2018_2019学年八年级数学下册专题2勾股定理课件新人教版
- 格式:pptx
- 大小:3.94 MB
- 文档页数:76
学习目标:1.能用勾股定理直角三角形全等的“斜边、直角边”判定定理。
2.能应用勾股定理在数轴上画出表示无理数的点。
3.体会勾股定理在数学中的地位和作用。
学习重点:用勾股定理作出长度为无理数的线段。
教学活动流程活动1:复习孕新,引入课题1.回顾勾股定理,并以针对性练习为画作铺垫;(2)用“数学海螺”图创设情境并导入新课,明确学习目标。
活动2:运用勾股定理证明(HL)用三角板作辅助演示活动3:课件动画演示作图演示的两种作法以及“数学海螺”的作法.活动4:动手实践,会“数形互变”以前面的练习题为作图思路导向,以课件演示类比模仿,教师演示规范作图,学生会作图也会求点.活动5:当堂检测教材第27页习题活动6:拓展应用,服务生活1.用无刻度的直尺在网格上按要求画含无理数线段的三角形;(2)求蚂蚁沿圆柱表面爬行的最短路径。
活动7:小结梳理数轴图——网格图——展开图;实际问题——数学问题——建模活动8:布置作业教学过程活动1:复习孕新,引入课题1.问题(1)勾股定理的内容是什么?怎样求斜边长c或直角边长a、b?(2)求以线段a、b为直角边的直角三角形的斜边长。
a=1 b=1 (c=)a=1 b= (c=)a=2 b=3 (c=)设计意图:在复习的基础上为新课画无理数线段作铺垫,实现知识正迁移。
(3)如果直角三角形ABC的两边长分别为3和4,求第三边长。
设计意图:第三边应考虑为直角边或斜边,渗透分类讨论思想。
2.课件展示“数学海螺”图片并明确学习目标设计意图:创设情境并明确本节课学习任务。
活动2:运用勾股定理证明(HL)用三角板作演示,并要求画图并写出已知、求证并证明,利用勾股定理求得第三边长,再利用(SSS)或(SAS)可证得。
活动3:课件动画演示作图1.对比的两种作法,明确当直角边为正整数时作图方便,并引导学生如何规范作图。
2.“数学海螺”的作法活动4:动手实践,会“数形互变”1.在数轴上画出表示的点,的点呢?2.求点A在数轴上表示的点(1-)设计意图:以练习为画的思路导向,以活动3为类比模仿会作图也会求点,实现数形互变,以“数”化“形”,以“形”变“数”,渗透数形结合思想。
小专题(二) 利用勾股定理解决最短路径问题几何体中最短路径基本模型如下:
图例
圆柱
――→
展开
则AB2=B′A2+B′B2
长
方
体
阶梯
问题
基本思路将立体图形展开成平面图形→利用“两点之间,线段最短”确定最短路线→构造直角三角形→利用勾股定理求解.
1.如图所示,一只蚂蚁处在正方体的一个顶点A处,它想爬到顶点B处寻找食物.若这个
正方体的边长为1
第1题图第2题图
2.(2018·黄冈)如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20cm.(杯壁厚度不计)
3.如图,在一个长为2 m,宽为1 m的长方形草地上,放着一根长方体的木块,它的棱和草地宽AD平行且棱长大于AD,木块从正面看是边长为0.2 m的正方形,一只蚂蚁从点A处到达点C处需要走的最短路程是2.60m(精确到0.01 m).。
小专题(二) 利用勾股定理解决最短路径问题
几何体中最短路径基本模型如下:
――→展开
则
AB
2=
B ′A 2+B ′B 2
将立体图形展开成平面图形→利用“两点之间,线段最短”确定最短路线
1. 如图所示,一只蚂蚁处在正方体的一个顶点A 处,它想爬到顶点B 处寻找食物.若这个正方体的边长为1
第1题图 第2题图
2.(2018·黄冈)如图,圆柱形玻璃杯高为14 cm,底面周长为32 cm,在杯内壁离杯底5 cm 的点B处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿3 cm与蜂蜜相对的点A处,则蚂蚁从外壁A处到内壁B处的最短距离为20cm.(杯壁厚度不计)
3.如图,在一个长为2 m,宽为1 m的长方形草地上,放着一根长方体的木块,它的棱和草地宽AD平行且棱长大于AD,木块从正面看是边长为0.2 m的正方形,一只蚂蚁从点A处到达点C处需要走的最短路程是2.60m(精确到0.01 m).。