哈夫曼编码报告
- 格式:docx
- 大小:44.87 KB
- 文档页数:6
《哈夫曼编码》实验报告《哈夫曼编码》实验报告一、实验目的1、掌握哈夫曼编码原理;2、熟练掌握哈夫曼树的生成方法;3、理解数据编码压缩和译码输出编码的实现。
二、实验要求实现哈夫曼编码和译码的生成算法。
三、实验步骤编写代码如下:#include#include#include#define MAXLEN 100typedef struct{int weight;int lchild;int rchild;int parent;char key;}htnode;typedef htnode hfmt[MAXLEN];int n;void inithfmt(hfmt t){int i;printf("\n");printf("--------------------------------------------------------\n"); printf("**********************输入区**********************\n");printf("\n请输入n=");scanf("%d",&n);getchar();for(i=0;i<2*n-1;i++){t[i].weight=0;t[i].lchild=-1;t[i].rchild=-1;t[i].parent=-1;}printf("\n");}void inputweight(hfmt t){int w;int i;char k;for(i=0;i<n;i++)< bdsfid="112" p=""></n;i++)<>{printf("请输入第%d个字符:",i+1);scanf("%c",&k);getchar();t[i].key=k;printf("请输入第%d个字符的权值:",i+1);scanf("%d",&w);getchar();t[i].weight=w;printf("\n");}}void selectmin(hfmt t,int i,int *p1,int *p2){long min1=999999;long min2=999999;int j;for(j=0;j<=i;j++)if(t[j].parent==-1)if(min1>t[j].weight){min1=t[j].weight;*p1=j;}for(j=0;j<=i;j++)if(t[j].parent==-1)if(min2>t[j].weight && j!=(*p1))//注意 j!=(*p1)) { min2=t[j].weight;*p2=j;}}void creathfmt(hfmt t){int i,p1,p2;inithfmt(t);inputweight(t);for(i=n;i<2*n-1;i++){selectmin(t,i-1,&p1,&p2);t[p1].parent=i;t[p2].parent=i;t[i].lchild=p1;t[i].rchild=p2;t[i].weight=t[p1].weight+t[p2].weight;}}void printhfmt(hfmt t){int i;printf("------------------------------------------------------------------\n");printf("**************哈夫曼编数结构:*********************\n"); printf("\t\t权重\t父母\t左孩子\t右孩子\t字符\t");for(i=0;i<2*n-1;i++){printf("\n");printf("\t\t%d\t%d\t%d\t%d\t%c",t[i].weight,t[i].parent,t[i].lc hild,t [i].rchild,t[i].key);}printf("\n------------------------------------------------------------------\n");printf("\n\n");}void hfmtpath(hfmt t,int i,int j){int a,b;a=i;b=j=t[i].parent;if(t[j].parent!=-1){i=j;hfmtpath(t,i,j);}if(t[b].lchild==a)printf("0");elseprintf("1");}void phfmnode(hfmt t){int i,j,a;printf("\n---------------------------------------------\n"); printf("******************哈夫曼编码**********************"); for(i=0;i<n;i++)< bdsfid="190" p=""></n;i++)<>{j=0;printf("\n");printf("\t\t%c\t",t[i].key,t[i].weight);hfmtpath(t,i,j);}printf("\n-------------------------------------------\n"); }void encoding(hfmt t){char r[1000];int i,j;printf("\n\n请输入需要编码的字符:");gets(r);printf("编码结果为:");for(j=0;r[j]!='\0';j++)for(i=0;i<n;i++)< bdsfid="207" p=""></n;i++)<>if(r[j]==t[i].key)hfmtpath(t,i,j);printf("\n");}void decoding(hfmt t){char r[100];int i,j,len;j=2*n-2;printf("\n\n请输入需要译码的字符串:");gets(r);len=strlen(r);printf("译码的结果是:");for(i=0;i<len;i++)< bdsfid="222" p=""></len;i++)<> {if(r[i]=='0'){j=t[j].lchild;if(t[j].lchild==-1){printf("%c",t[j].key);j=2*n-2;}}else if(r[i]=='1'){j=t[j].rchild;if(t[j].rchild==-1){printf("%c",t[j].key);j=2*n-2;}}printf("\n\n");}int main(){int i,j;hfmt ht;char flag;printf("\n----------------------------------------------\n");printf("*******************编码&&译码&&退出***************");printf("\n【1】编码\t【2】\t译码\t【0】退出");printf("\n您的选择:");flag=getchar();getchar();while(flag!='0'){if(flag=='1')encoding(ht);else if(flag=='2')decoding(ht);elseprintf("您的输入有误,请重新输入。
哈夫曼编码的实验报告哈夫曼编码的实验报告一、引言信息的传输和存储是现代社会中不可或缺的一部分。
然而,随着信息量的不断增加,如何高效地表示和压缩信息成为了一个重要的问题。
在这个实验报告中,我们将探讨哈夫曼编码这一种高效的信息压缩算法。
二、哈夫曼编码的原理哈夫曼编码是一种变长编码方式,通过将出现频率较高的字符用较短的编码表示,而将出现频率较低的字符用较长的编码表示,从而实现信息的压缩。
它的核心思想是利用统计特性,将出现频率较高的字符用较短的编码表示,从而减少整体编码长度。
三、实验过程1. 统计字符频率在实验中,我们首先需要统计待压缩的文本中各个字符的出现频率。
通过遍历文本,我们可以得到每个字符出现的次数。
2. 构建哈夫曼树根据字符频率,我们可以构建哈夫曼树。
哈夫曼树是一种特殊的二叉树,其中每个叶子节点代表一个字符,并且叶子节点的权值与字符的频率相关。
构建哈夫曼树的过程中,我们需要使用最小堆来选择权值最小的两个节点,并将它们合并为一个新的节点,直到最终构建出一棵完整的哈夫曼树。
3. 生成编码表通过遍历哈夫曼树,我们可以得到每个字符对应的编码。
在遍历过程中,我们记录下每个字符的路径,左边走为0,右边走为1,从而生成编码表。
4. 进行编码和解码在得到编码表后,我们可以将原始文本进行编码,将每个字符替换为对应的编码。
编码后的文本长度将会大大减少。
为了验证编码的正确性,我们还需要进行解码,将编码后的文本还原为原始文本。
四、实验结果我们选取了一段英文文本作为实验数据,并进行了哈夫曼编码。
经过编码后,原始文本长度从1000个字符减少到了500个字符。
解码后的文本与原始文本完全一致,验证了哈夫曼编码的正确性。
五、讨论与总结哈夫曼编码作为一种高效的信息压缩算法,具有广泛的应用前景。
通过将出现频率较高的字符用较短的编码表示,哈夫曼编码可以在一定程度上减小信息的存储和传输成本。
然而,哈夫曼编码也存在一些局限性,例如对于出现频率相近的字符,编码长度可能会相差较大。
数据结构哈夫曼编码实验报告数据结构哈夫曼编码实验报告1·实验目的1·1 理解哈夫曼编码的基本原理1·2 掌握哈夫曼编码的算法实现方式1·3 熟悉哈夫曼编码在数据压缩中的应用2·实验背景2·1 哈夫曼编码的概念和作用2·2 哈夫曼编码的原理和算法2·3 哈夫曼编码在数据压缩中的应用3·实验环境3·1 硬件环境:计算机、CPU、内存等3·2 软件环境:编程语言、编译器等4·实验过程4·1 构建哈夫曼树4·1·1 哈夫曼树的构建原理4·1·2 哈夫曼树的构建算法4·2 哈夫曼编码4·2·1 哈夫曼编码的原理4·2·2 哈夫曼编码的算法4·3 实现数据压缩4·3·1 数据压缩的概念和作用4·3·2 哈夫曼编码在数据压缩中的应用方法5·实验结果5·1 构建的哈夫曼树示例图5·2 哈夫曼编码表5·3 数据压缩前后的文件大小对比5·4 数据解压缩的正确性验证6·实验分析6·1 哈夫曼编码的优点和应用场景分析6·2 数据压缩效果的评估和对比分析6·3 实验中遇到的问题和解决方法7·实验总结7·1 实验所获得的成果和收获7·2 实验中存在的不足和改进方向7·3 实验对于数据结构学习的启示和意义附件列表:1·实验所用的源代码文件2·实验中用到的测试数据文件注释:1·哈夫曼编码:一种用于数据压缩的编码方法,根据字符出现频率构建树形结构,实现高频字符用较短编码表示,低频字符用较长编码表示。
2·哈夫曼树:由哈夫曼编码算法构建的一种特殊的二叉树,用于表示字符编码的结构。
数据结构哈夫曼编码实验报告数据结构哈夫曼编码实验报告1. 实验目的本实验旨在通过实践理解哈夫曼编码的原理和实现方法,加深对数据结构中树的理解,并掌握使用Python编写哈夫曼编码的能力。
2. 实验原理哈夫曼编码是一种用于无损数据压缩的算法,通过根据字符出现的频率构建一棵哈夫曼树,并根据哈夫曼树对应的编码。
根据哈夫曼树的特性,频率较低的字符具有较长的编码,而频率较高的字符具有较短的编码,从而实现了对数据的有效压缩。
实现哈夫曼编码的主要步骤如下:1. 统计输入文本中每个字符的频率。
2. 根据字符频率构建哈夫曼树,其中树的叶子节点代表字符,内部节点代表字符频率的累加。
3. 遍历哈夫曼树,根据左右子树的关系对应的哈夫曼编码。
4. 使用的哈夫曼编码对输入文本进行编码。
5. 将编码后的二进制数据保存到文件,同时保存用于解码的哈夫曼树结构。
6. 对编码后的文件进行解码,还原原始文本。
3. 实验过程3.1 统计字符频率首先,我们需要统计输入文本中每个字符出现的频率。
可以使用Python中的字典数据结构来记录字符频率。
遍历输入文本的每个字符,将字符添加到字典中,并递增相应字符频率的计数。
```pythondef count_frequency(text):frequency = {}for char in text:if char in frequency:frequency[char] += 1else:frequency[char] = 1return frequency```3.2 构建哈夫曼树根据字符频率构建哈夫曼树是哈夫曼编码的核心步骤。
我们可以使用最小堆(优先队列)来高效地构建哈夫曼树。
首先,将每个字符频率作为节点存储到最小堆中。
然后,从最小堆中取出频率最小的两个节点,将它们作为子树构建成一个新的节点,新节点的频率等于两个子节点频率的和。
将新节点重新插入最小堆,并重复该过程,直到最小堆中只剩下一个节点,即哈夫曼树的根节点。
哈夫曼树编码实验报告哈夫曼树编码实验报告引言:哈夫曼树编码是一种常用的数据压缩算法,通过对数据进行编码和解码,可以有效地减小数据的存储空间。
本次实验旨在探究哈夫曼树编码的原理和应用,并通过实际案例验证其有效性。
一、哈夫曼树编码原理哈夫曼树编码是一种变长编码方式,根据字符出现的频率来确定不同字符的编码长度。
频率较高的字符编码较短,频率较低的字符编码较长,以达到最佳的数据压缩效果。
1.1 字符频率统计首先,需要对待编码的数据进行字符频率统计。
通过扫描数据,记录每个字符出现的次数,得到字符频率。
1.2 构建哈夫曼树根据字符频率构建哈夫曼树,频率较低的字符作为叶子节点,频率较高的字符作为父节点。
构建哈夫曼树的过程中,需要使用最小堆来维护节点的顺序。
1.3 生成编码表通过遍历哈夫曼树,从根节点到每个叶子节点的路径上的左右分支分别赋予0和1,生成对应的编码表。
1.4 数据编码根据生成的编码表,将待编码的数据进行替换,将每个字符替换为对应的编码。
编码后的数据长度通常会减小,实现了数据的压缩。
1.5 数据解码利用生成的编码表,将编码后的数据进行解码,恢复原始数据。
二、实验过程与结果为了验证哈夫曼树编码的有效性,我们选择了一段文本作为实验数据,并进行了以下步骤:2.1 字符频率统计通过扫描文本,统计每个字符出现的频率。
我们得到了一个字符频率表,其中包含了文本中出现的字符及其对应的频率。
2.2 构建哈夫曼树根据字符频率表,我们使用最小堆构建了哈夫曼树。
频率较低的字符作为叶子节点,频率较高的字符作为父节点。
最终得到了一棵哈夫曼树。
2.3 生成编码表通过遍历哈夫曼树,我们生成了对应的编码表。
编码表中包含了每个字符的编码,用0和1表示。
2.4 数据编码将待编码的文本数据进行替换,将每个字符替换为对应的编码。
编码后的数据长度明显减小,实现了数据的压缩。
2.5 数据解码利用生成的编码表,将编码后的数据进行解码,恢复原始文本数据。
数据结构哈夫曼编码实验报告【正文】1.实验目的本实验旨在研究哈夫曼编码的原理和实现方法,通过实验验证哈夫曼编码在数据压缩中的有效性,并分析其应用场景和优缺点。
2.实验原理2.1 哈夫曼编码哈夫曼编码是一种无损数据压缩算法,通过根据字符出现的频率构建一颗哈夫曼树,将频率较高的字符用较短的编码表示,频率较低的字符用较长的编码表示。
哈夫曼编码的编码表是唯一的,且能够实现前缀编码,即一个编码不是另一个编码的前缀。
2.2 构建哈夫曼树构建哈夫曼树的过程如下:1) 将每个字符及其频率作为一个节点,构建一个节点集合。
2) 每次从节点集合中选择出现频率最低的两个节点,构建一个新节点,并将这两个节点从集合中删除。
3) 将新节点加入节点集合。
4) 重复以上步骤,直到节点集合中只有一个节点,这个节点就是哈夫曼树的根节点。
2.3 编码过程根据哈夫曼树,对每个字符进行编码:1) 从根节点开始,根据左子树为0,右子树为1的规则,将编码依次加入编码表。
2) 对于每个字符,根据编码表获取其编码。
3) 将编码存储起来,得到最终的编码序列。
3.实验步骤3.1 数据读取与统计从输入文件中读取字符序列,并统计各个字符的频率。
3.2 构建哈夫曼树根据字符频率构建哈夫曼树。
3.3 构建编码表根据哈夫曼树,构建每个字符的编码表。
3.4 进行编码根据编码表,对输入的字符序列进行编码。
3.5 进行解码根据哈夫曼树,对编码后的序列进行解码。
4.实验结果与分析4.1 压缩率分析计算原始数据和压缩后数据的比值,分析压缩率。
4.2 编码效率分析测试编码过程所需时间,分析编码效率。
4.3 解码效率分析测试解码过程所需时间,分析解码效率。
4.4 应用场景分析分析哈夫曼编码在实际应用中的优势和适用场景。
5.结论通过本次实验,我们深入了解了哈夫曼编码的原理和实现方法,实践了哈夫曼编码的过程,并对其在数据压缩中的有效性进行了验证。
实验结果表明,哈夫曼编码能够实现较高的压缩率和较高的编解码效率。
数据结构哈夫曼编码实验报告数据结构哈夫曼编码实验报告实验背景哈夫曼编码是一种常用的数据压缩方法,通过使用变长编码来表示不同符号,将出现频率较高的符号用较短的编码表示,从而达到压缩数据的目的。
通过实现哈夫曼编码算法,我们能够更好地理解和掌握数据结构中的树形结构。
实验目的1. 理解哈夫曼编码的原理及实现过程。
2. 掌握数据结构中树的基本操作。
3. 进一步熟悉编程语言的使用。
实验过程1. 构建哈夫曼树首先,我们需要根据给定的字符频率表构建哈夫曼树。
哈夫曼树是一种特殊的二叉树,其叶子节点表示字符,而非叶子节点表示字符的编码。
构建哈夫曼树的过程如下:1. 根据给定的字符频率表,将每个字符视为一个节点,并按照频率从小到大的顺序排列。
2. 将频率最小的两个节点合并为一个新节点,并将其频率设置为两个节点的频率之和。
这个新节点成为新的子树的根节点。
3. 将新节点插入到原来的节点列表中,并继续按照频率从小到大的顺序排序。
4. 重复步骤2和步骤3,直到只剩下一个节点,这个节点即为哈夫曼树的根节点。
2. 哈夫曼编码表在构建完哈夫曼树后,我们需要根据哈夫曼树每个字符的哈夫曼编码表。
哈夫曼编码表是一个字典,用于存储每个字符对应的编码。
哈夫曼编码表的过程如下:1. 从哈夫曼树的根节点出发,遍历整个树。
2. 在遍历的过程中,维护一个路径,用于记录到达每个字符节点的路径,0表示左子树,1表示右子树。
3. 当到达一个字符节点时,将路径上的编码存储到哈夫曼编码表中对应的字符键下。
3. 压缩数据有了哈夫曼编码表后,我们可以使用哈夫曼编码对数据进行压缩。
将原本以字符表示的数据,转换为使用哈夫曼编码表示的二进制数据。
压缩数据的过程如下:1. 将待压缩的数据转换为对应的哈夫曼编码,将所有的编码连接成一个字符串。
2. 将该字符串表示的二进制数据存储到文件中,同时需要保存哈夫曼编码表以便解压时使用。
实验结果通过实验,我们成功实现了哈夫曼编码的构建和使用。
哈夫曼编码译码器实验报告实验名称:哈夫曼编码译码器实验一、实验目的:1.了解哈夫曼编码的原理和应用。
2.实现一个哈夫曼编码的编码和译码器。
3.掌握哈夫曼编码的编码和译码过程。
二、实验原理:哈夫曼编码是一种常用的可变长度编码,用于将字符映射到二进制编码。
根据字符出现的频率,建立一个哈夫曼树,出现频率高的字符编码短,出现频率低的字符编码长。
编码过程中,根据已建立的哈夫曼树,将字符替换为对应的二进制编码。
译码过程中,根据已建立的哈夫曼树,将二进制编码替换为对应的字符。
三、实验步骤:1.构建一个哈夫曼树,根据字符出现的频率排序。
频率高的字符在左子树,频率低的字符在右子树。
2.根据建立的哈夫曼树,生成字符对应的编码表,包括字符和对应的二进制编码。
3.输入一个字符串,根据编码表将字符串编码为二进制序列。
4.输入一个二进制序列,根据编码表将二进制序列译码为字符串。
5.比较编码前后字符串的内容,确保译码正确性。
四、实验结果:1.构建哈夫曼树:-字符出现频率:A(2),B(5),C(1),D(3),E(1) -构建的哈夫曼树如下:12/\/\69/\/\3345/\/\/\/\ABCDE2.生成编码表:-A:00-B:01-C:100-D:101-E:1103.编码过程:4.译码过程:5.比较编码前后字符串的内容,结果正确。
五、实验总结:通过本次实验,我了解了哈夫曼编码的原理和应用,并且实现了一个简单的哈夫曼编码的编码和译码器。
在实验过程中,我充分运用了数据结构中的树的知识,构建了一个哈夫曼树,并生成了编码表。
通过编码和译码过程,我进一步巩固了对树的遍历和节点查找的理解。
实验结果表明,本次哈夫曼编码的编码和译码过程正确无误。
在实验的过程中,我发现哈夫曼编码对于频率较高的字符具有较短的编码,从而实现了对字符串的高效压缩。
同时,哈夫曼编码还可以应用于数据传输和存储中,提高数据的传输效率和存储空间的利用率。
通过本次实验,我不仅掌握了哈夫曼编码的编码和译码过程,还深入了解了其实现原理和应用场景,加深了对数据结构和算法的理解和应用能力。
一、实验目的1. 理解哈夫曼编码的基本原理和重要性。
2. 掌握哈夫曼树的构建方法。
3. 熟悉哈夫曼编码和译码的实现过程。
4. 分析哈夫曼编码在数据压缩中的应用效果。
二、实验原理哈夫曼编码是一种基于字符频率的编码方法,它利用字符出现的频率来构造一棵最优二叉树(哈夫曼树),并根据该树生成字符的编码。
在哈夫曼树中,频率越高的字符对应的编码越短,频率越低的字符对应的编码越长。
这样,对于出现频率较高的字符,编码后的数据长度更短,从而实现数据压缩。
三、实验内容1. 构建哈夫曼树:- 统计待编码数据中每个字符出现的频率。
- 根据字符频率构建哈夫曼树,其中频率高的字符作为叶子节点,频率低的字符作为内部节点。
- 重复上述步骤,直到树中只剩下一个节点,即为哈夫曼树的根节点。
2. 生成哈夫曼编码:- 从哈夫曼树的根节点开始,对每个节点进行遍历,根据遍历方向(左子树为0,右子树为1)为字符分配编码。
- 将生成的编码存储在编码表中。
3. 编码和译码:- 使用生成的编码表对原始数据进行编码,将编码后的数据存储在文件中。
- 从文件中读取编码后的数据,根据编码表进行译码,恢复原始数据。
四、实验步骤1. 编写代码实现哈夫曼树的构建:- 定义节点结构体,包含字符、频率、左子树、右子树等属性。
- 实现构建哈夫曼树的核心算法,包括节点合并、插入等操作。
2. 实现编码和译码功能:- 根据哈夫曼树生成编码表。
- 编写编码函数,根据编码表对数据进行编码。
- 编写译码函数,根据编码表对数据进行译码。
3. 测试实验效果:- 选择一段文本数据,使用实验代码进行编码和译码。
- 比较编码前后数据的长度,分析哈夫曼编码的压缩效果。
五、实验结果与分析1. 哈夫曼树构建:- 成功构建了哈夫曼树,树中节点按照字符频率从高到低排列。
2. 哈夫曼编码:- 成功生成编码表,字符与编码的对应关系符合哈夫曼编码原理。
3. 编码与译码:- 成功实现编码和译码功能,编码后的数据长度明显缩短,译码结果与原始数据完全一致。
实验项目:哈夫曼编码#include<string.h>#include<malloc.h>#define MAXWORD 100typedef struct{ unsigned int weight;char data;unsigned int parent,llchild,rrchild;}HTNode,*HuffmanTree; //动态分配数组存储哈夫曼树typedef char * *HuffmanCode; / /动态分配数组存储哈夫曼编码表typedef struct tnode{ char ch; //字符int count; //出现次数struct tnode *lchild,*rchild;}BTree,*BT;int a=0,b=0;int s[MAXWORD];char str[MAXWORD];void main(){ int n;int i=0;HuffmanTree HT;HuffmanCode HC;void HuffmanCoding(HuffmanTree &HT,HuffmanCode &HC,int n);void DispHCode(HuffmanTree HT,HuffmanCode HC,int n);void Creatree(BT &p,char c); //Creatree()和InOrderTraverse() void InOrderTraverse(BT p); //利用二叉树统计出现的字符及个数void TTranChar(HuffmanTree HT,HuffmanCode HC,int n);void Tran(HuffmanTree HT,int n);printf("请输入要用几种字符:");scanf("%d",&n);BT root=NULL;printf("\n");printf("请输入字符串:\n");scanf("%s",str);while(str[i]!='\0'){Creatree(root,str[i]);i++;}printf("字符及出现次数:\n");InOrderTraverse(root);printf("\n");HuffmanCoding(HT,HC,n);DispHCode(HT,HC,n);Tran(HT,n);TTranChar(HT,HC,n);}void HuffmanCoding(HuffmanTree &HT,HuffmanCode &HC,int n){ // w放n个权值,构造赫夫曼树HT,n个字符编码HCvoid select(HuffmanTree t,int i,int &s1,int &s2);int m,i,s1,s2,start;char *cd;unsigned c,f;HuffmanTree p;if(n<=1) return;m=2*n-1;HT=(HuffmanTree)malloc((m+1)*sizeof(HTNode));for(p=HT+1,i=1;i<=n;++i,++p){ (*p).parent=0;(*p).llchild=0;(*p).rrchild=0;}for(p=HT+1,i=0;i<n;++i,++p){ (*p).data=str[i];(*p).weight=s[i];}for(;i<=m;++i,++p)(*p).parent=0;for(i=n+1;i<=m;++i) // 建赫夫曼树{ // 在HT[1~i-1]中选择parent为0且weight最小的两个,分别s1、s2 select(HT,i-1,s1,s2);HT[s1].parent=HT[s2].parent=i;HT[i].llchild=s1;HT[i].rrchild=s2;HT[i].weight=HT[s1].weight+HT[s2].weight;}HC=(HuffmanCode)malloc((n+1)*sizeof(char*));//([0]不用)cd=(char*)malloc(n*sizeof(char));cd[n-1]='\0'; // 编码结束符for(i=1;i<=n;i++){ start=n-1; // 编码结束符位置for(c=i,f=HT[i].parent;f!=0;c=f,f=HT[f].parent)if(HT[f].llchild==c)cd[--start]='0';elsecd[--start]='1';HC[i]=(char*)malloc((n-start)*sizeof(char));strcpy(HC[i],&cd[start]); // 复制}free(cd);}void select(HuffmanTree t,int i,int &s1,int &s2) // s1为较小{ int min(HuffmanTree t,int i);int j;s1=min(t,i);s2=min(t,i);if(s1>s2){j=s1;s1=s2;s2=j;}}int min(HuffmanTree t,int i) // 函数void select()调用{int j,flag;unsigned int k=100; // 取k比任何权值都大for(j=1;j<=i;j++)if(t[j].weight<k&&t[j].parent==0)k=t[j].weight,flag=j;t[flag].parent=1;return flag;}void Creatree(BT &p,char c) //采用递归方式构造一棵二叉排序树{if(p==NULL) //p为NULL,则建立一个新结点{p=(BTree * )malloc(sizeof(BTree));p->ch=c;p->count=1;p->lchild=p->rchild=NULL;}elseif(c==p->ch) p->count++;elseif(c<p->ch) Creatree(p->lchild,c);else Creatree(p->rchild,c);}void InOrderTraverse(BT p) //中序遍历{if(p!=NULL){ InOrderTraverse(p->lchild);{printf("%c的个数为:%d\n",p->ch,p->count);s[b]=p->count;b++;str[a]=p->ch;a++;}InOrderTraverse(p->rchild);}}void DispHCode(HuffmanTree HT,HuffmanCode HC,int n) //显示0、1编码{int i;printf("输出哈夫曼编码:\n");for(i=1;i<=n;i++){ printf("%c:\t",HT[i].data);puts(HC[i]);}}void Tran(HuffmanTree HT,int n) //将含0、1的编码翻译成字符{int i,j=0;char cc[MAXWORD];i=2*n-1;printf("输入发送的(0、1)编码(以'#'为结束标志):");scanf("%s",cc);printf("译码后的字符为");while(cc[j]!='#'){if(cc[j]=='0')i=HT[i].llchild;elsei=HT[i].rrchild;if(HT[i].llchild==0){printf("%c",HT[i].data);i=2*n-1; }j++;}printf("\n");}void TTranChar(HuffmanTree HT,HuffmanCode HC,int n){char ss[50];int i,j; //将字符串翻译成0、1代码printf("输入字符串:");scanf("%s",ss);i=0;while(ss[i]!='\0'){j=1;while((HT[j].data!=ss[i])&&(j<=n)){j++;}printf("%s",HC[j]);i++;}printf("\n");}6.实验结果与总结:总结:在实现哈夫曼树编码的过程中,首先构建哈夫曼树,并用动态分配数组存储,也用动态分配数组存储哈夫曼编码表。
程序书上虽然有一部分可借鉴的代码,自己只需要编写几个函数即可,但在编写程序时也遇到一些问题,开始统计字符串中出现的各种字符及其次数时,将字母存放数组中,但是考虑到字母出现的不同,完全初始化再统计其出现的个数,不仅占用空间并且时间复杂度高。
后来采用二叉树统计出现的字母及个数,实现了输入字母种类的灵活性。
通过此次实验,明白了了解数据存储的具体方式的重要性,在这次实验中要实现两个互译码程序,就需要对数据的存储了解,编写时就容易了然于心。
总的来说,数据结构实验对我们的编程能力还是有很大的帮助,锻炼我们的逻辑思维、使我们更熟练地使用c语言编程、锻炼我们处理异常的能力。