人教版九年级数学上册知识点整理(完整版)
- 格式:docx
- 大小:1.73 MB
- 文档页数:30
九年级上册数学笔记整理人教版一、一元二次方程。
(一)定义。
1. 只含有一个未知数(一元),并且未知数的最高次数是2(二次)的整式方程,叫做一元二次方程。
- 一般形式:ax² + bx + c = 0(a≠0),其中ax²是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
(二)解法。
1. 直接开平方法。
- 对于方程x² = p(p≥0),解得x = ±√(p)。
- 例如,方程(x - 3)² = 4,则x - 3 = ±2,x = 3±2,即x = 1或x = 5。
2. 配方法。
- 步骤:- 把方程化为ax²+bx = - c的形式。
- 在方程两边同时加上一次项系数一半的平方,即x²+(b)/(a)x+((b)/(2a))² = - (c)/(a)+((b)/(2a))²。
- 把左边写成完全平方式(x+(b)/(2a))²,然后用直接开平方法求解。
- 例如,对于方程x²+6x - 7 = 0,移项得x²+6x = 7,配方得x² + 6x+9 = 7 + 9,即(x + 3)²=16,解得x=-3±4,x = 1或x=-7。
3. 公式法。
- 对于一元二次方程ax²+bx + c = 0(a≠0),其求根公式为x=(-b±√(b² -4ac))/(2a)。
- 其中b² - 4ac叫做判别式,记作Δ=b² - 4ac。
- 当Δ>0时,方程有两个不相等的实数根。
- 当Δ = 0时,方程有两个相等的实数根。
- 当Δ<0时,方程没有实数根。
- 例如,方程2x² - 3x - 2 = 0,其中a = 2,b=-3,c=-2,Δ=(-3)²-4×2×(-2)=9 + 16 = 25>0,根据公式x=(3±√(25))/(4)=(3±5)/(4),解得x = 2或x =-(1)/(2)。
人教版九年级上册数学知识点一、集合与不等式1. 集合的概念集合是由一些确定的元素构成的整体。
用大写字母A、B、C等表示集合,元素用小写字母a、b、c等表示。
2. 集合的运算(1)交集运算:集合A与集合B的交集,表示为A∩B,表示同时属于A和B的元素组成的集合。
(2)并集运算:集合A与集合B的并集,表示为A∪B,表示属于A或B的元素组成的集合。
(3)差集运算:集合A与集合B的差集,表示为A-B或A\B,表示属于A但不属于B的元素组成的集合。
(4)补集运算:集合A相对于全集U的补集,表示为A'或A^c,表示不属于A的元素组成的集合。
3. 不等式不等式是含有不等号的数学陈述。
常见的不等号有大于号(>)、大于等于号(≥)、小于号(<)和小于等于号(≤)。
二、平面图形的认识1. 点、线、线段和射线的概念(1)点:空间中没有长度、宽度和高度的位置,用大写字母表示。
(2)线段:由两个端点以及连接两个端点的线段本身组成。
(3)射线:起点为给定点的一条直线,并且从起点向某个方向延伸,用带箭头的线段表示。
2. 平面图形的分类(1)三角形:由三条线段组成的图形。
(2)四边形:由四条线段组成的图形。
(3)多边形:由多条线段组成的图形。
3. 常见平面图形的性质(1)正方形:四条边相等且都垂直。
(2)长方形:相邻两条边相等且都垂直。
(3)平行四边形:对边平行且对边相等。
三、整式与分式1. 代数式与整式(1)代数式:用字母和数字相结合表示数的式子。
(2)整式:只含有字母、数字和运算符的代数式。
2. 分式分式是包含分子和分母的算式,分式的值一般是一个有理数。
四、分数的计算1. 分数运算(1)分数的加减运算:先找到两个分数的公共分母,然后将分子相加(或相减),再将结果的分子写在分数线上。
(2)分数的乘法运算:将两个分数的分子相乘,分母相乘。
(3)分数的除法运算:先将除数与被除数的分子和分母交换位置,再按照分数的乘法运算进行计算即可。
人教版九年级数学上册知识点人教版九年级数学上册知识点概述一、实数与代数表达式1. 实数的概念与性质- 正实数、负实数、零- 实数的四则运算- 实数的大小比较2. 代数表达式的运算- 整式的加法与减法- 乘法分配律- 幂的乘方与积的乘方- 单项式与多项式的乘法- 多项式的因式分解3. 二次根式的运算- 二次根式的定义- 二次根式的乘法与除法- 二次根式的加法与减法- 完全平方公式与平方差公式二、方程与不等式1. 一元一次方程与不等式- 方程的解法- 含绝对值的一元一次方程- 一元一次不等式的解集2. 二元一次方程组- 代入法与消元法- 方程组的解的情况3. 一元二次方程- 一元二次方程的解法(直接开平方法、配方法、公式法、因式分解法)- 一元二次方程根的判别式三、平面图形的性质1. 平行线与角- 平行线的判定与性质- 同位角、内错角、同旁内角- 角的平分线2. 三角形的性质- 三角形的内角和外角- 等腰三角形与等边三角形的性质- 三角形的中位线定理3. 特殊三角形- 直角三角形的性质与勾股定理- 直角三角形的判定- 含30°角的直角三角形的性质4. 平行四边形与圆- 平行四边形的性质与判定- 圆的基本性质- 圆周角与圆心角的关系- 扇形与弧长四、空间图形的性质1. 空间图形的观察- 视图的画法- 空间图形的展开图2. 空间图形的测量- 体积的计算- 表面积的计算五、统计与概率1. 统计- 数据的收集与整理- 频数与频率- 统计图表的绘制与解读2. 概率- 随机事件的概率- 概率的计算- 用树状图法解决简单的概率问题以上是人教版九年级数学上册的主要知识点概述。
这些知识点构成了九年级数学课程的核心内容,学生需要掌握这些概念、公式和解题方法,以便在数学学习中取得良好的成绩。
教师和家长应指导学生通过练习和应用这些知识点,加深理解和记忆,提高解题能力。
九年级数学(上册)知识点第一章 二次根式1. 二次根式概念:形如a (0≥a )的式子叫做二次根式。
性质:a (0≥a )是一个非负数; ()()02≥=a a a ;)直接开平方法:(2)配方法:将方程的一边配成完全平方式,然后两边开方;(3)公式法:aac b b x 242-±-= (4)因式分解法:左边是两个一次因式的乘积,右边为零。
3.一元二次方程在实际问题中的应用:球赛(签合同、握手)问题,几何面积问题,数字问题,平均增长率(下降率)问题,商品利润问题,变速运动问题,动点问题,多边形对角线的条数问题,等等。
4. 一元二次方程的根与系数的关系(韦达定理):设21,x x 是方程02=++c bx ax (0≠a )的两个根,那么 c x x b x x =∙-=+2121,.第四章 圆1. 圆、圆心、半径、直径、圆弧、弦、半圆的定义。
2. 垂直于弦的直径(垂径定理):垂直于弦的直径平分弦,并且平分弦所对的两条弧。
推论:平分弦的直径垂直弦,并且平分弦所对的两条弧。
圆是轴对称图形,任何一条直径所在的直线都是它的对称轴。
3. 弧、弦、圆心角(对等性定理):在同圆或等圆中,相等的圆心角所对的弧相等,所对的弦也相等。
4. 圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相相交 d<r相切 d=r相离 d>r切线的性质定理:圆的切线垂直于过切点的半径;切线的判定定理:经过半径的外端并且垂直于这条半径的直线是圆的切线;切线长定理:从圆外一点引圆的两条切线,它们的切线长相等,这一点和圆心的连线平分两条切线的夹角。
三角形的内切圆:和三角形各边都相切的圆为它的内切圆。
内切圆圆心是三角形的三条角平分线的交点,为三角形弧长: 180r n l π= 扇形面积:3602r n S π= 10. 圆锥的侧面积和全面积:侧面积:全面积:11.相交弦定理:12.切割线定理:第五章概率初步。
人教版九年级数学上册知识点整理完整版一、代数与函数1.代数简介①常数:数值不变的量。
②变量:数量可能改变的量。
③代数式:由数、字母、加减乘除号、括号等符号组成的式子。
④同类项:指含有相同字母并且指数相同的项。
⑤合并同类项:指将同类项合并成一个项。
⑥因式分解:将代数式表示成幂或较简单的代数式,叫做因式分解。
⑦方程式&方程:一个代数式与另一个代数式在等号两边,称为方程式,且方程式构成了等式。
2.一次函数①函数:将自变量的某个取值代入函数中得到唯一的因变量的值,称为函数。
②自变量:输入的值③函数表达式:用代数式表示函数的式子称为函数表达式④一次函数:函数表达式中,最高次项是一次幂的函数叫一次函数,也叫线性函数。
⑤斜率:函数: y = kx + b ,函数图象的斜率 k,即为直线的斜率。
3.二次函数①二次函数:函数表达式中,最高次项是二次幂的函数,叫做二次函数。
②二次函数的一般式:f(x) = ax² + bx + c(a≠0)③二次函数的顶点:二次函数图象的转折点,称为顶点。
④二次函数的对称轴:图象关于 x = -b/ 2a 对称的直线,称为二次函数的对称轴。
⑤二次函数的最小值/最大值:二次函数)的顶点纵坐标所对应的函数值,是二次函数的最小值或最大值。
4.函数的研究①函数图象的基本性质:函数的零点、函数值的正负、单调性、奇偶性、周期性、对称性、渐近线等。
②函数的零点:函数 f(x) = 0 的解叫做函数的零点。
即 f(x) = 0 时 x 的解。
③函数类型:函数分类标准通常有函数的定义域和值域、图象、函数表达式等。
二、图形的认识1.图形的一些概念①线段:由两个端点所组成的线段,叫做线段。
②射线:在一个端点处向一个方向上延伸的线段,叫做射线。
③直线:没有端点,在一个方向上延伸的线段,称为直线。
④平行线:永远不会相交的两条直线叫做平行线。
⑤垂直平分线:在一条直线上,垂直于该线段、且等分该线段的线,称为垂直平分线。
人教版九年级上册数学知识点总结九年级上册知识点二次根式知识点考点1、无理数无限不循环的小数,叫做无理数。
常见的无理数:1、π以及π的有理数倍数。
2、、、;3、2.…………考点2、二次根式的概念形如(a≥)的式子叫做二次根式。
1、被开放数a是一个非负数;2、二次根式是一个非负数,即≥;3、有限个二次根式的和等于,则每个二次根式的被开方数必须是0.考点3、移因式于根号内、外的方法移因式于根号外1、当根号外的数是一个负数时,把负号留在根号外,然后把这个数平方后移到根号内2、当根号内的数是一个正数时,直接把这个数平方后移到根号内移因式于根号内1、当根号内的数是正数时直接开方移到根号外2、当根号内的数是负数时开方移到根号外后要添上负号考点4、最简二次根式知识回顾:满意下列前提的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式。
知识特点:1、最简二次根式中一定不含有分母;n2、对于数大概代数式,它们不能在写成a×m的方式。
考点5、二次根式的化简与计算二次根式的化简,实际上就是把二次根式化成最简二次根式,然后,通过合并同类二次根式的方法进行二次根式的加减运算。
二次根式的加减运算:a二次根式的乘法运算:.+b==(a+b),(m≥);,( a≥0, b≥0);二次根式的除法运算:÷=,( a≥0, b>0);二次根式的乘方运算:=a,( a≥0);二次根式的开方运算:=考点6、1、不同点:XXX的平方,而与与的异同点表示的意义是不同的,表示一个正数a的算术平透露表现一个实数a的平方的算术平方根;时,=;时,2、不异点:当被开方数都长短负数,即无意义,而一元二次方程考点1、一元二次方程1、一元二次方程:含有一个未知数,并且未知数的最高次数是2的整式方程叫做一元二次方程。
2、一元二次方程的一般形式:十一个关于未知数x的二次多项式,等式右边是零,其中,它的特征是:等式左边叫做二次项,a叫做二次项系数;bx叫做一次项,b叫做一次项系数;c叫做常数项。
作为资深教师,整理人教版九年级上册数学知识点汇总如下:一、一元二次方程1. 定义•等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程。
一般形式为:ax² + bx + c = 0(a ≠ 0)。
2. 解法•配方法:通过配成完全平方形式来解一元二次方程。
步骤包括:移项、除二次项系数、配方、开平方。
•公式法:利用一元二次方程的求根公式x = [-b ± √(b² - 4ac)] / (2a)(当b² - 4ac ≥ 0时)求解。
•因式分解法:将方程的一边化为0,另一边分解为两个一次因式的积,从而转化为求解两个一元一次方程。
3. 根与系数的关系•若一元二次方程x² + px + q = 0的两个根为x₁和x₂,则有:x₁ + x₂ = -p,x₁x₂ = q。
二、实际问题与一元二次方程1. 应用步骤•审:读懂题目,弄清题意,明确已知量和未知量以及它们之间的等量关系。
•设:设出未知数。
•列:列出方程,这是关键步骤,需找出能够表达应用题全部含义的相等关系,并列出含有未知数的等式。
•解:解方程,求出未知数的值。
•验:检验方程的解是否保证实际问题有意义,符合题意。
•答:写出答案。
2. 常见类型•数字问题:如三个连续整数、连续偶数(奇数)的表示。
•增长率问题:设初始量为a,终止量为b,平均增长率或降低率为x,则经过两次的增长或降低后的等量关系为a(1±x)² = b。
•利润问题:常用关系式有总利润=总销售价-总成本,或总利润=单位利润×总销售量,或利润=成本×利润率。
•图形的面积问题:根据图形的面积与图形的边等高等相关元素的关系,将图形的面积用含有未知数的代数式表示出来,建立一元二次方程。
三、二次函数1. 定义•一般地,形如y = ax² + bx + c(a, b, c是常数,a ≠ 0)的函数,叫做二次函数。
人教版数学九年级上册知识点归纳1.二次根式二次根式是指含有二次根号“√”且被开方数a必须是非负数的式子。
最简二次根式是指被开方数的因数和因式都是整数和整式,且被开方数中不含能开得尽方的因数或因式的二次根式。
化简二次根式的方法和步骤包括:将被开方数是分数或分式的式子先写成分式形式,再利用分母有理化进行化简;将被开方数是整数或整式的式子先分解因数或因式,再将能开得尽方的因数或因式开出来。
同类二次根式是指几个二次根式化成最简二次根式后,它们的被开方数相同。
2.一元二次方程一元二次方程是指含有一个未知数,且未知数的最高次数是2的整式方程。
一元二次方程的一般形式是ax2+bx+c=0(其中a≠0),其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项。
解一元二次方程的方法有直接开平方法、配方法和公式法。
直接开平方法适用于解形如(x+a)2=b的一元二次方程,利用平方根的定义直接开平方求解。
配方法是利用完全平方公式将一元二次方程转化为(x±b)2的形式,再求解。
公式法是用求根公式解一元二次方程的解的方法,它是解一元二次方程的一般方法,求根公式为x=(-b±√(b2-4ac))/(2a)。
关于y轴对称的点的特征:当两个点关于y轴对称时,它们的坐标中,y相等,x的符号相反。
即点P(x,y)关于y 轴的对称点为P’(-x,y)。
第四单元圆:一、圆的相关概念1、圆的定义:在一个平面内,线段OA绕它固定的一个端点O旋转一周,另一个端点A随之旋转所形成的图形叫做圆,固定的端点O叫做圆心,线段OA叫做半径。
2、圆的几何表示:以点O为圆心的圆记作“⊙O”,读作“圆O”。
二、弦、弧等与圆有关的定义1、弦:连接圆上任意两点的线段叫做弦(如图中的AB)。
2、直径:经过圆心的弦叫做直径(如图中的CD),直径等于半径的2倍。
3、半圆:圆的任意一条直径的两个端点分圆成两条弧,每一条弧都叫做半圆。
数学九年级人教全书知识点一、代数与函数1.万能线性方程式1.1 一元一次方程1.2 一元一次方程组1.3 二元一次方程组1.4 一元二次方程1.5 二元二次方程组2.函数与方程2.1 函数的概念2.2 函数的表示与性质2.3 函数的运算2.4 函数的应用2.5 方程与不等式的解集3.图像与函数关系3.1 二次函数与抛物线3.2 幂函数与指数函数3.3 对数函数与指数函数互逆关系 3.4 三角函数与周期性3.5 函数图像的变换与性质二、几何与证明1.三角形与相似1.1 三角形的性质1.2 三角形的分类与判定1.3 相似三角形的判定与性质1.4 黄金分割与相似1.5 三角形与数学建模2.圆与圆的位置关系2.1 圆的概念与性质2.2 弦与弧2.3 切线与切点2.4 圆的位置关系2.5 圆与几何思想3.解析几何3.1 坐标系与平面直角坐标系 3.2 直线的方程与性质3.3 圆的方程与性质3.4 直线与圆的位置关系3.5 综合运用三、概率与统计1.统计调查与数据分析1.1 统计调查的基本步骤1.2 数据的收集与整理1.3 数据的表示与分析1.4 数据的解读与运用1.5 研究生活中的问题2.概率与事件2.1 概率的基本概念2.2 事件与样本空间2.3 事件的运算与性质2.4 概率的计算方法2.5 概率与数学游戏3.统计图与统计量3.1 统计图的绘制与解读 3.2 中心与离散程度的度量 3.3 统计参数的估计3.4 统计推断与假设检验3.5 利用数据分析实际问题四、空间与立体几何1.空间与平面立体图形1.1 空间几何的基本概念1.2 空间图形的展开与投影 1.3 空间图形的相交与相切 1.4 空间图形与视觉艺术1.5 空间几何与生活实际2.尺规作图与解析几何2.1 平行线作图2.2 三等分角作图2.3 特殊角作图2.4 图形的平移、旋转和对称 2.5 解析几何与数学建模3.立体几何与立体图形3.1 空间直线与平面的关系3.2 空间四面体与多面体的性质3.3 空间几何问题的解决方法3.4 空间几何与工程应用3.5 立体几何的拓展与应用以上是数学九年级人教全书的主要知识点,希望对你的学习有所帮助。
−n± p m人教版九年级数学上册知识点整理(完整版)第二十一章 一元二次方程一、一元二次方程的有关概念(一)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的方程,叫做一元二次方程。
(二)一元二次方程的一般形式:ax 2 + bx + c = O(a ≠ O)其中:二次项为ax 2;二次项系数为 a ;一次项为 bx ,一次项系数为 b ;常数项为 c 。
特殊形式:(三)一元二次方程中“未知数的最高次数是 2,二次项系数 a≠0”是针对整理合并的方程而言的。
(四)一元二次方程的解(根)1、概念:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解 也叫做一元二次方程的根。
2、判断一个数是否是一元二次方程的根将这个数代入一元二次方程的左右两边,看是否相等,若相等,则该数是这个方程的根;若不 相等,则该数不是这个方程的根。
3、关于一元二次方程根的三个重要结论(1)a+b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =1。
(2)a-b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =﹣1。
(3)c=0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =0。
二、解一元二次方程(一)直接开平方法解一元二次方程1、直接开平方法∶利用平方根的意义直接开平方,求一元二次方程的解的方法叫做直接开平 方法。
2、方程x 2 = p 的根(1) 当 p>0 时,根据平方根的意义,方程x 2 = p 有两个不相等的实数根x 1 = p ,x 2 =− p 。
(2) 当 p=0 时,方程x 2 = p 有两个相等的实数根x 1 = x 2 =0。
(3) 当 p<0 时,因为对任意实数 x ,都有x 2≥0,所以方程x 2 = p 无实数根。
人教版九年级数学全册各单元知识点总结第一单元:有理数与小数- 数的分类:自然数、整数、有理数、小数、实数- 有理数的表示和比较大小- 有理数的加减法和乘除法- 小数的加减法和乘除法- 小数与分数的转化和比较大小第二单元:代数式与方程式- 代数式的基本概念和运算法则- 代数式化简与展开- 方程式的基本概念和解法- 一元一次方程式的解法和应用- 一元一次方程组的解法和应用第三单元:图形的初步研究- 平面图形的基本概念和性质- 直线、射线、线段、角的基本概念和性质- 同位角、对顶角、内错角、同旁内角的性质和关系- 平行线和平行四边形的性质- 三角形的内角和外角的性质第四单元:一次函数与一元一次不等式- 函数的基本概念和表示方法- 一次函数的性质和图像- 一元一次不等式的解法和应用第五单元:数列的基本概念- 数列的基本概念和表示方法- 等差数列和等差数列的求和公式- 等比数列和等比数列的求和公式- 数列的应用第六单元:几何变换- 平移、旋转和翻转的基本概念和性质- 平移、旋转和翻转的变换规律- 对称和中心对称的性质和判断- 三角形的位似判断和证明第七单元:数据的收集和统计- 调查和数据收集的方法和技巧- 数据的整理、处理和分析- 平均数、中位数和众数的计算和应用- 直方图、折线图和饼图的表示和解读第八单元:概率与统计- 事件和概率的基本概念和性质- 概率计算的方法和技巧- 列举和计数的方法和应用- 两个事件的关系和概率以上是人教版九年级数学全册各单元的知识点总结。
希望对你的学习有所帮助!。
**人教版九年级上册数学知识点梳理**
一、预备知识
1. 实数:了解实数的概念,包括有理数和无理数,能进行实数的四则运算。
二、一元二次方程
1. 一元二次方程的标准形式:ax^2 + bx + c = 0 (a ≠ 0)。
2. 解一元二次方程的常用方法:因式分解法、公式法(韦达定理)、配方法等。
3. 判别式Δ = b^2 - 4ac 的应用:判断方程的根的情况(实根或虚根)。
三、一元二次方程的根与系数的关系
1. 韦达定理:对于一元二次方程 ax^2 + bx + c = 0 的根 x₁和 x₂,有 x₁ + x₂ = -b/a 和x₁× x₂ = c/a。
四、因式分解
1. 因式分解的方法:差平方公式、完全平方公式、分组分解法等。
五、函数及其图象
1. 平面直角坐标系:理解坐标系中点的坐标,掌握点的坐标与平面位置的关系。
2. 函数的定义和性质:了解函数的定义、自变量和因变量的关系,理解函数的图象及其变化规律。
3. 一次函数和正比例函数:理解一次函数 y = kx + b 和正比例函数 y = kx 的图象及其性质。
4. 反比例函数:理解反比例函数 y = k/x 的图象及其性质。
六、概率初步
1. 概率的基本概念:了解概率的定义,掌握概率的取值范围(0 ≤ P(A) ≤ 1)。
2. 等可能条件下的概率计算方法:根据问题中已知的信息和公式 P(A) = 事件A出现的次数/全部基本事件总数来计算概率。
以上内容为九年级上册数学的部分知识点,学习时建议结合课本与教师讲解进行深入理解和掌握。
希望以上内容对你有帮助!。
人教版九年级数学上册知识点整理(完整版)人教版九年级数学上册知识点整理一、有理数有理数是整数和分数的集合。
有理数的数轴上,0的左侧是负有理数,右侧是正有理数。
加、减、乘、除有理数的运算规则。
二、立方根如果一个数的立方等于另一个数,那么这个数叫做另一个数的立方根。
三、代数式由数、变量及运算符号组成的式子叫做代数式。
其中数叫做常数项,变量叫做一次项。
四、图形的基本要素和运动绿色的箭头表示平移,红色的箭头表示旋转,蓝色的箭头表示对称。
五、全等三角形若两个三角形的三边和三角形的三个角分别相等,则称这两个三角形全等。
六、相似三角形若两个三角形的三个角分别相等,则称这两个三角形相似。
七、平移与旋转1、平移:用平移将一个点沿一个方向移动到另一个位置,移动的距离及方向相同,不改变点的属性。
2、旋转:以一个点为中心旋转某个图形的每个点,旋转的角度相同,不改变图形的形状和大小。
八、直线和角两条不共线的直线分别与一条直线相交所形成的两个相邻角互为补角。
九、相反数两个数互为相反数,当且仅当它们的和为0。
十、分数的意义和性质1、通分:将几个分数化成分母相同的分数。
2、分数的约分、化分;十一、用比例表示实际问题利用比例,确定两个量之间的等比关系,以解决实际问题。
十二、扇形和弧1、扇形是由两条半径及其所夹的圆周构成。
2、弧是圆上任意两点之间的弧。
3、圆心角,切线和弦的关系。
十三、比例和类比1、比例含义:比例是两个量之间的等比关系。
2、异比例的解决方法:设比例系数为k,则两个量之间的关系为y=kx或xy=k。
十四、平行四边形和直角梯形1、平行四边形的性质:对角线互相平分;一个角的补角等于它的邻角。
2、直角梯形:有两条平行的底和两个底的夹角为90°的四边形。
十五、直角三角形1、勾股定理:直角三角形斜边的平方等于两直角边的平方之和。
2、定比分点定理:在一条线段上,任意三点A、B、C,如果AC:CB=k:1,则称B为AC上的k:1分点。
人教版九年级数学上册重点知识点总结一、实数1.有理数1.1 定义:整数和分数统称为有理数。
1.2 分类:正有理数、负有理数和零。
1.3 性质:有理数加减乘除遵循交换律、结合律和分配律。
1.4 相反数、绝对值:一个数的相反数是与它的数值相等,但符号相反的数;一个数的绝对值是它与零的距离。
2.无理数2.1 定义:不能表示为两个整数比的数称为无理数。
2.2 性质:无理数不能精确表示,只能近似计算。
2.3 常见无理数:π、√2、√3等。
3.实数3.1 定义:有理数和无理数的集合称为实数。
3.2 性质:实数加减乘除遵循交换律、结合律和分配律。
二、代数式1.代数式的概念1.1 代数式是由数字、字母和运算符组成的表达式。
1.2 代数式的分类:单项式、多项式、函数等。
2.单项式2.1 定义:只有一个项的代数式称为单项式。
2.2 项的系数:单项式中字母的系数是该字母前的数字。
3.多项式3.1 定义:有两个或以上项的代数式称为多项式。
3.2 多项式的度:多项式中最高次项的次数称为该多项式的度。
4.函数4.1 定义:对于每个输入值,都有唯一输出值的代数式称为函数。
4.2 函数的表示方法:解析式、表格、图象等。
三、方程(含方程组)1.一元一次方程1.1 定义:只有一个未知数,且未知数的最高次数为1的方程称为一元一次方程。
1.2 解法:移项、合并同类项、化简等。
2.二元一次方程2.1 定义:有两个未知数,且未知数的最高次数为1的方程称为二元一次方程。
2.2 解法:代入法、消元法等。
3.方程组3.1 定义:由两个或以上方程组成的解集称为方程组。
3.2 解法:代入法、消元法、图解法等。
四、不等式(含不等式组)1.不等式1.1 定义:用“>”、“<”、“≥”、“≤”等不等号表示两个数之间大小关系的式子称为不等式。
1.2 解法:同方向不等式可以相加减,异方向不等式需要变号。
2.不等式组2.1 定义:由两个或以上不等式组成的解集称为不等式组。
−n± p m人教版九年级数学上册知识点整理(完整版)第二十一章 一元二次方程一、一元二次方程的有关概念(一)一元二次方程:等号两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是 2(二次)的方程,叫做一元二次方程。
(二)一元二次方程的一般形式:ax 2 + bx + c = O(a ≠ O)其中:二次项为ax 2;二次项系数为 a ;一次项为 bx ,一次项系数为 b ;常数项为 c 。
特殊形式:(三)一元二次方程中“未知数的最高次数是 2,二次项系数 a≠0”是针对整理合并的方程而言的。
(四)一元二次方程的解(根)1、概念:使方程左右两边相等的未知数的值就是这个一元二次方程的解,一元二次方程的解 也叫做一元二次方程的根。
2、判断一个数是否是一元二次方程的根将这个数代入一元二次方程的左右两边,看是否相等,若相等,则该数是这个方程的根;若不 相等,则该数不是这个方程的根。
3、关于一元二次方程根的三个重要结论(1)a+b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =1。
(2)a-b+c =0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =﹣1。
(3)c=0⇔一元二次方程ax 2 + bx + c = O(a ≠ O)有一个根为 x =0。
二、解一元二次方程(一)直接开平方法解一元二次方程1、直接开平方法∶利用平方根的意义直接开平方,求一元二次方程的解的方法叫做直接开平 方法。
2、方程x 2 = p 的根(1) 当 p>0 时,根据平方根的意义,方程x 2 = p 有两个不相等的实数根x 1 = p ,x 2 =− p 。
(2) 当 p=0 时,方程x 2 = p 有两个相等的实数根x 1 = x 2 =0。
(3) 当 p<0 时,因为对任意实数 x ,都有x 2≥0,所以方程x 2 = p 无实数根。
3、用直接开平方法解一元二次方程时,要先将方程左边化成完全平方的形式,右边是非负数 的形式,再用直接开平方解方程。
4、解形如(nx +n)2 = p (m≠0,p≥0)的一元二次方程,把nx +n 看作一个整体,直接开平方 降次得nx +n =± p ,即x =。
5、适用范围:直接开平方法只适用于能转化为x 2 = p 或(mx +n)2 = p (m≠0,p≥0)形式的方 程。
(二)配方法解一元二次方程1、配方法:把方程ax 2 + bx + c = O(a ≠ O)的左边配成一个含有未知数的完全平方式、右边是一个常数的形式,进而用直接开平方法求解,这种通过配成完全平方形式来解一元二次方程的方 法,叫做配方法。
2、可化为(x + n)2 = p 的形式的一元二次方程的根(1) 当 p >0 时,方程(x + n)2 = p 有两个不等的实数根x 1 =− n + p ,x 2 =− n − p ; (2) 当 p =0 时,方程(x + n)2 = p 有两个相等的实数根x 1 = x 2 =− n ;(3) 当 p <0 时,因为对任意实数 x ,都有(x + n)2≥0,所以方程(x + n)2 = p 无实数根。
3、用配方法解一元二次方程的一般步骤(2x 2 − 7x + 3 = 0)依据:完全平方公式的逆用a 2 ± 2ab + b 2 = (a ± b)2和直接开平方法。
2x 2 − 7x =− 3 (1)移项:将常数项移到等号右边,含未知数的项移到等号左边。
x 2− 7 x =− 32 2(2)二次项系数化为 1:左、右两边同时除以二次项系数。
x 2 − 7 x + ( − 7 )2 =− 3 + ( − 7 )2 2 2 2 2即(x − 7 )2= 25216(3)配方:左、右两边同时加上一次项系数一半的平 方。
(4)开平方求根:利用平方根的意义直接开平方。
(三)公式法解一元二次方程1、推导:用配方法解方程ax 2 + bx + c = O(a ≠ O)2、一元二次方程根的判别式12 (1)内容:一般地,式子b 2 − 4ac 叫做一元二次方程ax 2 + bx + c = O(a ≠ O)根的判别式, 通常用希腊字母“Δ”表示它,即Δ = b 2 − 4ac 。
(2)方程ax 2 + bx + c = O(a ≠ O)的根的情况Δ>0⇔方程ax 2 + bx + c = O(a ≠ O)有两个不相等的实数根。
Δ=0⇔方程ax 2 + bx + c = O(a ≠ O)有两个相等的实数根。
Δ<0⇔方程ax 2 + bx + c = O(a ≠ O)无实数根。
3、拓展:对于一元二次方程ax 2 + bx + c = O(a ≠ O),当 a ,c 异号时,方程一定有两个不相等的实数根;当 c=0 时,方程一定有一个根为 0。
4、一元二次方程的求根公式(1) 内容:当∆ ≥ 0 时,方程a x 2 + bx + c = O(a ≠ O) 的实数根x =的形式,这个式子叫做一元二次方程ax 2 + bx + c = O 的求根公式。
(2)公式法:解一个具体的一元二次方程时,把各项系数直接代入求根公式,以避免配方过 程而直接得出根,这种解一元二次方程的方法叫做公式法。
(3) 用公式法解一元二次方程的步骤①整理方程:一般式ax 2 + bx + c = O(a ≠ O)。
②计算根的判别式:Δ = b 2 − 4ac 。
③求根:当Δ=④写解b 2− 4ac >0 时,将各项系数代入求根公式x =注:当Δ=b 2 − 4ac =0 时,方程有两个相等的实数根,即x= x =− b。
2a(四)因式分解法解一元二次方程1、因式分解法:先对方程ax 2 + bx + c = O(a ≠ O)的左边因式分解,使方程化为两个一次式的乘积等于 0 的形式,再使这两个一次式分别等于 0,从而实现降次.这种解一元二次方程的方法叫做因式分解法。
2、用因式分解法解一元二次方程的步骤 (1) 移项∶将方程化为一般形式。
(2) 分解∶将方程的左边分解为两个一次式的乘积。
(3) 转化∶令每个一次式分别为 0,得到两个一元一次方程。
(4) 求解:解这两个一元一次方程,它们的解就是一元二次方程的解。
(五)一元二次方程的根与系数的关系 1、推导−b± b 2−4ac2a2、内容(1)文字语言:一元二次方程的两个根的和等于一次项系数与二次项系数的比的相反数,两个根的积等于常数项与二次项系数的比。
(2)数学语言若ax2 + bx + c = O(a ≠ O)的两个根为x1,x2,则x1 + x2=− b,x1x2 = c。
a a3、重要结论(1)若一元二次方程x2+p x+q=O(a≠O)的两根为x1,x2,则x1 + x2=− p,x1x2 = q。
(2)以实数x1,x2为两根的二次项系数为1 的一元二次方程是x2 − (x1 + x2) + x1x2 = O。
4、重要变形x12 + x22 = (x1 + x2)2 − 2x1x2三、实际问题与一元二次方程(一)列一元一次方程解决实际问题的一般步骤1、审题找相等关系2、设未知数3、列方程4、解方程5、检验(1)检验所得结果是不是方程的解。
(2)检验方程的解是否符合实际意义。
6、写出答案(二)常见实际问题1、平均增长率(降低率)问题:a(1 + x)2 = n2、几何图形问题3、存款利息问题4、数字问题5、存款利息问题6、传播、比赛与握手问题1x(x − 1) = n(1)比赛单循环、握手:2(2)比赛双循环、互发短信:x(x − 1) = n (3)传播问题:1 + x + (1 + x)x = n ⇒ (1 + x)² = n第二十二章二次函数一、二次函数概念(一)内容:一般地,形如y = ax2 + bx + c(a,b,c 是常数,a≠0)的函数,叫做二次函数;其中,x 是自变量,a,b,c 分别是函数解析式的二次项系数、一次项系数和常数项。
(二)二次函数一般式:y = ax2 + bx + c(a,b,c 是常数,a≠0)(三)二次函数成立的条件1、函数解析式是整式;2、化简后自变量的最高次数为2;3、二次项系数不为0。
二、二次函数的图像和性质(一)图像:二次函数y = ax2 + bx + c(a ≠ O)的图象是一条曲线,这条曲线叫做抛物线y = ax2 + bx + c 。
(二)抛物线是轴对称图形,抛物线与其对称轴的交点叫做抛物线的顶点,顶点是抛物线的最低点或最高点。
(三)二次函数y = ax2(a ≠ O)的图像和性质1、用描点法画二次函数y = ax2的图象的一般步骤(1)列表:让x取一些有代表性的值,求出对应的y值,列出表格,一般取原点(0,0),在y 轴的两侧各取2 个或3 个点,注意对称取点。
(2)描点:在平面直角坐标系内,描出相应的点,一般先描出y 轴一侧的几个点,再根据对称性找出y 轴另一侧的几个点。
(3)连线:按自变量由小到大的顺序,用平滑的曲线(顶端不能画成尖的)依次连各点,并向两端无限延伸(注意曲线两端要出头)。
注:①一般来说,取的点越多,图像越精确。
②抛物线是向两端无限延伸的,左右两侧应关于对称轴对称。
2、二次函数y = ax2(a ≠ O)的图像和性质y = ax2(a ≠ O) a > 0 a < 0向上向下注:对于抛物线y = ax,a 的符号决定抛物线的开口方向;|a|的大小决定抛物线的开口程度,|a|越大,抛物线开口越小,|a|相等说明抛物线的开口大小相同。
(四)二次函数y = ax2 + k(a ≠ O)的图象和性质1、二次函数y = ax2 + k与y = ax2图象间的关系二次函数y = ax2 + k的图象可以由二次函数y = ax2沿y 轴向上(k>0)或向下(k<0)平移| k |个单位长度得到(上加下减常数项)。
2k > 0 k < 0 k > 0 k < 0向上向下注:(1)对于二次函数y=a x或y=a x1122上,且|x1| > |x2|,则有y1 > y2。
(2)对于二次函数y = ax2或y = ax2 + k,当a < 0 时,若A(x1,y1),B(x2,y2)在抛物线上,且|x1| > |x2|,则有y1 < y2。
(五)二次函数y = a(x − M)2的图象和性质1、二次函数y = a(x − M)2与y = ax 2图象间的关系二次函数y = a(x − M)2的图象可以由二次函数y = ax 2沿 x 轴向右(h>0)或向左(h<0)平移| h |个单位长度得到(左加右减自变量)。