片的话,我们也有相应的军品的规格,也有相对应的失效的等级,温度范围可以从负50度到正25度范围之内都可以使用。
电容绝缘电阻esr电容绝缘电阻(Equivalent Series Resistance,ESR)是指电容器内部所具有的电阻。
与理想电容器不同,实际电容器通常会存在ESR,这是由电容器内部导体材料的电阻引起的。
首先,让我们来了解一下电容器的基本原理。
电容器是由两个带电导体(即电极)之间夹有绝缘材料组成的。
当电压施加在电容器的两个电极上时,电容器会储存电荷,并在电场中存储能量。
这样,电容器就可以被用作电子电路中的储能元件。
然而,现实世界中的电容器不是理想的,其内部存在着一定的电阻。
这是由于电容器内部导体材料的固有电阻而引起的。
这个电阻被称为ESR。
ESR的存在会对电容器的性能产生一定的影响。
首先,ESR会导致电容器在充电和放电过程中损耗一定的能量。
这是因为电荷在通过电容器内部导体材料时会遇到一定的阻力。
因此,在使用电容器时我们需要考虑ESR的值,以确保电容器的性能不受到影响。
其次,ESR还会影响电容器的频率响应特性。
高ESR值会降低电容器的共振频率,从而影响电容器在高频电路中的性能。
因此,在设计高频电路时,需要选择具有较低ESR值的电容器。
此外,ESR还会影响电容器的稳定性和寿命。
较高的ESR值会导致电容器内部产生热量,从而降低电容器的工作温度。
这可能会导致电容器失效或缩短其寿命。
因此,在选择电容器时,需要考虑其ESR值以确保其具有良好的稳定性和长寿命。
为了减小电容器的ESR,一种常见的方法是使用具有低电阻的导体材料。
例如,铝电解电容器通常具有较高的ESR,而钽电容器则具有较低的ESR。
因此,在不同的电路应用中,我们可以选择适合的电容器类型,以满足所需的ESR要求。
综上所述,电容绝缘电阻(ESR)是电容器内部的电阻,它会对电容器的性能产生一定的影响。
了解ESR的特性和影响对于电路设计和选择电容器非常重要。
通过选择合适的电容器类型和控制ESR的值,我们可以确保电容器在电子电路中发挥正常的功能,并提高整个系统的性能和可靠性。
ESR,是Equivalent Series Resistance三个单词的缩写,翻译过来就是“等效串联电阻”。
理论上,一个完美的电容,自身不会产生任何能量损失,但是实际上,因为制造电容的材料有电阻,电容的绝缘介质有损耗,各种原因导致电容变得不“完美”。
这个损耗在外部,表现为就像一个电阻跟电容串联在一起,所以就起了个名字叫做“等效串联电阻”。
ESR的出现导致电容的行为背离了原始的定义。
比如,我们认为电容上面电压不能突变,当突然对电容施加一个电流,电容因为自身充电,电压会从0开始上升。
但是有了ESR,电阻自身会产生一个压降,这就导致了电容器两端的电压会产生突变。
无疑的,这会降低电容的滤波效果,所以很多高质量的电源啦一类的,都使用低ESR的电容器。
同样的,在振荡电路等场合,ESR也会引起电路在功能上发生变化,引起电路失效甚至损坏等严重后果。
所以在多数场合,低ESR的电容,往往比高ESR的有更好的表现。
不过事情也有例外,有些时候,这个ESR也被用来做一些有用的事情。
比如在稳压电路中,有一定ESR的电容,在负载发生瞬变的时候,会立即产生波动而引发反馈电路动作,这个快速的响应,以牺牲一定的瞬态性能为代价,获取了后续的快速调整能力,尤其是功率管的响应速度比较慢,并且电容器的体积/容量受到严格限制的时候。
这种情况见于一些使用mos管做调整管的三端稳压或者相似的电路中。
这时候,太低的ESR反而会降低整体性能。
ESR是等效“串联”电阻,意味着,将两个电容串联,会增大这个数值,而并联则会减少之。
实际上,需要更低ESR的场合更多,而低ESR的大容量电容价格相对昂贵,所以很多开关电源采取的并联的策略,用多个ESR相对高的铝电解并联,形成一个低ESR的大容量电容。
牺牲一定的PCB空间,换来器件成本的减少,很多时候都是划算的。
和ESR类似的另外一个概念是ESL,也就是等效串联电感。
早期的卷制电容经常有很高的ESL,而且容量越大的电容,ESL一般也越大。
一、钽电容介绍钽电容是由稀有金属钽加工而成,先把钽磨成微细粉,再与其它的介质一起经烧结而成。
目前的工艺有干粉成型法和湿粉成型法两种。
钽电容由于金属钽的固有本性,具有稳定好、不随环境的变化而改变、能做到容值很大等特点,在某些方面具有陶瓷电容不可比较的一些特性,因此在很多无法使用陶瓷电容的电路上钽电容被广泛采用。
目前全球主要有以下几个品牌的钽电容:A VX、KEMET、VISHAY、NEC,其中A VX 和VISHAY的产量最大,而且质量最好。
虽然是个简单的概念,不过一写成洋文,就变得不容易理解了。
ESR,是Equivalent Series Resistance三个单词的缩写,翻译过来就是“等效串连电阻”。
理论上,一个完美的电容,自身不会产生任何能量损失,但是实际上,因为制造电容的材料有电阻,电容的绝缘介质有损耗,各种原因导致电容变得不“完美”。
这个损耗在外部,表现为就像一个电阻跟电容串连在一起,所以就起了个名字叫做“等效串连电阻”。
ESR的出现导致电容的行为背离了原始的定义。
比如,我们认为电容上面电压不能突变,当突然对电容施加一个电流,电容因为自身充电,电压会从0开始上升。
但是有了ESR,电阻自身会产生一个压降,这就导致了电容器两端的电压会产生突变。
无疑的,这会降低电容的滤波效果,所以很多高质量的电源啦一类的,都使用低ESR的电容器。
同样的,在振荡电路等场合,ESR也会引起电路在功能上发生变化,引起电路失效甚至损坏等严重后果。
所以在多数场合,低ESR的电容,往往比高ESR的有更好的表现。
不过事情也有例外,有些时候,这个ESR也被用来做一些有用的事情。
比如在稳压电路中,有一定ESR的电容,在负载发生瞬变的时候,会立即产生波动而引发反馈电路动作,这个快速的响应,以牺牲一定的瞬态性能为代价,获取了后续的快速调整能力,尤其是功率管的响应速度比较慢,并且电容器的体积/容量受到严格限制的时候。
这种情况见于一些使用mos管做调整管的三端稳压或者相似的电路中。
无源滤波元器件-电容的介绍和深入认识无源滤波元器件-电容的介绍和深入认识关键词:钽电容、铝电容、陶瓷电容、滤波、ESR、ESL、可靠性摘要:无源滤波元器件中,电容是一个很重要的基本元器件,但应用中由于对电容的认识不深,存在一些不正确的使用而造成问题。
本文主要针对我司常用的三类电容(铝电容、钽电容和陶瓷电容),从电容结构、制造工艺入手,结合滤波模型关注的参数性能进行深入的剖析,最后引出如何正确可靠应用电容。
结构上采取每类电容一大章,每一章三小节分析:第一小节简单介绍电容的结构和生产加工工艺流程;第二小节为电容主要性能参数的变化特点,涉及到如何应用等方面;第三小节介绍电容使用中的物理可靠性问题需要关注的地方。
同时附录还对三类电容在参数、特性及应用上做了深入的比较。
缩略语清单:前言:对于器件自身产生的SSN噪声(同步开关噪声),主要是利用电容的对交流信号呈现低阻的特性来”滤除”的(噪声是不能被滤除掉的,只是被低阻导至地平面,使电源和地平面处于同一电位),即根据目标阻抗的概念,通过在电源两端并联各种规格的电容,从而实现在器件端往电源两端看,电源内阻在要求频段范围内低于目标阻抗[32 ];而要滤除电源自身(如开关电源噪声)或外界耦合过来的噪声,单纯的电容低阻滤波并不能很好的达到目的(因为单纯的并联电容只是一个简单的单极点滤波器)[18],这时就要考虑其他手段,如串上电感或磁珠等对噪音呈现阻挡特性的器件,如PI滤波、EMI滤波电路,或使用有源滤波电路(如运放或后级线性电压调整器电路)等。
不管采用什么样的实现手段,电容作为一个基本元素,只有对它的阻抗频率特性有深入的了解认识,才是设计好电源滤波电路的第一步。
限于篇幅,本文介绍的电容主要基于目前公司已有编码、单板电源电路应用较多的器件:电解电容(插装液态铝箔电解电容/贴片固体钽电解电容)、陶瓷电容(MLCC)。
对于其他电容如薄膜电容或其它结构的电容,如插装钽电解电容等,则不作介绍,在描述上,为了方便起见,除非特别指明,铝电容指我司的通用插装铝箔电解电容;钽电容指常规贴片固体钽电解电容;陶瓷电容指叠层陶瓷片状电容(MLCC)。
电容的ESR参数对电路的影响电容器的ESR(等效串联电阻)参数电容器的主要技术指标有电容量、耐压值、耐温值。
除了这三个主要指标外,其他指标中较重要的就是等效串联电阻(ESR)了。
有的电容器上有一条金色的带状线,上面印有一个大大的空心字母“I”,它表示该电容属于LOWESR低损耗电容。
有的电容还会标出ESR值(等效串联电阻),ESR越低,损耗越小,输出电流就越大,电容器的品质越高。
ESR是Equivalent Series Resistance的缩写,即“等效串联电阻”。
理想的电容自身不会有任何能量损失,但实际上,因为制造电容的材料有电阻,电容的绝缘介质有损耗。
这个损耗在外部,表现为就像一个电阻跟电容串联在一起,所以就称为“等效串联电阻”。
和ESR类似的另外一个概念是ESL,也就是等效串联电感。
早期的卷制电感经常有很高的ESL,容量越大的电容,ESL一般也越大。
ESL经常会成为ESR的一部分,并且ESL会引起串联谐振等现象。
但是相对电容量来说,ESL的比例很小,出现问题的几率很小,后来由于电容制作工艺的提高,现在已经逐渐忽略ESL,而把ESR作为除容量、耐压值、耐温值之外选用电容器的主要参考因素了。
串联等效电阻ESR的单位是毫欧(mΩ)。
通常钽电容的ESR通常都在100毫欧以下,而铝电解电容则高于这个数值,有些种类电容的 ESR甚至会高达数欧姆。
ESR的高低,与电容器的容量、电压、频率及温度都有关系,当额定电压固定时,容量愈大 ESR愈低。
同样当容量固定时,选用高的额定电压的品种也能降低 ESR;故选用耐压高的电容确实有许多好处;低频时ESR高,高频时ESR 低;高温也会造成ESR的升高。
现在电子技术正朝着低电压高电流电路的设计方向发展,供应给元器件的电压呈现越来越低的趋势,但对功率的要求却丝毫没有降低。
按P=UI的公式来计算,要获得同样的功率,电压降低了,那就必须得增大电流。
例如INTEL、AMD 的最新款CPU,电压均小于2V,和以前3、 4V的电压相比低得多。
为什么尽量不要用钽电容?以及什么时候该用它?为什么不要选择“钽电容”?这里不去赘述“钽电容”的失效模式的原理。
这是我们不要去选用钽电容的重要原因。
看看我们的淘宝就可以知道100uF的钽电容与100uF的陶瓷电容的价格差别,大概钽电容的价格是陶瓷电容的10倍。
如果电容容量需求在100uF以下的情况下,我们现在绝大多数下,耐压如果满足的情况下,我们一般需用陶瓷电容。
贴片陶瓷电容最主要的失效模式断裂(封装越大越容易失效):贴片陶瓷电容器作常见的失效是断裂,这是贴片陶瓷电容器自身介质的脆性决定的.由于贴片陶瓷电容器直接焊接在电路板上,直接承受来自于电路板的各种机械应力,而引线式陶瓷电容器则可以通过引脚吸收来自电路板的机械应力.因此,对于贴片陶瓷电容器来说,由于热膨胀系数不同或电路板弯曲所造成的机械应力将是贴片陶瓷电容器断裂的最主要因素。
早在2007 年,美国国防后勤署(DLA)十多年来已贮存大量钽矿物,为履行美国国会的会议决定,该组织将耗尽其拥有的最后140,000磅钽材料。
从美国国防后勤署购买钽矿石的买主已包括HC Starck、DM Chemi-Met、ABS合金公司、Umicore、Ulba冶金公司和Mitsui采矿公司,这些代表了将这些钽矿石加工制成电容器级粉末、钽制品磨损件或切削工具的众多公司。
从美国国防后勤署购买这些钽矿石的投标人年复一年传统上是一贯的,这样当钽矿石供应变的吃紧时,因美国国防后勤署供应耗尽,一些公司只得抢夺新的矿石供应源。
如果失去美国国防后勤署的钽矿石供应,估计2007年钽矿石供应市场留下150,000磅的缺口,2008年缺口为350,000磅。
这个事件发生的时间不合时宜,因为现在的供应能力窘迫。
比如第二大硬研矿石卖主澳大利亚的瓜利亚子公司在第四季度已总体削减矿石产量25%(即格林布什矿产量的一半),以便该公司能完成在澳大利亚的管理事宜。
同样情形,在巴西冶金/CIF和巴拉那巴拿马(Paranapanema)两公司2006年的钽矿石产量已下降,原因是他们将兴趣转向开采更盈利的金属上。
军用高可靠性钽电容和M L C C电容军用高可靠性钽电容和MLCC电容演讲嘉宾:黄勇先生 Vishay电容器部门区域市场经理时间:2009-08-28 13:50:00 至 2009-08-28地点:成都世纪城新国际会展中心蜀风厅黄勇:大家好,很荣幸有这么一个机会给大家介绍一下。
这个技术交流的话,因为电容产品范围是比较广,这次交流只是讲到军用高可靠性的钽电容贴片陶瓷电容器。
我们有很好的电容,相信大家比较关注它的产地在哪里,我们在国内深圳也有一家公司,贴片也是在以色列为主。
在亚洲地区,Vishay有三家办事处,在上海、深圳、北京。
如果大家要找联系窗口的话,在这三个地方都可以找到像我这样的技术人员了解产品信息。
讲到军用产品都有很严格的要求,必须要长期使用的高可靠性产品,所以我们客户选择军用产品的时候,不可能有很宽的范围可以选择,这就有很多限制,Vishay除了长期使用最顶端的范围比较窄的电容器,我们根据客户的要求,也专门开发了可以像民用范围比较广的产品供大家选择。
下面会有详细的系列跟大家讲。
Vishay所有的钽电,生产种类非常齐全,所有这些都有军工产品供大家选择。
固钽的话,这张照片给大家看的是内部的钽芯,钽芯决定了这个钽电主要的参数,比如容值、电压、等效串联电阻,正极作为纯钽,介质是五氧化二钽。
所有这个芯值决定了所有的参数。
这些不同系列只是封装方式的不同所以形成了不同的系列,这个是由金属外壳固定的,它也是固钽,我们有相对不同的序列号,有不同等级的军规产品,工作电压从6V到100V的工作电压范围以及军标不同测试等级。
这个测试等级可以给大家简单的稍微介绍一下,它是加速测试的方法,用1.3倍的额定标准电压值作为加电压的筛选,失效模式有三种,所以分三种不同的等级,失效高一点的一直到失效等级非常低的。
详细参数可以在Vishay网站上找到规格书。
贴片的话,我们也有相应的军品的规格,也有相对应的失效的等级,温度范围可以从负50度到正25度范围之内都可以使用。
AVX钽电容的等效串联电阻ESR。
阻力损失发生在一切可行的形式电容器。
这些都是由几种不同的机制,包括电阻元件和触点,粘性势力内介质和生产旁路的缺陷电流路径。
为了表达对他们的这些损失的影响视为电容的ESR。
ESR的频率依赖性和可利用的关系;ESR=谭δ2πfC其中F 是赫兹的频率,C是电容法拉。
ESR是在25 ° C和100kHz的测量。
ESR是阻抗的因素之一,在高频率(100kHz和以上)就变成了主导因素。
从而ESR和阻抗几乎成了相同,阻抗仅小幅走高。
AVX钽电容的阻抗和ESR的频率依赖性。
ESR和阻抗都随频率的增加。
在较低频率值作为额外的贡献分歧阻抗(由于电容器的电抗)变得更加重要。
除了1MHz的(和超越电容的谐振点)阻抗再次增加由于电感,电容的。
典型ESR和阻抗值是类似的钽,铌氧化物材料,从而在相同的图表都有效钽电容和OxiCap®电容器。
AVX代理谈钽电容的阻抗与温度的关系和ESR。
在100kHz,阻抗和ESR的行为相同,随着温度的升高下降的典型曲线AVX钽电容的阻抗(Z)。
这是电流电压的比值,在指定的频率。
三个因素促成了钽电容器的阻抗;半导体层的电阻电容价值和电极和引线电感。
在高频率导致的电感成为一个限制因素。
温度和频率的行为确定这三个因素的阻抗行为阻抗Z。
阻抗是在25° C和100kHz。
钽电容的浪涌电压是指电容在很短的时间经过最小的串联电阻的电路33Ohms(CECC国家1KΩ)能承受的最高电压。
浪涌电压,常温下一个小时时间内可达到高达10倍额度电压并高达30秒的时间。
浪涌电压只作为参考参数,不能用作电路设计的依据,在正常运行过程中,电容应定期充电和放电。
不同温度下浪涌电压的值是不一样的,在85度及以下温度时,分类电压VC等于额定电压VR,浪涌电压VS等于额度电压VR的1.3倍;在85到125度时,分类电压VC等于额定电压VR的0.66倍,浪涌电压VS等于分类电压VC的1.3倍。
电容器规格详细介绍电容器种类依照主要材质特性分为电解质电容,电解质芯片电容,塑料薄膜电容, 陶瓷电容, 及陶瓷芯片电容等大类别.1.电解质电容器种类: 依照细部材质, 形状, 及功能特性可再区分为标准型 (>11mm高度), 迷你型(7mm高度), 超迷你型 (5mm高度), 耐高温型(105℃), 低漏电型, 迷你低漏电型 (7mm高度), 双极性型, 无极性型, 及低内阻型 (Low ESR)等.2.电解质芯片电容器种类: 依照细部材质, 形状, 及功能特性可再区分为标准型芯片, 耐高温型芯片(105℃), 无极性型芯片, 及钽质芯片等.3. 塑料薄膜电容器种类: 依照细部材质, 形状, 及功能特性可再区分为聚乙烯薄膜, 金属化聚乙烯薄膜, 聚乙脂薄膜, 聚丙烯薄膜, 直流用金属化聚丙烯薄膜, 及交流用金属化聚丙烯薄膜等. 4.陶瓷电容器种类: 依照细部材质, 形状, 及功能特性可再区分为Class-1 (T.C. Type)温度补偿型,Class-2 (Hi-K Type)高诱电型, Class-3 (S.C. Type)半导体型等.5.陶瓷芯片电容种类: 依照尺寸及额定功率特性可再区分为0402, 0603, 0805, 1206等较具普遍性电容器主要电气规格1. 电容量Capacitance: 一般电解电容器的电容量范围为0.47uF-10000uF, 测试频率为120Hz. 塑料薄膜电容器的电容量范围为0.001uF-0.47uF, 测试频率为1KHz. 陶瓷电容器T/C type的电容量范围为1 pF-680pF, 测试频率为1MHz. Hi-K type的电容量范围为100pF-0.047uF, 测试频率为1KHz. S/C type的电容量范围为0.01uF-0.33uF.2. 电容值误差Tolerance: 一般电解电容器的电容值误差范围为M 即 +/-20%, 塑料薄膜电容器为J即 +/-5%或K即 +/-10%, 或M即 +/-20%三种, 陶瓷电容器T/C type为C即 +/-0.25pF (10pF 以下时), 或D即 +/-0.5pF (10pF以下时), 或J或K四种. Hi-K type 及S/C type为K或M或Z即 +80/-20%三种.3. 损失角即D值: 一般电解电容器因为内阻较大故D值较高, 其规格视电容值高低决定, 为0.1-0.24以下. 塑料薄膜电容器则D值较低, 视其材质决定为0.001-0.01以下. 陶瓷电容器视其材质决定, Hi-K type 及S/C type为0.025以下. T/C type其规格以Q值表示需高于400-1000.(Q值相当于D值的倒数)4. 温度系数Temperature Coefficient: 即为电容量受温度变化改变之比例值, 一般仅适用于陶瓷电容器. T/C type其常用代号为CH或NPO 即为 +/-60ppm, UJ即为 -750+/-120ppm, SL即为+350+/-1000ppm. Hi-K type (Z)及S/C type (Y), 其常用代号为B (5P)即为 +/-10%, E (5U)即为 +20/-55%, F (5V)即为 +30/-80%.5. 漏电流量Leakage current: 此为电解电容器之特定规格, 一般以电容器本身额定电压加压3 Min后, 串接电流表测试, 其漏电流量需在0.01CV ( uF电容量值与额定电压相乘积) 或3uA以下 (取其较大数值). 特定低漏电流量使用 (Low leakage type) 则其漏电流量需在0.002CV或0.4uA以下.6. 冲击电压Surge Voltage: 一般以电容器本身额定电压之1.3倍电压加压, 需工作正常无异状.7. 使用温度范围: 一般电解电容器的使用温度范围为 -25℃至+85℃, 特定高温用或低漏电流量用者为 -40℃至+105℃. 塑料薄膜电容器为 -40℃至+85℃. 陶瓷电容器T/C type为-40℃至+85℃, Hi-K type 及S/C type为 -25℃至+85℃.如何选用规格适当之电容器1. 所有被动组件中,电容器属于种类及规格特性最复杂的组件. 尤其为了配合不同电路及工作环境的需求差异,即使是相同的电容量值与额定电压值, 亦有其它不同种类及材质特性的选择.2. 以电解电容器为例, 由于其电容量值较大, 虽然能和塑料薄膜电容器或陶瓷电容器互相区隔.实际使用上仍有下述各种特性差异:A. 使用温度范围:需选定一般型 -25℃至+85℃或耐高温型 -40℃至+105℃B. 使用高度限制:传统A/I标准型最低高度为11mm, 迷你型为7mm, 超迷你型为5mm(相当于芯片电解电容器之高度).C. 电容量误差值:较高额定电压或电容量大于100uF时, 有一般型为 +100/-10%或 M型 +/-20%.D. 低漏电流量特性:用于某些特定电路, 与充放电时间常数准确性有关时. (相当于Tantalum钽质电容特性)E. Low ESR低内阻特性:用于某些滤波电路, 需配合高频脉波大电流之滤波效果.例如交换电源之滤波电路.F. Bipolar 双极性特性:用于高频脉波电路, 需配合高频脉波大电流之通路效果.例如推动偏向线圈之水平输出电路.G. Non-polar无极性特性:用于低频高波幅之音频信号通路, 用以避免因电容器两端之正逆向偏压, 造成输出波形失真.H. 以上为一般A/I电解电容器,而芯片电解电容器亦同样有标准型, 耐高温型, 低漏电流量型(即钽质芯片电容), 无极性特性等分类.3. 以陶瓷电容器为例, 其材料特性区分为3类. Class 1 T/C温度补偿型供高频谐振电路用, Class 2 Hi-K与Class 3 S/C为滤波及信号通路用, 由于其电容量值部分类似, 且与塑料薄膜电容器亦数值接近, 需特别注意特性选用.A. Class 1容量范围为1 pF-680 pF, 可视高频电路需要, 选择CH零温度补偿型 (例如RC谐振电路, 不需补偿温度系数), UJ负温度补偿型 (例如LC谐振电路,需补偿线圈正温度系数), SL 无控制温度补偿型 (例如高频补偿, 非谐振电路, 不需考虑温度影响).B. Class 2 Hi-K容量范围为100 pF-0.047 uF与Class 3 S/C容量范围为0.01 uF-0.33 uF, 两者特性接近. 一般后者外型较小, 成本低, 但耐压规格较低.C.需注意100 pF-680 pF范围内,Class 1与 Class 2电容器之Q值相差极大, 电路上不可误用.4.以塑料薄膜电容器为例, 各类不同材质特性,可配合不同之电路应用. 其共同特性为容量不受温度影响, 适合中低频电路使用.A. 聚丙烯 (代号PPN或PPS) 材质之损失角最低, 可适用于高电压脉波电路工作. PPS材质为 1KV以上使用, PPN材质为 1KV 以下使用.B. 金属化聚丙烯 (代号MPPN) 材质耐电压较高, 适用于DC高电压或AC电源电路工作.使用于AC电源电路者, 必须符合AC电源安规验证,一般称为X2电容.C.聚乙脂 (代号PS) 损失角低且容量较低, 高频特性良好, 可适用于中低频谐振电路工作.D.金属化聚乙烯 (代号MPE) 容量范围广及无电感特性,可适用于一般脉波电路工作.代号MEF者,亦为MPE类材质, 但具有Flame-retardant防火特性.E. 聚乙烯 (代号PE分为有电感特性PEI及无电感特性PEN两种) 其损失角较大, 但因成本较低,可适用于一般直流或低频电路工作.F. 所有金属化之塑料薄膜电容器, 均具有self-healing自行回复特性, 材质被高压击穿后, 只要移去高压, 即可自行回复原有功能.//**************************************************************//认清电容显卡选购完全手册之电容篇作者:火乌鸦转贴自:ZOL希望对那些还不了解电容的会员们有用电容爆裂事件的背后最近2年来电容爆裂、漏液、失效这样的事件在主板、显卡领域时有发生,不过正因为这样的事件,促进消费者对显卡上电容的认识度。
钽电容和薄膜电容esl朋友们!今天咱来聊聊电容界两位挺有意思的“角色”——钽电容和薄膜电容的ESL。
这ESL啊,就像是电容的一个小“脾气”,不同的电容,这“脾气”还真不太一样。
先来说说钽电容吧。
钽电容就像是电容家族里的“实干家”,性能挺不错的。
它的ESL呢,相对来说不算特别小。
想象一下,它就像一个稍微有点“固执”的家伙,在处理一些高频信号的时候,这个ESL可能就会出来“捣捣乱”。
比如说,在高频电路中,ESL会让钽电容的表现打点儿折扣。
这是为啥呢?因为ESL会和电容本身的特性相互作用,产生一些额外的影响,就好像一个人在走路的时候,身上背着个有点沉的包袱,走起路来就没那么轻快了。
不过呢,钽电容也有它的优点。
它的稳定性比较好,就像一个靠谱的老员工,工作起来兢兢业业的。
即使ESL有点小“毛病”,但在很多对稳定性要求高的场合,它还是能发挥重要作用的。
比如说在一些电源滤波电路里,钽电容能稳稳地把那些杂波给“摁住”,让电路的电压变得更加平稳。
再看看薄膜电容,这可是电容界的“灵活小能手”。
它的ESL通常比较小,就像一个身轻如燕的运动员,在高频领域那可是如鱼得水。
因为ESL小啊,在处理高频信号的时候,它受到的干扰就小,能够更快速、更准确地完成任务。
比如说在一些通信设备里,薄膜电容就凭借着它低ESL的优势,让信号传输得又快又好,就像给信号铺了一条高速通道一样。
而且薄膜电容的温度特性也不错,不会因为温度的变化就“闹情绪”。
不像有些电容,温度一变化,性能就变得乱七八糟的。
薄膜电容就很淡定,不管环境怎么变,它都能保持较好的工作状态。
但是呢,薄膜电容也不是十全十美的。
它的容量相对钽电容来说,有时候可能会小一些。
这就好比一个小水桶和一个大水桶,在需要装很多水的时候,小水桶可能就有点力不从心了。
在实际应用中,我们要根据具体的情况来选择钽电容还是薄膜电容。
如果是对稳定性要求特别高,对高频性能要求不是顶级的,钽电容可能就是个不错的选择。