遗传算法 (2)【精品毕业设计】(完整版)
- 格式:doc
- 大小:101.00 KB
- 文档页数:31
本科生毕业设计(论文)论文题目:基于遗传算法的PID参数优化毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
2.遗传算法随着优化理论的发展,一些新的智能算法得到了迅速发展和广泛应用,成为解决传统系统辨识问题的新方法,如遗传算法、蚁群算法、粒子群算法、差分进化算法等。
这些算法丰富了系统辨识技术,这些优化算法都是通过模拟揭示自然现象和过程来实现的,其优点和机制的独特,为具有非线性系统的辨识问题提供了切实可行的解决方案。
本章介绍遗传算法解决参数辨识问题。
2.1 遗传算法的基本原理遗传算法简称GA(Genetic Algorithms),是1962年由美国密歇根大学Holland 教授提出的模拟自然界遗传机制和生物进化论而成的一种并行随机搜索最优化方法。
遗传算法是以达尔文的自然选择学说为基础发展起来的。
自然学说包括以下3个方面。
(1)遗传这是生物的普遍特征,亲代把生物信息交给子代,子代按照所得信息而发育、分化,因而下代总是和亲代具有相同或相似的性状。
生物有了这个特征,物种才能稳定存在。
(2)变异亲代和子代之间及子代的不同个体之间总有些差异,这种现象成为变异。
变异是随机发生的,变异的选择和积累是生命多样性的根源。
(3)生存斗争和适者生存自然选择来自繁殖过剩和生存斗争。
由于弱肉强食的生存斗争不断的进行,其结果是适者生存,既具有适用性变异的个体被保存下来,不具有适应性变异的个体被淘汰,通过一代代的生存环境的选择作用,性状逐渐与祖先有所不同,演变为新的物种。
这种自然选择是一个长期的、缓慢的、连续的过程。
遗传算法将“优胜劣汰,适者生存”的生物进化原理引入优化参数形成的编码串联群体中,按所选择的适配值函数并通过遗传中复制、交叉以及变异对个体进行筛选,使适配值高的个体被保留下来,组成新的群体,新的群体既继承了上一代的信息,又优于上一代。
这样周而复始,群体中个体适应度不断提高,直到满足一定的条件。
遗传算法的算法简单,可并行处理,并能得到全局最优解。
遗传算法的基本操作分为如下三种:(1)复制(Reproduction Operator)复制是从一个旧种群中选择生命力强的个体位串产生新种群的过程。
关于遗传算法研究的容调研设计毕业论文目录摘要 (I)Abstract (II)第一章遗传算法概论 (1)1.1 遗传算法的产生和国外研究现状 (1)1.2 遗传算法的基本原理 (2)1.3遗传算法的特点 (3)1.4遗传算法的应用 (4)1.5课题的任务 (6)第二章基本遗传算法 (7)2.1 基本遗传算法简介 (7)2.2 基本遗传算法描述 (7)2.3 基本遗传算法的实现 (10)第三章遗传算法求解TSP (15)3.1 旅行商问题概述 (15)3.2 使用改进的遗传算法求解TSP (16)第四章求解TSP的实验结果及分析 (26)4.1实验环境 (26)4.2算法在求解不同规模下的TSP的实验结果 (26)4.3改良的遗传算法和其它智能优化算法的比较 (27)4.4使用单一变异算子和混合变异算子的实验结果对比分析 (28)第五章总结 (30)参考文献 (32)附录1 改良遗传算法求解TSP Java源程序 (33)附录2 英文文献翻译 (50)致谢 (56)第一章遗传算法概论1.1 遗传算法的产生和国外研究现状遗传算法(Genetic Algorithm简称GA)美国的J. Holland教授于1975年在他的专著《自然界和人工系统的适应性》中首先提出的,它是一类借鉴生物界自然选择和自然遗传机制的随机化搜索算法[1]。
遗传算法模拟自然选择和自然遗传过程中发生的繁殖、交叉和基因突变现象,在每次迭代中都保留一组候选解,并按某种指标从解群中选取较优的个体(优胜劣汰),利用遗传算子(选择、交叉和变异)对这些个体进行组合,产生新一代的候选解群,重复此过程,直到满足某种收敛指标为止。
最后一代候选解群中的最优解就是所求得的最优解。
1991年D.Whitey在他的论文中提出了基于领域交叉的交叉算子(Adjacency based crossover),这个算子是特别针对用序号表示基因的个体的交叉,并将其应用到了(旅行商)TSP问题中,通过实验对其进行了验证。
毕业设计[论文]题目:基于人工智能的路径查找优化算法学生姓名: Weston 学号:090171021XXX学部(系):信息科学与技术学部专业年级:计算机应用技术指导教师:XXX 职称或学位: XX2012 年 5 月 18 日目录摘要 (II)ABSTRACT (III)KEY WORDS (III)1.前言 (1)2.概述 (2)2.1遗传算法优缺点 (2)2.2遗传算法应用领域 (3)2.3遗传算法基本流程 (3)3.传统遗传算法解决旅行商问题 (5)3.1常用概念 (5)3.2基本过程 (5)3.3关键步骤 (5)3.4总结 (8)4.改进后的遗传算法 (9)4.1编码、设计遗传算子 (9)4.2种群初始化 (9)4.3评价 (10)4.4选择复制 (10)4.5交叉 (11)4.6变异 (12)4.7终结 (13)5.系统设计与实现 (14)5.1系统设计 (14)5.2系统实现 (17)5.3结果分析 (20)6.总结 (21)参考文献 (22)致谢 (23)基于人工智能的路径查找优化算法摘要旅行商是一个古老且有趣的问题它可以描述为:给定n个城市以及它们之间的距离(城市i到城市j的距离),求解从其中一个城市出发对每个城市访问,且仅访问一dij次,最后回到出发的城市,应当选取怎样的路线才能使其访问完所有的城市后回到初始的城市且走过的路程最短。
旅行商问题已被证明是属优化组合领域的NP难题,而且在现实中的许多问题都可以转化为旅行商问题来加以解决。
解决旅行商问题最一般的方法就是枚举出所有可能的路线然后对每一条进行评估最后选取出路程最短的一条即为所求解。
解决旅行商问题的各种优化算法都是通过牺牲解的精确性来换取较少的耗时,其他一些启发式的搜索算法则依赖于特定的问题域,缺乏通用性,相比较而言遗传算法是一种通用性很好的全局搜索算法。
遗传算法GA( genetic algorithm) 最早由美国密歇根大学的John Holland 提出。
遗传算法的课程设计一、课程目标知识目标:1. 让学生了解遗传算法的基本概念、原理和应用场景;2. 掌握遗传算法中的关键参数(如种群大小、交叉概率、变异概率等)对算法性能的影响;3. 能够运用遗传算法解决简单的优化问题。
技能目标:1. 培养学生运用计算机编程实现遗传算法的能力;2. 提高学生运用遗传算法进行问题分析和解决的能力;3. 培养学生团队协作、沟通表达的能力。
情感态度价值观目标:1. 激发学生对人工智能、算法等领域的兴趣,提高学习积极性;2. 培养学生勇于尝试、不断优化的精神,增强克服困难的信心;3. 引导学生认识遗传算法在现实生活中的应用价值,提升社会责任感。
课程性质分析:遗传算法属于计算机科学领域,具有较强实用性。
针对高年级学生,课程需结合实际案例,提高学生的实践能力。
学生特点分析:高年级学生对算法有一定的基础,具备一定的编程能力,但可能对遗传算法的原理和应用场景了解较少。
教学要求:结合学生特点,本课程以实际应用为导向,注重理论与实践相结合,提高学生的知识水平和实践能力。
通过分解课程目标,使学生在完成具体学习成果的过程中,达到本课程的教学要求。
二、教学内容1. 引入遗传算法的基本概念,介绍遗传算法的原理和发展历程;2. 讲解遗传算法的核心组成部分,包括编码、初始种群、选择、交叉、变异等;3. 分析遗传算法的关键参数设置对算法性能的影响;4. 通过实际案例,展示遗传算法在优化问题中的应用;5. 实践环节:指导学生运用编程工具(如Python等)实现遗传算法,解决特定优化问题;6. 总结遗传算法的优缺点,探讨其未来发展趋势。
教学大纲安排:第一课时:遗传算法基本概念、原理和发展历程介绍;第二课时:遗传算法核心组成部分讲解;第三课时:关键参数设置对算法性能的影响分析;第四课时:遗传算法在实际优化问题中的应用案例;第五课时:实践环节,指导学生编程实现遗传算法;第六课时:总结与拓展,探讨遗传算法的优缺点及未来发展趋势。
遗传算法(GeneticAlgorithms)遗传算法前引:1、TSP问题1.1 TSP问题定义旅⾏商问题(Traveling Salesman Problem,TSP)称之为货担郎问题,TSP问题是⼀个经典组合优化的NP完全问题,组合优化问题是对存在组合排序或者搭配优化问题的⼀个概括,也是现实诸多领域相似问题的简化形式。
1.2 TSP问题解法传统精确算法:穷举法,动态规划近似处理算法:贪⼼算法,改良圈算法,双⽣成树算法智能算法:模拟退⽕,粒⼦群算法,蚁群算法,遗传算法等遗传算法:性质:全局优化的⾃适应概率算法2.1 遗传算法简介遗传算法的实质是通过群体搜索技术,根据适者⽣存的原则逐代进化,最终得到最优解或准最优解。
它必须做以下操作:初始群体的产⽣、求每⼀个体的适应度、根据适者⽣存的原则选择优良个体、被选出的优良个体两两配对,通过随机交叉其染⾊体的基因并随机变异某些染⾊体的基因⽣成下⼀代群体,按此⽅法使群体逐代进化,直到满⾜进化终⽌条件。
2.2 实现⽅法根据具体问题确定可⾏解域,确定⼀种编码⽅法,能⽤数值串或字符串表⽰可⾏解域的每⼀解。
对每⼀解应有⼀个度量好坏的依据,它⽤⼀函数表⽰,叫做适应度函数,⼀般由⽬标函数构成。
确定进化参数群体规模、交叉概率、变异概率、进化终⽌条件。
案例实操我⽅有⼀个基地,经度和纬度为(70,40)。
假设我⽅飞机的速度为1000km/h。
我⽅派⼀架飞机从基地出发,侦察完所有⽬标,再返回原来的基地。
在每⼀⽬标点的侦察时间不计,求该架飞机所花费的时间(假设我⽅飞机巡航时间可以充分长)。
已知100个⽬标的经度、纬度如下表所列:3.2 模型及算法求解的遗传算法的参数设定如下:种群⼤⼩M=50;最⼤代数G=100;交叉率pc=1,交叉概率为1能保证种群的充分进化;变异概率pm=0.1,⼀般⽽⾔,变异发⽣的可能性较⼩。
编码策略:初始种群:⽬标函数:交叉操作:变异操作:选择:算法图:代码实现:clc,clear, close allsj0=load('data12_1.txt');x=sj0(:,1:2:8); x=x(:);y=sj0(:,2:2:8); y=y(:);sj=[x y]; d1=[70,40];xy=[d1;sj;d1]; sj=xy*pi/180; %单位化成弧度d=zeros(102); %距离矩阵d的初始值for i=1:101for j=i+1:102d(i,j)=6370*acos(cos(sj(i,1)-sj(j,1))*cos(sj(i,2))*...cos(sj(j,2))+sin(sj(i,2))*sin(sj(j,2)));endendd=d+d'; w=50; g=100; %w为种群的个数,g为进化的代数for k=1:w %通过改良圈算法选取初始种群c=randperm(100); %产⽣1,...,100的⼀个全排列c1=[1,c+1,102]; %⽣成初始解for t=1:102 %该层循环是修改圈flag=0; %修改圈退出标志for m=1:100for n=m+2:101if d(c1(m),c1(n))+d(c1(m+1),c1(n+1))<...d(c1(m),c1(m+1))+d(c1(n),c1(n+1))c1(m+1:n)=c1(n:-1:m+1); flag=1; %修改圈endendendif flag==0J(k,c1)=1:102; break %记录下较好的解并退出当前层循环endendendJ(:,1)=0; J=J/102; %把整数序列转换成[0,1]区间上实数即染⾊体编码for k=1:g %该层循环进⾏遗传算法的操作for k=1:g %该层循环进⾏遗传算法的操作A=J; %交配产⽣⼦代A的初始染⾊体c=randperm(w); %产⽣下⾯交叉操作的染⾊体对for i=1:2:wF=2+floor(100*rand(1)); %产⽣交叉操作的地址temp=A(c(i),[F:102]); %中间变量的保存值A(c(i),[F:102])=A(c(i+1),[F:102]); %交叉操作A(c(i+1),F:102)=temp;endby=[]; %为了防⽌下⾯产⽣空地址,这⾥先初始化while ~length(by)by=find(rand(1,w)<0.1); %产⽣变异操作的地址endB=A(by,:); %产⽣变异操作的初始染⾊体for j=1:length(by)bw=sort(2+floor(100*rand(1,3))); %产⽣变异操作的3个地址%交换位置B(j,:)=B(j,[1:bw(1)-1,bw(2)+1:bw(3),bw(1):bw(2),bw(3)+1:102]);endG=[J;A;B]; %⽗代和⼦代种群合在⼀起[SG,ind1]=sort(G,2); %把染⾊体翻译成1,...,102的序列ind1num=size(G,1); long=zeros(1,num); %路径长度的初始值for j=1:numfor i=1:101long(j)=long(j)+d(ind1(j,i),ind1(j,i+1)); %计算每条路径长度endend[slong,ind2]=sort(long); %对路径长度按照从⼩到⼤排序J=G(ind2(1:w),:); %精选前w个较短的路径对应的染⾊体endpath=ind1(ind2(1),:), flong=slong(1) %解的路径及路径长度xx=xy(path,1);yy=xy(path,2);plot(xx,yy,'-o') %画出路径以上整个代码中没有调⽤GA⼯具箱。
用遗传算法优化BP神经网络的Matlab编程实例 由于BP网络的权值优化是一个无约束优化问题,而且权值要采用实数编码,所以直接利用Matlab遗传算法工具箱。以下贴出的代码是为一个19输入变量,1个输出变量情况下的非线性回归而设计的,如果要应用于其它情况,只需改动编解码函数即可。
程序一:GA训练BP权值的主函数 function net=GABPNET(XX,YY) %-------------------------------------------------------------------------- % GABPNET.m % 使用遗传算法对BP网络权值阈值进行优化,再用BP算法训练网络 %-------------------------------------------------------------------------- %数据归一化预处理 nntwarn off XX=premnmx(XX); YY=premnmx(YY); %创建网络 net=newff(minmax(XX),[19,25,1],{'tansig','tansig','purelin'},'trainlm'); %下面使用遗传算法对网络进行优化 P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 aa=ones(S,1)*[-1,1]; popu=50;%种群规模 initPpp=initializega(popu,aa,'gabpEval');%初始化种群 gen=100;%遗传代数 %下面调用gaot工具箱,其中目标函数定义为gabpEval [x,endPop,bPop,trace]=ga(aa,'gabpEval',[],initPpp,[1e-6 1 1],'maxGenTerm',gen,... 'normGeomSelect',[0.09],['arithXover'],[2],'nonUnifMutation',[2 gen 3]); %绘收敛曲线图 figure(1) plot(trace(:,1),1./trace(:,3),'r-'); hold on plot(trace(:,1),1./trace(:,2),'b-'); xlabel('Generation'); ylabel('Sum-Squared Error'); figure(2) plot(trace(:,1),trace(:,3),'r-'); hold on plot(trace(:,1),trace(:,2),'b-'); xlabel('Generation'); ylabel('Fittness'); %下面将初步得到的权值矩阵赋给尚未开始训练的BP网络 [W1,B1,W2,B2,P,T,A1,A2,SE,val]=gadecod(x); net.LW{2,1}=W1; net.LW{3,2}=W2; net.b{2,1}=B1; net.b{3,1}=B2; XX=P; YY=T; %设置训练参数 net.trainParam.show=1; net.trainParam.lr=1; net.trainParam.epochs=50; net.trainParam.goal=0.001; %训练网络 net=train(net,XX,YY);
程序二:适应值函数 function [sol, val] = gabpEval(sol,options) % val - the fittness of this individual % sol - the individual, returned to allow for Lamarckian evolution % options - [current_generation] load data2 nntwarn off XX=premnmx(XX); YY=premnmx(YY); P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 for i=1:S, x(i)=sol(i); end; [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x); 程序三:编解码函数 function [W1, B1, W2, B2, P, T, A1, A2, SE, val]=gadecod(x) load data2 nntwarn off XX=premnmx(XX); YY=premnmx(YY); P=XX; T=YY; R=size(P,1); S2=size(T,1); S1=25;%隐含层节点数 S=R*S1+S1*S2+S1+S2;%遗传算法编码长度 % 前R*S1个编码为W1 for i=1:S1, for k=1:R, W1(i,k)=x(R*(i-1)+k); end end % 接着的S1*S2个编码(即第R*S1个后的编码)为W2 for i=1:S2, for k=1:S1, W2(i,k)=x(S1*(i-1)+k+R*S1); end end % 接着的S1个编码(即第R*S1+S1*S2个后的编码)为B1 for i=1:S1, B1(i,1)=x((R*S1+S1*S2)+i); end % 接着的S2个编码(即第R*S1+S1*S2+S1个后的编码)为B2 for i=1:S2, B2(i,1)=x((R*S1+S1*S2+S1)+i); end % 计算S1与S2层的输出 A1=tansig(W1*P,B1); A2=purelin(W2*A1,B2); % 计算误差平方和 SE=sumsqr(T-A2); val=1/SE; % 遗传算法的适应值
上述程序需要调用gaot工具箱,请从附件里下载!
原创】蚁群算法最短路径通用Matlab程序(附图) 下面的程序是蚁群算法在最短路中的应用,稍加扩展即可应用于机器人路径规划 function [ROUTES,PL,Tau]=ACASP(G,Tau,K,M,S,E,Alpha,Beta,Rho,Q) %% --------------------------------------------------------------- % ACASP.m % 蚁群算法动态寻路算法 % ChengAihua,PLA Information Engineering University,ZhengZhou,China % Email:aihuacheng@gmail.com % All rights reserved %% --------------------------------------------------------------- % 输入参数列表 % G 地形图为01矩阵,如果为1表示障碍物 % Tau 初始信息素矩阵(认为前面的觅食活动中有残留的信息素) % K 迭代次数(指蚂蚁出动多少波) % M 蚂蚁个数(每一波蚂蚁有多少个) % S 起始点(最短路径的起始点) % E 终止点(最短路径的目的点) % Alpha 表征信息素重要程度的参数 % Beta 表征启发式因子重要程度的参数 % Rho 信息素蒸发系数 % Q 信息素增加强度系数 % % 输出参数列表 % ROUTES 每一代的每一只蚂蚁的爬行路线 % PL 每一代的每一只蚂蚁的爬行路线长度 % Tau 输出动态修正过的信息素
%% --------------------变量初始化---------------------------------- %load D=G2D(G); N=size(D,1);%N表示问题的规模(象素个数) MM=size(G,1); a=1;%小方格象素的边长 Ex=a*(mod(E,MM)-0.5);%终止点横坐标 if Ex==-0.5 Ex=MM-0.5; end Ey=a*(MM+0.5-ceil(E/MM));%终止点纵坐标 Eta=zeros(1,N);%启发式信息,取为至目标点的直线距离的倒数 %下面构造启发式信息矩阵 for i=1:N if ix==-0.5 ix=MM-0.5; end iy=a*(MM+0.5-ceil(i/MM)); if i~=E Eta(1,i)=1/((ix-Ex)^2+(iy-Ey)^2)^0.5; else Eta(1,i)=100; end end ROUTES=cell(K,M);%用细胞结构存储每一代的每一只蚂蚁的爬行路线 PL=zeros(K,M);%用矩阵存储每一代的每一只蚂蚁的爬行路线长度 %% -----------启动K轮蚂蚁觅食活动,每轮派出M只蚂蚁-------------------- for k=1:K disp(k); for m=1:M %% 第一步:状态初始化 W=S;%当前节点初始化为起始点 Path=S;%爬行路线初始化 PLkm=0;%爬行路线长度初始化 TABUkm=ones(1,N);%禁忌表初始化 TABUkm(S)=0;%已经在初始点了,因此要排除 DD=D;%邻接矩阵初始化 %% 第二步:下一步可以前往的节点 DW=DD(W,:); DW1=find(DW for j=1:length(DW1) if TABUkm(DW1(j))==0 DW(j)=inf; end end LJD=find(DW Len_LJD=length(LJD);%可选节点的个数 %% 觅食停止条件:蚂蚁未遇到食物或者陷入死胡同 while W~=E&&Len_LJD>=1 %% 第三步:转轮赌法选择下一步怎么走 PP=zeros(1,Len_LJD); for i=1:Len_LJD PP(i)=(Tau(W,LJD(i))^Alpha)*(Eta(LJD(i))^Beta); end PP=PP/(sum(PP));%建立概率分布 Pcum=cumsum(PP); Select=find(Pcum>=rand); %% 第四步:状态更新和记录 Path=[Path,to_visit];%路径增加 PLkm=PLkm+DD(W,to_visit);%路径长度增加 W=to_visit;%蚂蚁移到下一个节点 for kk=1:N