2015年广东省广州市中考数学试题及参考答案(word解析版)
- 格式:docx
- 大小:317.10 KB
- 文档页数:18
2015~2019年广州市中考数学真题共5套(含答案)2015年广州市初中毕业生学业考试数 学本试卷分选择题和非选择题两部分,共三大题25小题,共4页,满分150分,考试用时120分钟.第一部分 选择题(共30分)一、选择题(本大题共10小题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项 是符合题目要求的.)1.四个数-3.14,0,1,2中为负数的是(*)(A )-3.14 (B )0 (C )1 (D )2 2.将图1所示的图案以圆心为中心,旋转180°后得到的图案是(*)(A ) (B ) (C ) (D ) 图1 3.已知⊙O 的半径是5,直线l 是⊙O 的切线,在点O 到直线l 的距离是(*)(A )2.5 (B )3 (C )5 (D )104.两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们的成绩的(*)(A )众数 (B )中位数 (C )方差 (D )以上都不对5.下列计算正确的是(*)(A )2ab ab ab ⋅= (B )33(2)2a a = (C 3(0)a =≥ (D 0,0)a b =≥≥6.如图2是一个几何体的三视图,则这几何体的展开图可以是(*)(A ) (B ) (C ) (D )7.已知,a b 满足方程组51234a b a b +=⎧⎨-=⎩,则a b +的值为(*) (A )-4 (B )4 (C )-2 (D )28.下列命题中,真命题的个数有(*)①对角线互相平分的四边形是平行四边形②两组对角分别相等的四边形是平行四边形③一组对边平行,另一组对边相等的四边形是平行四边形(A )3个 (B )2个 (C )1个 (D )0个9.已知圆的半径是*)(A ) (B ) (C ) (D )10.已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为(*)(A )10 (B )14 (C )10或14 (D )8或10第二部分 非选择题(共120分)二、填空题(本大题共6小题,每小题3分,满分18分.)11.如图3,AB ∥CD ,直线l 分别与AB ,CD 相交,若∠1=50°,则∠2的度数为 * .12.根据环保局公布的广州市2013年至2014年PM2.5的主要来源的数据,制成扇形统计图(如图4),其中所占百分比最大的主要来源是 * .(填主要来源的名称)13.分解因式:26mx my -= * .14.某水库的水位在5小时内持续上涨,初始水位高度为6米,水位以每小时0.3米的速度匀速上升, 则水库的水位y 与上涨时间x 之间的函数关系式是 * .15.如图5,ABC ∆中,DE 是BC 的垂直平分线,DE 交AC 于点E ,连接BE ,若BE=9,BC=12,则cosC= * .16.如图6,四边形ABCD 中,∠A=90°,AB=AD=3,点M ,N 分别为线段BC ,AB 上的动点(含端点,但点M不与点B 重合),点E ,F 分别为DM ,MN 的中点,则EF长度的最大值为 * .三、解答题(本大题共9小题,满分102分,解答应写出文字说明、证明过程或演算步骤.)17.(本小题满分9分)解方程:53(4)x x =-.18.(本小题满分9分)如图7,正方形ABCD 中,点E 、F 分别在AD ,CD 上,且AE=DF ,连接BE ,AF.求证:BE=AF.已知222111x x xAx x++=---.[(1)化简A;(2)当x满足不等式组1030xx-≥⎧⎨-<⎩,且x为整数时,求A的值.20.(本小题满分10分)已知反比例函数7myx-=的图象的一支位于第一象限.(1)判断该函数图象的另一支所在的象限,并求m的取值范围;(2)如图8,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若OAB∆的面积为6,求m的值.21.(本小题满分12分)某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.(1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;(3)在这4件产品中加入x 件合格品后,进行如下试验:随机抽取1件进行检测,然后放回, 多次重复这个试验.通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算 出x 的值大约是多少?23.(本小题满分12分)如图9,AC 是⊙O 的直径,点B 在⊙O 上,∠ACB=30°.(1)利用尺规作∠ABC 的平分线BD ,交AC 于点E ,交⊙O 于点D ,连接CD (保留作图痕迹, 不写作法);(2)在(1)所作的图形中,求ABE ∆与CDE ∆的面积之比.如图10,四边形OMTN 中,OM=ON ,TM=TN ,我们把这种两组邻边分别相等的四边形叫做筝形.(1)试探究筝形对角线之间的位置关系,并证明你的结论;(2)在筝形ABCD 中,已知AB=AD=5,BC=CD ,BC>AB ,BD ,AC 为对角线,BD=8.①是否存在一个圆使得A ,B ,C ,D 四个点都在这个圆上?若存在,求出圆的半径;若不存在, 请说明理由;②过点B 作BF ⊥CD ,垂足为F ,BF 交AC 于点E ,连接DE.当四边形ABED 为菱形时,求点F 到AB 的距离.25.(本小题满分14分) 已知O 为坐标原点,抛物线21(0)y ax bx c a =++≠与x 轴相交于点1(,0)A x ,2(,0)B x .与y 轴交于点C ,且O ,C 两点之间的距离为3,120x x ⋅<,124x x +=,点A ,C 在直线23y x t =-+上.(1)求点C 的坐标;(2)当1y 随着x 的增大而增大时,求自变量x 的取值范围;(3)将抛物线1y 向左平移(0)n n >个单位,记平移后y 随着x 的增大而增大的部分为P ,直线2y 向下平移n 个单位,当平移后的直线与P 有公共点时,求225n n -的最小值.2015年广州市初中毕业生学业考试数学参考答案2016年广州市初中毕业生学业考试数学本试卷分选择题和非选择题两部分,共三大题25小题,满分150分,考试用时120分钟注意事项:1.答卷前,考生务必在答题卡第1面、第三面、第五面上用黑色字迹的钢笔或签字笔填写自已的考生号、姓名;同时填写考场室号、座位号,再用2B铅笔把对应这两个号码的标号涂黑.2.选择题每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号,不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,涉及作图的题目,用2B铅笔画图,答案必须写在答题卡各题目指定区域内的相应位置上,如需改动,先划掉原来的答案,然后再写上新的答案,改动的答案也不能超出指定的区域,不准使用铅笔,圆珠笔和涂改液,不按以上要求作答的答案无效.4.考生必须保持答题卡的整洁,考试结束后,将本试卷和答题卡一并交回.第一部分(选择题共30分)一、选择题(本大题共10题,每小题3分,满分30分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.中国人很早开始使用负数,中国古代数学著作《九章算术》的“方程”一章,在世界数学史上首次正式引入负数、如果收入100元记作+100,那么-80元表示()A、支出20元B、收入20元C、支出80元D、收入80元2.图1所示几何体的左视图是()3.据统计,2015年广州地铁日均客运量约为6590000.将6590000用科学记数法表示为()A、6.59´104B、659´104C、65.9´105D、6.59´1064.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是()A、110B、19C、13D、125. 下列计算正确的是( )A 、x 2y 2=x y (y ¹0)B 、xy 2¸12y =2xy (y ¹0)C 、=x ³0,y ³o ) D 、(xy 3)2=x 2y 66. 一司机驾驶汽车从甲地去乙地,他以80千米/小时的平均速度用了4小时到达乙地。
2015年番禺区九年级数学综合训练试题(一)第一部分 选择题(共30分)、选择题(本大题共 10小题,每小题 只有一项是符合题目要求的.) 3分,满分30分•在每小题给出的四个选项中1.下列计算正确的是(探)4.已知a , b 两数在数轴上对应的点如右图所示,下列结论中正确的是(探)(A a b (0 b a 0 (B ) ab 0(D ) a b 05. 某射击队要从四名运动员中选拔一名运动员参加比赛, 如右表所示•如果要选择一个成绩高 且发挥稳定的人参赛,则这个人应是(探) •(A )甲(B )乙 C )丙(D ) 丁6. 下列图形可以由一个图形经过平移变换得到的是(探)(A ) (B ) (C ) (D )7. 据报道,2014年6月,恒大集团与阿里巴巴集团实施战略合作,阿里巴巴注资 州恒大•将数据1200000000用科学记数法表示为(探).8899(A ) 1.2 10 (B ) 12 10 (C ) 1.2 10 (D ) 1.2 10(A ) 2 12(B ) .93(C) (ab 2)2 a 2b 42.二元 次方程组 x y 2 口的解是(探x y 0)x 0x 1(A(B )y 2y 13.如图的立体图形的左视图可能是 W(D )(A )(B )选拔赛中每名队员的平均成绩x 与方差s 2甲卩丙卩丁护2I PL 加 1(C ) (C ) (D )12亿元入股广8.如图,O O 的半径为5, AB 为O O 的弦,OC 丄AB 于点C .若OC 3,则AB 的长为(探)分别过点C B 作射线AD 的垂线段,垂足分别为 E 、F . 求证:BF=CE(A ) 4(B) 6(C ) 8(D ) 109. 甲口袋中有1个红球和1个黄球,乙口袋中有 1个红球、1个黄球和1个绿球,这些球除颜色外 都相同•从两个口袋中各随机取一个球,取出的两个球都是红的概率为(探)(A) 2 cm cm ( B ) 2cm(C ) 3cm (D) 4cm第二部分 非选择题(共120分)二、填空题(本大题共 6小题,每小题3分,满分18分.) 11.函数y—1的自变量x 的取值范围是.x 412. 若分式的值为0,则X 的值为探.x 214.如图,若 AB 是O O 的直径,CD 是O O 的弦,/ ABD 58。
2015年初中毕业暨升学考试试卷数学本试卷由选择题、填空题和解答题三大题组成,共28小题,满分130分,考试时间120分钟.注意事项:1.答题前,考生务必将自己的姓名、考点名称、考场号、座位号用0.5毫米黑色墨水签字笔填写在答题卡相应位置上,并认真核对条形码上的准考号、姓名是否与本人的相符;2.答选择题必须用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,请用橡皮擦干净后,再选涂其他答案;答非选择题必须用0.5毫米黑色墨水签字笔写在答题卡指定的位置上,不在答题区域内的答案一律无效,不得用其他笔答题;3.考生答题必须答在答题卡上,保持卡面清洁,不要折叠,不要弄破,答在试卷和草稿纸上一律无效.一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.请将选择题的答案用2B铅笔涂在答题卡相应位置上.........1.2的相反数是A.2 B.12C.-2 D.-122.有一组数据:3,5,5,6,7,这组数据的众数为A.3 B.5 C.6 D.73.月球的半径约为1 738 000m,1 738 000这个数用科学记数法可表示为A.1.738×106B.1.738×107C.0.1738×107D.17.38×1054.若()2m=-,则有A.0<m<1 B.-1<m<0 C.-2<m<-1 D.-3<m<-2 5.小明统计了他家今年5月份打电话的次数及通话时间,并列出了频数分布表:则通话时间不超过15min的频率为A.0.1 B.0.4 C.0.5 D.0.96.若点A(a,b)在反比例函数2yx=的图像上,则代数式ab-4的值为A.0 B.-2 C.2 D.-67.如图,在△ABC 中,AB =AC ,D 为BC 中点,∠BAD =35°,则∠C 的度数为 A .35° B .45°C .55°D .60°8.若二次函数y =x 2+bx 的图像的对称轴是经过点(2,0)且平行于y 轴的直线,则关于x的方程x 2+bx =5的解为 A .120,4x x ==B .121,5x x ==C .121,5x x ==-D .121,5x x =-=9.如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为 A.43πB.43π-C.πD.23π10.如图,在一笔直的海岸线l 上有A 、B 两个观测站,AB =2km ,从A 测得船C 在北偏东45°的方向,从B 测得船C 在北偏东22.5°的方向,则船C 离海岸线l 的距离(即CD 的长)为 A .4kmB.(2kmC.D.(4-km二、填空题:本大题共8小题,每小题3分,共24分.把答案直接填在答题卡相应位置上......... 11.计算:2a a ⋅= ▲ .12.如图,直线a ∥b ,∠1=125°,则∠2的度数为 ▲ °.DCB A(第7题)(第9题)(第10题)l13.某学校在“你最喜爱的球类运动”调查中,随机调查了若干名学生(每名学生分别选了一项球类运动),并根据调查结果绘制了如图所示的扇形统计图.已知其中最喜欢羽毛球的人数比最喜欢乒乓球的人数少6人,则该校被调查的学生总人数为 ▲ 名. 14.因式分解:224a b -= ▲ .15.如图,转盘中8个扇形的面积都相等.任意转动转盘1次,当转盘停止转动时,指针指向大于6的数的概率为 ▲ .16.若23a b -=,则924a b -+的值为 ▲ .17.如图,在△ABC 中,CD 是高,CE 是中线,CE =CB ,点A 、D 关于点F 对称,过点F作FG ∥CD ,交AC 边于点G ,连接GE .若AC =18,BC =12,则△CEG 的周长为 ▲ .18.如图,四边形ABCD 为矩形,过点D 作对角线BD 的垂线,交BC 的延长线于点E ,取BE 的中点F ,连接DF ,DF =4.设AB =x ,AD =y ,则()224x y +-的值为 ▲ . 三、解答题:本大题共10小题,共76分.把解答过程写在答题卡相应位置上........,解答时应写出必要的计算过程、推演步骤或文字说明.作图时用2B 铅笔或黑色墨水签字笔.(第17题)GF E D CBA F EDC B A (第18题)ba(第13题)20%10%30%40%其他乒乓球篮球羽毛球(第15题)19.(本题满分5分)(052--. 20.(本题满分5分)解不等式组:()12,31 5.x x x +≥⎧⎪⎨-+⎪⎩>21.(本题满分6分)先化简,再求值:2121122x x x x ++⎛⎫-÷⎪++⎝⎭,其中1x .22.(本题满分6分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?23.(本题满分8分)一个不透明的口袋中装有2个红球(记为红球1、红球2)、1个白球、1个黑球,这些球除颜色外都相同,将球摇匀.(1)从中任意摸出1个球,恰好摸到红球的概率是 ▲ ;(2)先从中任意摸出1个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表)求两次都摸到红球的概率.24.(本题满分8分)如图,在△ABC中,AB=AC.分别以B、C为圆心,BC长为半径在BC下方画弧,设两弧交于点D,与AB、AC的延长线分别交于点E、F,连接AD、BD、CD.(1)求证:AD平分∠BAC;(2)若BC=6,∠BAC=50︒,求 DE、 DF的长度之和(结果保留π).25.(本题满分8分)如图,已知函数kyx=(x>0)的图像经过点A、B,点B的坐标为(2,2).过点A作AC⊥x轴,垂足为C,过点B作BD⊥y轴,垂足为D,AC与BD交于点F.一次函数y=ax+b的图像经过点A、D,与x轴的负半轴交于点E.(1)若AC=32OD,求a、b的值;(2)若BC∥AE,求BC的长.(第24题)F EDCBA26.(本题满分10分)如图,已知AD 是△ABC 的角平分线,⊙O 经过A 、B 、D 三点,过点B 作BE ∥AD ,交⊙O 于点E ,连接ED . (1)求证:ED ∥AC ;(2)若BD =2CD ,设△EBD 的面积为1S ,△ADC 的面积为2S ,且2121640S S -+=,求△ABC 的面积.27.(本题满分10分)如图,已知二次函数()21y x m x m =+--(其中0<m <1)的图像与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,对称轴为直线l .设P 为对称轴l 上的点,连接P A 、PC ,P A =PC . (1)∠ABC 的度数为 ▲ °;(2)求P 点坐标(用含m 的代数式表示);(3)在坐标轴上是否存在点Q (与原点O 不重合),使得以Q 、B 、C 为顶点的三角形与△P AC 相似,且线段PQ 的长度最小?如果存在,求出所有满足条件的点Q 的坐标;如果不存在,请说明理由.(第26题)28.(本题满分10分)如图,在矩形ABCD 中,AD =a cm ,AB =b cm (a >b >4),半径为2cm的⊙O 在矩形内且与AB 、AD 均相切.现有动点P 从A 点出发,在矩形边上沿着A →B →C →D 的方向匀速移动,当点P 到达D 点时停止移动;⊙O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O 回到出发时的位置(即再次与AB 相切)时停止移动.已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P 从A →B →C →D ,全程共移动了 ▲ cm (用含a 、b 的代数式表示); (2)如图①,已知点P 从A 点出发,移动2s 到达B 点,继续移动3s ,到达BC 的中点.若点P 与⊙O 的移动速度相等,求在这5s 时间内圆心O 移动的距离;(3)如图②,已知a =20,b =10.是否存在如下情形:当⊙O 到达⊙O 1的位置时(此时圆心O 1在矩形对角线BD 上),DP 与⊙O 1恰好相切?请说明理由.(第28题)(图②)(图①)2015年苏州市初中毕业暨升学考试数学试题答案一、选择题1.C 2.B 3.A 4.C 5.D6.B 7.C 8.D 9.A 10.B二、填空题11.3a12.55 13.60 14.()()22a b a b+-15.1416.3 17.27 18.16三、解答题19.解:原式=3+5-1 =7.20.解:由12x+≥,解得1x≥,由()315x x-+>,解得4x>,∴不等式组的解集是4x>.21.解:原式=()21122xxx x++÷++=()2121211x xx xx++⨯=+++.当1x===.22.解:设乙每小时做x面彩旗,则甲每小时做(x+5)面彩旗.根据题意,得60505x x=+.解这个方程,得x=25.经检验,x=25是所列方程的解.∴x+5=30.答:甲每小时做30面彩旗,乙每小时做25面彩旗.23.解:(1)1.(2)用表格列出所有可能的结果:由表格可知,共有12种可能出现的结果,并且它们都是等可能的,其中“两次都摸到红球”有2种可能.∴P(两次都摸到红球)=212=16.24.证明:(1)由作图可知BD =CD .在△ABD 和△ACD 中,,,,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD (SSS ).∴∠BAD =∠CAD ,即AD 平分∠BAC .解:(2)∵AB =AC ,∠BAC =50°,∴∠ABC =∠ACB=65°.∵BD = CD = BC ,∴△BDC 为等边三角形. ∴∠DBC =∠DCB=60°. ∴∠DBE =∠DCF=55°. ∵BC =6,∴BD = CD =6.∴ DE的长度= DF 的长度=556111806ππ⨯⨯=. ∴ DE、 DF 的长度之和为111111663πππ+=. 25.解:(1)∵点B (2,2)在ky x=的图像上,∴k =4,4y x=. ∵BD ⊥y 轴,∴D 点的坐标为(0,2),OD =2. ∵AC ⊥x 轴,AC =32OD ,∴AC =3,即A 点的纵坐标为3. ∵点A 在4y x=的图像上,∴A 点的坐标为(43,3).∵一次函数y =ax +b 的图像经过点A 、D , ∴43,3 2.a b b ⎧+=⎪⎨⎪=⎩ 解得3,42.a b ⎧=⎪⎨⎪=⎩ (2)设A 点的坐标为(m ,4m),则C 点的坐标为(m ,0). ∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形. ∴CE = BD =2.∵BD ∥CE ,∴∠ADF =∠AEC .∴在Rt △AFD 中,tan ∠ADF =42AF mDF m -=, 在Rt △ACE 中,tan ∠AEC =42AC mEC =, ∴4422m m m -=,解得m =1.∴C 点的坐标为(1,0),BC26.证明:(1)∵AD 是△ABC 的角平分线, ∴∠BAD =∠DAC .∵∠E=∠BAD ,∴∠E =∠DAC . ∵BE ∥AD ,∴∠E =∠EDA . ∴∠EDA =∠DA C . ∴ED ∥AC .解:(2)∵BE ∥AD ,∴∠EBD =∠ADC .∵∠E =∠DAC ,∴△EBD ∽△ADC ,且相似比2BDk DC==. ··················· ∴2124S k S ==,即124S S =. ∵2121640S S -+=,∴222161640S S -+=,即()22420S -=.∴212S =. ∵233ABC S BC BD CD CD S CD CD CD +==== ,∴32ABC S = . 27.解:(1)45.理由如下:令x =0,则y =-m ,C 点坐标为(0,-m ).令y =0,则()210x m x m +--=,解得11x =-,2x m =.∵0<m <1,点A 在点B 的左侧,∴B 点坐标为(m ,0).∴OB =OC =m .∵∠BOC =90°,∴△BOC 是等腰直角三角形,∠OBC =45°. (2)解法一:如图①,作PD ⊥y 轴,垂足为D ,设l 与x 轴交于点E ,由题意得,抛物线的对称轴为12mx -+=. 设点P 坐标为(12m-+,n ). ∵P A = PC , ∴P A 2= PC 2,即AE 2+ PE 2=CD 2+ PD 2.∴()222211122m m n n m -+-⎛⎫⎛⎫++=++ ⎪ ⎪⎝⎭⎝⎭.解得12m n -=.∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭. 解法二:连接PB .由题意得,抛物线的对称轴为12m x -+=. ∵P 在对称轴l 上,∴P A =PB . ∵P A =PC ,∴PB =PC .∵△BOC 是等腰直角三角形,且OB =OC ,∴P 在BC 的垂直平分线y x =-上.∴P 点即为对称轴12mx -+=与直线y x =-的交点. ∴P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭.图①图②(3)解法一:存在点Q 满足题意.∵P 点的坐标为11,22m m -+-⎛⎫⎪⎝⎭, ∴P A 2+ PC 2=AE 2+ PE 2+CD 2+ PD 2=222221111112222m m m m m m -+---⎛⎫⎛⎫⎛⎫⎛⎫+++++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭. ∵AC 2=21m +,∴P A 2+ PC 2=AC 2.∴∠APC =90°. ∴△P AC 是等腰直角三角形.∵以Q 、B 、C 为顶点的三角形与△P AC 相似, ∴△QBC 是等腰直角三角形.∴由题意知满足条件的点Q 的坐标为(-m ,0)或(0,m ). ①如图①,当Q 点的坐标为(-m ,0)时,若PQ 与x 轴垂直,则12m m -+=-,解得13m =,PQ =13. 若PQ 与x 轴不垂直, 则22222221151521222222510m m PQ PE EQ m m m m --+⎛⎫⎛⎫⎛⎫=+=++=-+=-+ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ .<13, ∴当25m =,即Q 点的坐标为(25-,0)时, PQ 的长度最小.②如图②,当Q 点的坐标为(0,m )时,若PQ 与y 轴垂直,则12m m -=,解得13m =,PQ =13. 若PQ 与y 轴不垂直, 则22222221151521222222510m m PQ PD DQ m m m m --⎛⎫⎛⎫⎛⎫=+=+-=-+=-+ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. ∵0<m <1,∴当25m =时,2PQ 取得最小值110,PQ.<13, ∴当25m =,即Q 点的坐标为(0,25)时, PQ 的长度最小.综上:当Q 点坐标为(25-,0)或(0,25)时,PQ 的长度最小.解法二: 如图①,由(2)知P 为△ABC 的外接圆的圆心. ∵∠APC 与∠ABC 对应同一条弧AC ,且∠ABC =45°, ∴∠APC =2∠ABC =90°.下面解题步骤同解法一.28.解:(1)a +2b .(2)∵在整个运动过程中,点P 移动的距离为()2a b +cm ,圆心O 移动的距离为()24a -cm , 由题意,得()224a b a +=-. ①∵点P 移动2s 到达B 点,即点P 用2s 移动了b cm ,点P 继续移动3s ,到达BC 的中点,即点P 用3s 移动了12a cm .∴1223a b =. ② 由①②解得24,8.a b =⎧⎨=⎩∵点P 移动的速度与⊙O 移动的速度相等,∴⊙O 移动的速度为42b=(cm/s ). ∴这5s 时间内圆心O 移动的距离为5×4=20(cm ). (3)存在这种情形.解法一:设点P 移动的速度为v 1cm/s ,⊙O 移动的速度为v 2cm/s ,由题意,得()()1222021052422044v a b v a ++⨯===--.FE如图,设直线OO 1与AB 交于点E ,与CD 交于点F ,⊙O 1与AD 相切于点G . 若PD 与⊙O 1相切,切点为H ,则O 1G =O 1H . 易得△DO 1G ≌△DO 1H ,∴∠ADB =∠BDP . ∵BC ∥AD ,∴∠ADB =∠CBD . ∴∠BDP =∠CBD .∴BP =DP .设BP =x cm ,则DP =x cm ,PC =(20-x )cm ,在Rt △PCD 中,由勾股定理,可得222PC CD PD +=,即()2222010x x -+=,解得252x =.∴此时点P 移动的距离为25451022+=(cm ). ∵EF ∥AD ,∴△BEO 1∽△BAD . ∴1EO BE AD BA =,即182010EO =. ∴EO 1=16cm .∴OO 1=14cm .①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm , ∴此时点P 与⊙O 移动的速度比为454521428=.∵455284≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ), ∴此时点P 与⊙O 移动的速度比为45455218364==. ∴此时PD 与⊙O 1恰好相切. 解法二:∵点P 移动的距离为452cm (见解法一), OO 1=14cm (见解法一),1254v v =,∴⊙O 应该移动的距离为4541825⨯=(cm ). ①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的距离为14cm ≠18 cm , ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的距离为2×(20-4)-14=18(cm ),∴此时PD 与⊙O 1恰好相切.解法三:点P 移动的距离为452cm ,(见解法一) OO 1=14cm ,(见解法一) 由1254v v =可设点P 的移动速度为5k cm/s ,⊙O 的移动速度为4k cm/s , ∴点P 移动的时间为459252k k=(s ).①当⊙O 首次到达⊙O 1的位置时,⊙O 移动的时间为1479422k k k=≠, ∴此时PD 与⊙O 1不可能相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 移动的时间为2(204)14942k k⨯--=, ∴此时PD 与⊙O 1恰好相切.。
2015年广东省广州市中考数学模拟试卷(扫描二维码可查看试题解析)一、选择题.(本题共10小题,每小题3分,共30分,在每小题所给出的选项中,只有一项符合题目要求)1.(3分)(2013•广州)比0大的数是()A.﹣1 B.C.0D.12.(3分)(2014•重庆)计算5x2﹣2x2的结果是()A.3B.3x C.3x2D.3x43.(3分)(2014•重庆)如图,△ABC∽△DEF,相似比为1:2.若BC=1,则EF的长是()A.1B.2C.3D.44.(3分)(2014•重庆)如图,直线AB∥CD,直线EF分别交AB,CD于点E,F.若∠AEF=50°,则∠EFC的大小是()A.40°B.50°C.120°D.130°5.(3分)(2014•重庆)若点(3,1)在一次函数y=kx﹣2(k≠0)的图象上,则k的值是()A.5B.4C.3D.16.(3分)(2014•重庆)如图,在矩形ABCD中,对角线AC,BD相交于点O,∠ACB=30°,则∠AOB的大小为()A.30°B.60°C.90°D.120°7.(3分)(2014•重庆)如图,菱形ABCD的对角线AC,BD相交于点O,AC=8,BD=6,以AB 为直径作一个半圆,则图中阴影部分的面积为()A.25π﹣6 B.π﹣6 C.π﹣6D.π﹣68.(3分)(2014•重庆)如图,正方形ABCD的顶点B,C在x轴的正半轴上,反比例函数y=(k≠0)在第一象限的图象经过顶点A(m,2)和CD边上的点E(n,),过点E的直线l交x轴于点F,交y轴于点G(0,﹣2),则点F的坐标是()A.(,0)B.(,0)C.(,0)D.(,0)9.(3分)(2013•广州)若5k+20<0,则关于x的一元二次方程x2+4x﹣k=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断10.(3分)(2013•广州)如图所示,四边形ABCD是梯形,AD∥BC,CA是∠BCD的平分线,且AB⊥AC,AB=4,AD=6,则tanB=()A.2B.2C.D.二.填空题.(本大题共6小题,每小题3分,共18分)11.(3分)(2013•广州)点P在线段AB的垂直平分线上,PA=7,则PB=.12.(3分)(2013•广州)广州某慈善机构全年共募集善款5250000元,将5250000用科学记数法表示为.13.(3分)(2013•广州)分解因式:x2+xy=.14.(3分)(2013•河南)将一副直角三角板ABC和EDF如图放置(其中∠A=60°,∠F=45°).使点E落在AC边上,且ED∥BC,则∠CEF的度数为.15.(3分)(2013•河南)如图,抛物线的顶点为P(﹣2,2),与y轴交于点A(0,3).若平移该抛物线使其顶点P沿直线移动到点P′(2,﹣2),点A的对应点为A′,则抛物线上PA段扫过的区域(阴影部分)的面积为.16.(3分)(2014•河南)如图,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD绕点A顺时针旋转30°得到菱形AB′C′D′,其中点C的运动路径为,则图中阴影部分的面积为.三、解答题(本大题共9小题,满分102分)17.(9分)(2014•深圳)计算:﹣2tan60°+(﹣1)0﹣()﹣1.18.(9分)(2014•深圳)已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,(1)证明四边形ABDF是平行四边形;(2)若AF=DF=5,AD=6,求AC的长.19.(12分)(2014•北京)已知关于x的方程mx2﹣(m+2)x+2=0(m≠0).(1)求证:方程总有两个实数根;(2)若方程的两个实数根都是整数,求正整数m的值.20.(14分)(2014•重庆)为鼓励创业,市政府制定了小型企业的优惠政策,许多小型企业应运而生,某镇统计了该镇1﹣5月新注册小型企业的数量,并将结果绘制成如下两种不完整的统计图:(1)某镇今年1﹣5月新注册小型企业一共有家.请将折线统计图补充完整;(2)该镇今年3月新注册的小型企业中,只有2家是餐饮企业,现从3月新注册的小型企业中随机抽取2家企业了解其经营状况,请用列表或画树状图的方法求出所抽取的2家企业恰好都是餐饮企业的概率.21.(6分)(2014•山西)如图,点A、B、C表示某旅游景区三个缆车站的位置,线段AB、BC 表示连接缆车站的钢缆,已知A、B、C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米、310米、710米,钢缆AB的坡度i1=1:2,钢缆BC的坡度i2=1:1,景区因改造缆车线路,需要从A 到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比)22.(12分)(2014•山西)某新建火车站站前广场需要绿化的面积为46000米2,施工队在绿化了22000米2后,将每天的工作量增加为原来的1.5倍,结果提前4天完成了该项绿化工程.(1)该项绿化工程原计划每天完成多少米2?(2)该项绿化工程中有一块长为20米,宽为8米的矩形空地,计划在其中修建两块相同的矩形绿地,它们的面积之和为56米2,两块绿地之间及周边留有宽度相等的人行通道(如图所示),问人行通道的宽度是多少米?23.(12分)(2014•山西)综合与探究:如图,在平面直角坐标系xOy中,四边形OABC是平行四边形,A、C两点的坐标分别为(4,0),(﹣2,3),抛物线W经过O、A、C三点,D是抛物线W的顶点.(1)求抛物线W的解析式及顶点D的坐标;(2)将抛物线W和▱OABC一起先向右平移4个单位后,再向下平移m(0<m<3)个单位,得到抛物线W′和▱O′A′B′C′,在向下平移的过程中,设▱O′A′B′C′与▱OABC的重叠部分的面积为S,试探究:当m为何值时S有最大值,并求出S的最大值;(3)在(2)的条件下,当S取最大值时,设此时抛物线W′的顶点为F,若点M是x轴上的动点,点N是抛物线W′上的动点,试判断是否存在这样的点M和点N,使得以D、F、M、N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.24.(14分)(2014•重庆)如图,抛物线y=﹣x2﹣2x+3 的图象与x轴交于A、B两点(点A在点B的左边),与y轴交于点C,点D为抛物线的顶点.(1)求A、B、C的坐标;(2)点M为线段AB上一点(点M不与点A、B重合),过点M作x轴的垂线,与直线AC交于点E,与抛物线交于点P,过点P作PQ∥AB交抛物线于点Q,过点Q作QN⊥x轴于点N.若点P在点Q左边,当矩形PMNQ的周长最大时,求△AEM的面积;(3)在(2)的条件下,当矩形PMNQ的周长最大时,连接DQ.过抛物线上一点F作y轴的平行线,与直线AC交于点G(点G在点F的上方).若FG=2DQ,求点F的坐标.25.(14分)(2014•深圳)如图,直线AB的解析式为y=2x+4,交x轴于点A,交y轴于点B,以A为顶点的抛物线交直线AB于点D,交y轴负半轴于点C(0,﹣4).(1)求抛物线的解析式;(2)将抛物线顶点沿着直线AB平移,此时顶点记为E,与y轴的交点记为F,①求当△BEF与△BAO相似时,E点坐标;②记平移后抛物线与AB另一个交点为G,则S△EFG与S△ACD是否存在8倍的关系?若有请直接写出F点的坐标.2015年广东省广州市中考数学模拟试卷参考答案一、选择题.(本题共10小题,每小题3分,共30分,在每小题所给出的选项中,只有一项符合题目要求)1.D 2.C 3.B 4.D 5.D 6.B 7.D 8.C 9.A 10.B二.填空题.(本大题共6小题,每小题3分,共18分)11.7 12.5.25×10613.x(x+y) 14.15°15.12 16.三、解答题(本大题共9小题,满分102分)17.18.19.20.16 21.22.23.24.25.。
2015年广东广州中考数学一、选择题(共10小题;共50分)1. 四个数−3.14,0,1,2中为负数的是 A. −3.14B. 0C. 1D. 22. 将图所示的图案以圆心为中心,旋转180∘后得到的图案是 ( )A. B.C. D.3. 已知⊙O的半径是5,直线l是⊙O的切线,在点O到直线l的距离是 A. 2.5B. 3C. 5D. 104. 两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们的成绩的 A. 众数B. 中位数C. 方差D. 以上都不对5. 下列计算正确的是 ( )A. ab⋅ab=2abB. 2a3=2a3C. 3a−a=3a≥0D. a⋅=a≥0,b≥06. 如图是一个几何体的三视图,则这几何体的展开图可以是 ( )A. B.C. D.7. 已知a,b满足方程组a+5b=12,3a−b=4,则a+b的值为 A. −4B. 4C. −2D. 28. 下列命题中,真命题的个数有 ①对角线互相平分的四边形是平行四边形;②两组对角分别相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形.A. 3个B. 2个C. 1个D. 0个9. 已知圆的半径是23,则该圆的内接正六边形的面积是 ( )A. 33B. 93C. 183D. 36310. 已知2是关于x的方程x2−2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC的两条边长,则三角形ABC的周长为 ( )A. 10B. 14C. 10或14D. 8或10二、填空题(共6小题;共30分)11. 如图,AB∥CD,直线l分别与AB,CD相交,若∠1=50∘,则∠2的度数为.12. 根据环保局公布的广州市2013年至2014年PM2.5的主要来源的数据,制成扇形统计图(如图),其中所占百分比最大的主要来源是.(填主要来源的名称)13. 分解因式:2mx−6my=.14. 某水库的水位在5小时内持续上涨,初始水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位y与上涨时间x0≤x≤5之间的函数关系式是.15. 如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE,若BE=9,BC=12,则cos C=.16. 如图,四边形ABCD中,∠A=90∘,AB=3AD=3,点M,N分别为线段BC,AB上的动点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为.三、解答题(共9小题;共117分)17. 解方程:5x=3x−4.18. 如图,正方形ABCD中,点E,F分别在AD,CD上,且AE=DF,连接BE,AF.求证:BE=AF.19. 已知A=x2+2x+1x2−1−xx−1.Ⅰ化简A;Ⅱ当x满足不等式组x−1≥0,x−3<0,且x为整数时,求A的值.20. 已知反比例函数y=m−7x的图象的一支位于第一象限.Ⅰ判断该函数图象的另一支所在的象限,并求m的取值范围;Ⅱ如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对称,若△OAB的面积为6,求m的值.21. 某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.Ⅰ求2013年至2015年该地区投入教育经费的年平均增长率;Ⅱ根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.22. 4件同型号的产品中,有1件不合格品和3件合格品.Ⅰ从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;Ⅱ从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;Ⅲ在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次重复这个试验.通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大约是多少?23. 如图,AC是⊙O的直径,点B在⊙O上,∠ACB=30∘.Ⅰ利用尺规作∠ABC的平分线BD,交AC于点E,交⊙O于点D,连接CD(保留作图痕迹,不写作法);Ⅱ在(1)所作的图形中,求△ABE与△CDE的面积之比.24. 如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形叫做筝形.Ⅰ试探究筝形对角线之间的位置关系,并证明你的结论;Ⅱ在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD,AC为对角线,BD=8.①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在,请说明理由;②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE.当四边形ABED为菱形时,求点F到AB的距离.25. 已知O为坐标原点,抛物线y1=ax2+bx+c a≠0与x轴相交于点A x1,0,B x2,0.与y轴交于点C,且O,C两点之间的距离为3,x1⋅x2<0,x1+x2=4,点A,C在直线y2=−3x+t上.Ⅰ求点C的坐标;Ⅱ当y1随着x的增大而增大时,求自变量x的取值范围;Ⅲ将抛物线y1向左平移n n>0个单位,记平移后y随着x的增大而增大的部分为P,直线y2向下平移n个单位,当平移后的直线与P有公共点时,求2n2−5n的最小值.答案第一部分1. A2. D3. C4. C5. D6. A7. B8. B9. C 【解析】由题意可知中心角为60∘,正六边形由六个边长为23的等边三角形构成,可求出每个等边三角形的面积为33.∴正六边形的面积为183.10. B【解析】把x=2代入x2−2mx+3m=0,得m=4.把m=4,代入x2−2×4x+3×4=0,解得x=2,或x=6.等腰三角形三边为2,2,6(舍),所以等腰三角形三边为2,6,6.第二部分11. 50∘12. 机动车尾气13. 2m x−3y14. y=0.3x+615. 2316. 3【解析】∵ED=EM,MF=FN,DN.∴EF=12∴DN最大时,EF最大.∵当N与B重合时DN最大,此时DN=6,∴EF的最大值为3.第三部分17. 方程去括号得5x=3x−12,移项合并得2x=−12,解得x=−6.18. 在正方形ABCD中,AB=AD,∠BAE=∠D=90∘.在△ABE和△ADF中,AB=AD,∠BAE=∠D=90∘,AE=DF,∴△ABE≌△ADF SAS,∴BE=AF.19. (1)A=x2+2x+1x−1−xx−1=x+12x+1x−1−xx−1 =x+1x−1−xx−1=1x−1.(2)∵x−1≥0, x−3<0,∴x≥1,x<3,∴1≤x<3.∵x为整数,∴x=1或x=2.①当x=1时,∵x−1≠0,∴A=1x−1中x≠1,∴当x=1时,A=1x−1无意义.②当x=2时,A=1x−1=12−1=1.20. (1)根据反比例函数的图象关于原点成中心对称知,该函数图象的另一支在第三象限,且m−7>0,则m>7.(2)∵点B与点A关于x轴对称,若△OAB的面积为6,∴△OAC的面积为3.设A x,m−7x ,则12x⋅m−7x=3,解得m=13.21. (1)设增长率为x,根据题意2014年为25001+x万元,2015年为25001+x2万元.则25001+x2=3025,解得x=0.1=10%,或x=−2.1不合题意舍去.答:这两年投入教育经费的平均增长率为10%.(2)3025×1+10%=3327.5(万元).故预计2016年该地区将投入教育经费3327.5万元.22. (1)∵4件同型号的产品中,有1件不合格品,∴P 不合格品=14.(2)共有12种情况,其中抽到的都是合格品的情况有6种,P 抽到的都是合格品=612=12.(3)由题意得3+x=0.95,解得x=16.答:x的值大约是16.23. (1)如图1所示.(2)连接OD,设⊙O半径为r.在△ABE和△DCE中,∵∠BAE=∠CDE,∠AEB=∠DEC,∴△ABE∽△DCE.在Rt△ACB中,∠ABC=90∘,∠ACB=30∘,∴AB=12AC=r.∵BD平分∠ABC,∴∠ABD=∠ACD=45∘,∴∠DOC=90∘.在Rt△ODC中,DC=2+OC2=2r.∴S△ABES△CDE =ABDC2=2r2=12.24. (1)连接OT,MN.在△OMT和△ONT中,OM=ON,MT=NT,OT=OT,∴△OMT≌△ONT SSS,∴∠MOT=∠NOT,∵OM=ON,∴OT⊥MN(等腰三角形三线合一).(2)①存在.由(1)得AC⊥BD.设AC与BD交于点M.在Rt△AMB中,AB=5,BM=12BD=4,∴AM= AB2−BM2=3,∵A,B,C,D四点共圆,∴∠ABC+∠ADC=180∘,又△ABC≌△ADC,∴∠ABC=∠ADC=90∘,∴AC即为所求圆的直径.∵∠BAM=∠BAC,∠ABC=∠AMB=90∘,∴△ABM∽△ACB,∴ABAC =AMAB,即5AC =35,∴AC=253,∴圆的半径为12AC=256.②作FM⊥AB,EG⊥AB于G.∵四边形ABED是菱形,∴AE⊥BD,且BN=4,AN=3,AE=6.∴S菱形ABED =12AE⋅BD=12×6×8=24.∵S菱形ABED=AB⋅EG,∴EG=245.∵∠DBF=∠DBF,∠BNE=∠BFD,∴△BNE∽△BFD,∴BFBN =BDBE,即BF4=85,∴BF=325.∵GE⊥AB,FM⊥AB,∴GE∥FM,∴△BEG∽△BFM,∴FMGE =BFBE,即FM245=3255.FM=768125.∴F到AB的距离为768125.25. (1)令x=0,则y=c;∴C0,c.∵OC的距离为3,∴ c =3,即c=±3,∴C0,3或C0,−3.(2)∵x1x2<0,∴x1,x2异号.①若C0,3,即c=3.∴y2=−3x+3.把A x1,0代入y2=−3x+3,则−3x1+3=0,即x1=1,∴A1,0.∵x1,x2异号,x1=1>0,∴x2<0.∵x1+x2=4,∴1−x2=4,x2=−3,则B−3,0,代入y1=ax2+bx+3得a+b+3=0,9a−3b+3=0,解得a=−1, b=−2.∴y1=−x2−2x+3=−x+12+4.则当x≤−1时,y随x增大而增大.②若C0,−3,即c=−3.∴y2=−3x−3.把A x1,0代入y2=−3x−3,则−3x1−3=0,即x1=−1,∴A−1,0.∵x1,x2异号,x1=−1<0,∴x2>0.∵x1+x2=4,∴1+x2=4,x2=3,则B3,0,代入y1=ax2+bx−3得a−b−3=0, 9a+3b−3=0,解得a=1, b=−2.∴y1=x2−2x−3=x−12−4,则当x≥1时,y随x增大而增大.综上所述,若c=3,当y随x增大而增大时,x≤−1;若c=−3,当y随x增大而增大时,x≥1.(3)①若c=3,则y1=−x2−2x+3=−x+12+4,y2=−3x+3.y1向左平移n个单位后则解析式为y3=−x+1+n2+4,则当x≤−1−n时,y随x增大而增大.y2向下平移n个单位后则解析式为y4=−3x+3−n.要使平移后直线与P有公共点,则当x=−1−n,y3≥y4,即−−1−n+1+n2+4≥−3−1−n+3−n,解得n≤−1.∵n>0,∴n≤−1(不符合条件,应舍去).②若c=−3,则y1=x2−2x−3=x−12−4,y2=−3x−3.y1向左平移n个单位后则解析式为y3=x−1+n2−4,则当x≥1−n时,y随x增大而增大.y2向下平移n个单位后则解析式为y4=−3x−3−n.要使平移后直线与P有公共点,则当x=1−n,y4≥y3,即−31−n−3−n≥1−n−1+n2−4,解得n≥1.综上所述,n≥1,2n2−5n=2 n−542−258,∴当n=54时,2n2−5n的最小值为−258.第11页(共11页)。
数学试卷 第1页(共6页) 数学试卷 第2页(共6页)绝密★启用前广东省广州市2015年初中毕业生学业考试数 学本试卷满分150分,考试时间120分钟.第I 卷(选择题 共30分)一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.四个数 3.14,0,1,2-中为负数的是( )A . 3.14-B .0C .1D .2 2.将如下右图所示的图案以圆心为中心,旋转180后得到的图案是( )ABCD3.已知O 的半径是5,直线l 是O 的切线,则点O 到直线l 的距离是( )A .2.5B .3C .5D .104.两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成绩哪一位更稳定,通常还需要比较他们成绩的( )A .众数B .中位数C .方差D .以上都不对 5.下列计算正确的是( )A .2ab ab ab =B .33(2)2a a = C.3(0)a ≥D0,0)b ab a b =≥≥6.如下右图是一个几何体的三视图,则该几何体的展开图可以是( )A B C D7.已知,a b 满足方程组512,34,a b a b +=⎧⎨-=⎩则a b +的值为( )A .4-B .4C .2-D .2 8.下列命题中,真命题的个数有( )①对角线互相平分的四边形是平行四边形; ②两组对角分别相等的四边形是平行四边形;③一组对边平行,另一组对边相等的四边形是平行四边形.A .3个B .2个C .1个D .0个 9.已知圆的半径是则该圆的内接正六边形的面积是( )A .B .C .D .10.已知2是关于x 的方程2230x mx m -+=的一个根,并且这个方程的两个根恰好是等腰三角形ABC 的两条边长,则三角形ABC 的周长为( )A .10B .14C .10或14D .8或10第Ⅱ卷(非选择题 共120分)二、填空题(本大题共6小题,每小题3分,共18分.请把答案填在题中的横线上) 11.如图,AB CD ∥,直线l 分别与,AB CD 相交,若1=50∠,则2∠的度数为o.毕业学校_____________ 姓名________________ 考生号________________ ________________ _____________-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------数学试卷 第3页(共6页) 数学试卷 第4页(共6页)12.根据环保局公布的广州市2013年至2014年 2.5PM 的主要来源的数据,制成扇形统计图(如图所示),其中所占百分比最大的主要来源是 (填主要来源的名称).13.分解因式:26mx my -= .14.某书库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速上升,则水库的水位高度y 米与时间x 小时(05)x ≤≤的函数关系式为 .15.如图,ABC △中,DE 是BC 的垂直平分线,DE 交AC 于点E ,连接BE ,若9BE =,12BC =,则cos C = .16.如图,四边形ABCD 中,90A ∠=,AB =3AD =,点,M N 分别为线段,BC AB 上的动点(含端点,但点M 不与点B 重合),点,E F 分别为,DM MN 的中点,则EF 长度的最大值为 .三、解答题(本大题共9小题,共102分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分9分) 解方程:53(4)x x =-.18.(本小题满分9分)如图,正方形ABCD 中,点,E F 分别在,AD CD 上,且AE DF =,连接,BE AF . 求证:BE AF =.19.(本小题满分10分)已知222111x x xA x x ++=---. (1)化简A ;(2)当x 满足不等式组10,30,x x -⎧⎨-⎩≥<且x 为整数时,求A 的值.20.(本小题满分10分) 已知反比例函数7m y x-=的图象的一支位于第一象限. (1)判断该函数图象的另一支所在的象限,并求m 的取值范围;(2)如图,O 为坐标原点,点A 在该反比例函数位于第一象限的图象上,点B 与点A 关于x 轴对称,若OAB △的面积为6,求m 的值.21.(本小题满分12分)某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元. (1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.数学试卷 第5页(共6页) 数学试卷 第6页(共6页)22.(本小题满分12分)4件同型号的产品中,有1件不合格品和3件合格品.(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率; (2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率; (3)在这4件产品中加入x 件合格品后,进行如下实验:随机抽取1件进行检测,然后放回,多次重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x 的值大约是多少?23.(本小题满分12分)如图,AC 是O 的直径,点B 在O 上,30ACB ∠=.(1)利用尺规作ABC ∠的平分线BD ,交AC 于点E ,交O 于点D ,连接CD (保留作图痕迹,不写作法);(2)在(1)所作的图形中,求ABE △与CDE △的面积之比;24.(本小题满分14分)如图,四边形OMTN 中,,OM ON TM TN ==,我们把这种两组邻边分别相等的四边形叫做筝形.(1)试探究筝形对角线之间的位置关系,并证明你的结论;(2)在筝形ABCD 中,已知5AB AD ==,BC CD =,BC AB >,BD ,AC 为对角线,8BD =.①是否存在一个圆使得,,,A B C D 四个点都在这个圆上?若存在,求出圆的半径;若不存在,请说明理由;②过点B 作BF CD ⊥,垂足为F ,BF 交AC 于点E ,连接DE .当四边形ABED 为菱形时,求点F 到AB 的距离.25.(本小题满分14分)已知O 为坐标原点,抛物线21(0)y ax bx c a =++≠于x 轴相交于点1(,0)A x ,2(,0)B x ,与y 轴交于点C ,且O ,C 两点间的距离为3,120x x <,12||||4x x +=,点,A C 在直线23y x t =-+上. (1)求点C 的坐标;(2)当1y 随着x 的增大而增大时,求自变量x 的取值范围;(3)将抛物线1y 向左平移(0)n n >个单位,记平移后y 随着x 的增大而增大的部分为P ,直线2y 向下平移n 个单位.当平移后的直线与P 有公共点时,求225n n -的最小值.-------------在--------------------此--------------------卷--------------------上--------------------答--------------------题--------------------无--------------------效----------------毕业学校_____________ 姓名________________ 考生号________________________________ _____________。
上海市2015年初中毕业生学业考试数学答案解析第Ⅰ卷【提示】本题考查了标准差的意义,波动越大,标准差越大,数据越不稳定,反之也成立.【考点】统计量的选择6.【答案】B【解析】∵在O 中,AB 是弦,半径OC AB ⊥,∴AD DB =,当DO CD =,则AD BD DO CD AB CO ==⊥,,,故四边形OACB 为菱形.故选:B.【提示】此题主要考查了菱形的判定以及垂径定理,熟练掌握菱形的判定方法是解题关键.【考点】菱形的判定,垂径定理第Ⅱ卷【考点】中位数11-nπ22【解析】∵AB πAC n ==,,∴BC AC AB n π=-=-,∵在点,∴1111DE BC (n π)n π2222==-=-. 11n π22-. 【考点】平面向量故答案为:22.5.在B 上,∴B 的半径为∵如果D 与B 相交,∴D 的半径在D 内,∴R 13>,∴13R <<符合要求,故答案为:14(答案不唯一)【提示】本题考查了圆与圆的位置关系、点与圆的位置关系,解题的关键是首先确定B 的半径,然后确定D 的半径的取值范围,难度不大.【考点】圆与圆的位置关系,点与圆的位置关系18.【答案】x 2x x x +-∵解不等式①得:x 3>-,解不等式②得:x 2≤,∴不等式组的解集为3x 2-<≤,在数轴上表示不等式组的解集为:.3AH cot3015︒=1sin302︒答:高架道路旁安装的隔音板至少需要89米.BD CE CD DE=. 2AO PH3x=,30050(13+<AO cos COA∠∴线段OP的长为8.。
1
2015年广东省广州市中考数学试题及参考答案
一、选择题(本大题共10小题,每小题3分,满分30分)
1.四个数﹣3.14,0,1,2中为负数的是( )
A.﹣3.14 B.0 C.1 D.2
2.将图中所示的图案以圆心为中心,旋转180°后得到的图案是( )
A. B. C. D.
3.已知⊙O的半径为5,直线l是⊙O的切线,则点O到直线l的距离是( )
A.2.5 B.3 C.5 D.10
4.两名同学进行了10次三级蛙跳测试,经计算,他们的平均成绩相同,若要比较这两名同学的成
绩哪一位更稳定,通常还需要比较他们成绩的( )
A.众数 B.中位数 C.方差 D.以上都不对
5.下列计算正确的是( )
A.ab•ab=2ab B.(2a)3=2a3
C.330aaa D.abab(a≥0,b≥0)
6.如图是一个几何体的三视图,则该几何体的展开图可以是( )
A. B. C. D.
7.已知a,b满足方程组51234abab,则a+b的值为( )
A.﹣4 B.4 C.﹣2 D.2
8.下列命题中,真命题的个数有( )
①对角线互相平分的四边形是平行四边形;
②两组对角分别相等的四边形是平行四边形;
③一组对边平行,另一组对边相等的四边形是平行四边形.
A.3个 B.2个 C.1个 D.0个
9.已知圆的半径是23,则该圆的内接正六边形的面积是( )
2
A.33 B.93 C.183 D.363
10.已知2是关于x的方程x2﹣2mx+3m=0的一个根,并且这个方程的两个根恰好是等腰三角形ABC
的两条边长,则三角形ABC的周长为( )
A.10 B.14 C.10或14 D.8或10
二、填空题(本大题共6小题,每小题3分,满分18分)
11.如图,AB∥CD,直线l分别与AB,CD相交,若∠1=50°,则∠2的度数为 .
12.根据环保局公布的广州市2013年至2014年PM2.5的主要来源的数据,制成扇形统计图,其中
所占百分比最大的主要来源是 .(填主要来源的名称)
13.分解因式:2mx﹣6my= .
14.某水库的水位在5小时内持续上涨,初始的水位高度为6米,水位以每小时0.3米的速度匀速
上升,则水库的水位高度y米与时间x小时(0≤x≤5)的函数关系式为 .
15.如图,△ABC中,DE是BC的垂直平分线,DE交AC于点E,连接BE.若BE=9,BC=12,
则cosC= .
16.如图,四边形ABCD中,∠A=90°,AB=33,AD=3,点M,N分别为线段BC,AB上的动
点(含端点,但点M不与点B重合),点E,F分别为DM,MN的中点,则EF长度的最大值为 .
三、解答题(本大题共9小题,满分102分)
17.(9分)解方程:5x=3(x﹣4)
3
18.(9分)如图,正方形ABCD中,点E,F分别在AD,CD上,且AE=DF,连接BE,AF.求
证:BE=AF.
19.(10分)已知222111xxxAxx.
(1)化简A;
(2)当x满足不等式组1030xx<,且x为整数时,求A的值.
20.(10分)已知反比例函数7myx的图象的一支位于第一象限.
(1)判断该函数图象的另一支所在的象限,并求m的取值范围;
(2)如图,O为坐标原点,点A在该反比例函数位于第一象限的图象上,点B与点A关于x轴对
称,若△OAB的面积为6,求m的值.
21.(12分)某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元.
(1)求2013年至2015年该地区投入教育经费的年平均增长率;
(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.
22.(12分)4件同型号的产品中,有1件不合格品和3件合格品.
(1)从这4件产品中随机抽取1件进行检测,求抽到的是不合格品的概率;
(2)从这4件产品中随机抽取2件进行检测,求抽到的都是合格品的概率;
(3)在这4件产品中加入x件合格品后,进行如下试验:随机抽取1件进行检测,然后放回,多次
重复这个试验,通过大量重复试验后发现,抽到合格品的频率稳定在0.95,则可以推算出x的值大
约是多少?
23.(12分)如图,AC是⊙O的直径,点B在⊙O上,∠ACB=30°
(1)利用尺规作∠ABC的平分线BD,交AC于点E,交⊙O于点D,连接CD(保留作图痕迹,
不写作法)
(2)在(1)所作的图形中,求△ABE与△CDE的面积之比.
4
24.(14分)如图,四边形OMTN中,OM=ON,TM=TN,我们把这种两组邻边分别相等的四边形
叫做筝形.
(1)试探究筝形对角线之间的位置关系,并证明你的结论;
(2)在筝形ABCD中,已知AB=AD=5,BC=CD,BC>AB,BD、AC为对角线,BD=8,
①是否存在一个圆使得A,B,C,D四个点都在这个圆上?若存在,求出圆的半径;若不存在,请
说明理由;
②过点B作BF⊥CD,垂足为F,BF交AC于点E,连接DE,当四边形ABED为菱形时,求点F
到AB的距离.
25.(14分)已知O为坐标原点,抛物线y1=ax2+bx+c(a≠0)与x轴相交于点A(x1,0),B(x2,
0),与y轴交于点C,且O,C两点间的距离为3,x1•x2<0,|x1|+|x2|=4,点A,C在直线y2=﹣3x+t
上.
(1)求点C的坐标;
(2)当y1随着x的增大而增大时,求自变量x的取值范围;
(3)将抛物线y1向左平移n(n>0)个单位,记平移后y随着x的增大而增大的部分为P,直线y
2
向下平移n个单位,当平移后的直线与P有公共点时,求2n2﹣5n的最小值.
参考答案与解析
一、选择题(本大题共10小题,每小题3分,满分30分)
1.四个数﹣3.14,0,1,2中为负数的是( )
A.﹣3.14 B.0 C.1 D.2
【知识考点】正数和负数.
【思路分析】根据负数是小于0的数,可得答案.
【解答过程】解:四个数﹣3.14,0,1,2中为负数的是﹣3.14,
故选:A.
【总结归纳】本题考查了正数和负数,解决本题的关键是小于0的数是负数.
2.将图中所示的图案以圆心为中心,旋转180°后得到的图案是( )
A. B. C. D.