考点34带电粒子在静电场中的运动-高考全攻略之备战2019年高考物理考点一遍过
- 格式:doc
- 大小:3.49 MB
- 文档页数:52
专题8.8 带电粒子在非匀强电场中的运动【考纲解读与考频分析】带电粒子在非匀强电场中的运动是高考要求的II级考点,是高考命题考查的重点。
【高频考点定位】:带电粒子在非匀强电场中的运动考点一:带电粒子在非匀强电场中的运动【3年真题链接】1.(2019全国理综II卷14)静电场中,一带电粒子仅在电场力的作用下自M点由静止开始运动,N为粒子运动轨迹上的另外一点,则()A.运动过程中,粒子的速度大小可能先增大后减小B.在M、N两点间,粒子的轨迹一定与某条电场线重合C.粒子在M点的电势能不低于其在N点的电势能D.粒子在N点所受电场力的方向一定与粒子轨迹在该点的切线平行【参考答案】.AC【命题意图】本题考查带电粒子在静电场中的运动,考查的核心素养是思维的周密性,对各种可能情景的分析,都“可能”、“一定”选项的甄别和分析。
【解题思路】【正确项分析】由于题述没有给出静电场是匀强电场还是非匀强电场,需要考虑选项中的可能性。
若是同种点电荷的电场,一带同种电荷的粒子沿两电荷的连线自M点由静止开始运动,粒子的速度先增大后减小,选项A正确;带电粒子仅在电场力作用下运动,若运动到N点的动能为零,则N、M两点的电势能相等;根据仅在电场力作用下运动,带电粒子动能和电势能保持不变,可知若运动到N点的动能不为零,则N点的电势能小于M点的电势能,即粒子在M点的电势能不低于其在N点的电势能,选项C 正确;【错误项分析】若静电场的电场线不是直线,带电粒子仅在电场力作用下,其运动轨迹不会与电场线重合,选项B错误;若粒子运动轨迹为曲线,根据粒子做曲线运动的条件,则粒子在N点所受电场力的方向一定不与粒子轨迹在该点的切线平行,选项D错误。
【易错剖析】此题选项中“可能”、“一定”,需要考虑各种可能情况认真分析。
只要是题述情景的可能情况中可能发生的,则“可能”选项即为正确;只要是题述情景的可能情况中有可能不发生的,则“一定”选项即为错误。
2.(2019高考江苏卷物理9)如图所示,ABC 为等边三角形,电荷量为+q 的点电荷固定在A 点.先将一电荷量也为+q 的点电荷Q 1从无穷远处(电势为0)移到C 点,此过程中,电场力做功为-W .再将Q 1从C 点沿CB 移到B 点并固定.最后将一电荷量为-2q 的点电荷Q 2从无穷远处移到C 点.下列说法正确的有( )(A )Q 1移入之前,C 点的电势为W/q(B )Q 1从C 点移到B 点的过程中,所受电场力做的功为0(C )Q 2从无穷远处移到C 点的过程中,所受电场力做的功为2W(D )Q 2在移到C 点后的电势能为-4W【参考答案】ABC【名师解析】根据题述,将一电荷量也为+q 的点电荷Q 1从无穷远处(电势为0)移到C 点,此过程中,电场力做功为-W .可得C 点与无穷远点的电势差为U=W/q ,所以Q 1移入之前,C 点的电势为W/q ,选项A 正确;根据点电荷电场特征可知,BC 两点处于同一等势面上,所以Q 1从C 点移到B 点的过程中,所受电场力做的功为0,选项B 正确;将一电荷量为-2q 的点电荷Q 2从无穷远处移到C 点,所受电场力做的功为2W ,Q 2在移到C 点后的电势能为-2W ,选项C 正确D 错误。
高一物理《带电粒子在电场中的运动》知识点总结一、带电粒子在电场中的加速分析带电粒子的加速问题有两种思路:1.利用牛顿第二定律结合匀变速直线运动公式分析.适用于匀强电场.2.利用静电力做功结合动能定理分析.对于匀强电场和非匀强电场都适用,公式有qEd =12m v 2-12m v 02(匀强电场)或qU =12m v 2-12m v 02(任何电场)等. 二、带电粒子在电场中的偏转如图所示,质量为m 、带电荷量为q 的粒子(忽略重力),以初速度v 0平行于两极板进入匀强电场,极板长为l ,极板间距离为d ,极板间电压为U .1.运动性质:(1)沿初速度方向:速度为v 0的匀速直线运动.(2)垂直v 0的方向:初速度为零的匀加速直线运动.2.运动规律:(1)t =l v 0,a =qU md ,偏移距离y =12at 2=qUl 22m v 02d. (2)v y =at =qUl m v 0d ,tan θ=v y v 0=qUl md v 02. 三、带电粒子的分类及受力特点(1)电子、质子、α粒子、离子等粒子,一般都不考虑重力,但不能忽略质量.(2)质量较大的微粒,如带电小球、带电油滴、带电颗粒等,除有说明或有明确的暗示外,处理问题时一般都不能忽略重力.(3)受力分析仍按力学中受力分析的方法分析,切勿漏掉静电力.四、求带电粒子的速度的两种方法(1)从动力学角度出发,用牛顿第二定律和运动学知识求解.(适用于匀强电场)由牛顿第二定律可知,带电粒子运动的加速度的大小a =F m =qE m =qU md.若一个带正电荷的粒子,在静电力作用下由静止开始从正极板向负极板做匀加速直线运动,两极板间的距离为d ,则由v 2-v 02=2ad 可求得带电粒子到达负极板时的速度v =2ad =2qU m.(2)从功能关系角度出发,用动能定理求解.(可以是匀强电场,也可以是非匀强电场)带电粒子在运动过程中,只受静电力作用,静电力做的功W =qU ,根据动能定理,当初速度为零时,W =12m v 2-0,解得v =2qU m ;当初速度不为零时,W =12m v 2-12m v 02,解得v =2qU m +v 02. 五、带电粒子在电场中的偏转的几个常用推论(1)粒子从偏转电场中射出时,其速度方向的反向延长线与初速度方向的延长线交于一点,此点为粒子沿初速度方向位移的中点.(2)位移方向与初速度方向间夹角α的正切值为速度偏转角θ正切值的12,即tan α=12tan θ. (3)不同的带电粒子(电性相同,初速度为零),经过同一电场加速后,又进入同一偏转电场,则它们的运动轨迹必定重合.注意:分析粒子的偏转问题也可以利用动能定理,即qEy =ΔE k ,其中y 为粒子在偏转电场中沿静电力方向的偏移量.。
高中物理学习材料(马鸣风萧萧**整理制作)六、带电粒子在电场中的运动带电粒子在电场中的运动主要考查的内容主标题:带电粒子在电场中的运动副标题:剖析考点规律,明确高考考查重点,为学生备考提供简洁有效的备考策略。
关键词:带电粒子、电场难度:3重要程度:5内容:考点剖析:带电粒子在电场中的运动是高考的热点,几乎每年都有此类题目出现。
这类问题也是高考的难点,解题时一般用数学知识分析、计算,这是多数学生感到困难的地方。
很多试题与磁场的有关知识相结合出题,考查带电粒子在电场和磁场的复合场中的运动情况。
`带电粒子在电场中的运动,综合了静电场和力学知识,分析方法和力学的分析方法基本相同:先分析受力情况,再根据初始状态分析粒子的运动性质(平衡、加速或减速,是直线还是曲线,是类平抛运动还是圆周运动,或是简谐振动等),然后选用恰当的规律解题。
解题步骤如下:1.确定研究对象(某个带电体);2.分析带电体所受的外力;3.根据题意分析物理过程,应注意讨论各种情况,分析题中的隐含条件,这是解题的关键;4.根据物理过程、已知条件和所求的物理量,选择恰当的力学规律求解;5.对所得结果进行讨论。
在对带电粒子进行受力分析时,要注意两点:1.要掌握电场力的特点,如电场力的大小和方向不仅跟场强的大小和方向有关,还与带电粒子的电量和电性有关;在匀强电场中,同一带电粒子所受的电场力处处是恒力;在非匀强电场中,同一带电粒子在不同位置所受的电场力不同。
2.是否考虑重力要依据具体情况而定:(1)基本粒子:如电子、质子、氘核、氚核、α粒子、离子等,一般都不考虑重力(但并不忽略质量)。
(2)带电微粒:如液滴、尘埃、小球等,除有说明或明确的暗示以外,一般都不能忽略重力。
带电粒子的速度大小发生变化的过程是其他形式的能和动能之间的转化过程,解决这类问题,是恒力作用时,可用牛顿运动定律和运动学公式来求解,而普遍适用的是动能定理和能量守恒定律。
如选用动能定理,则要分清有哪些力做功,做的是正功还是负功,是恒力做功还是变力做功。
知识回顾 1.带电粒子在电场中的加速(1)匀强电场中,v 0与E 平行时,优先用功能关系求解,若不行,则用牛顿第二定律和运动学公式. (2)非匀强电场中,只能用功能关系求解.2.带电粒子在匀强电场中的偏转(v 0垂直于E 的方向),如图所示(1)沿v 0方向的匀速直线运动. (2)垂直于v 0方向的匀加速直线运动. ①加速度a =qE m =qUmd; ②偏转距离y =12at 2=qU 2md x v 02y =qUL22mdv 20;③速度偏向角 tan φ=v y v 0=qUx mdv 20tan φ=qUL mdv 20;④位移偏向角tan θ=y x =qUx 2mdv 20tan θ=qUL2mdv 20; ⑤两个重要的结论a .位移偏向角θ和速度偏向角φ满足tan φ=2tan θ;b .射出极板时粒子的速度反向延长线过粒子水平位移的中点.规律方法带电粒子在电场中运动的解题方法(1)求解带电粒子在匀强电场中的运动时,运动和力、功能关系两个途径都适用,选择依据是题给条件,当不涉及时间时选择功能关系,否则必须选择运动和力.(2)带电粒子在非匀强电场中运动时,加速度不断变化,只能选择功能关系求解. 例题分析【例1】 (2017年高考·江苏卷)如图所示,三块平行放置的带电金属薄板A、B、C中央各有一小孔,小孔分别位于O、M、P点.由O点静止释放的电子恰好能运动到P点.现将C板向右平移到P′点,则由O点静止释放的电子( )A.运动到P点返回B.运动到P和P′点之间返回C.运动到P′点返回D.穿过P′点【★答案★】 A【例2】如图所示,两平行金属板A、B长l=8 cm,两板间距离d=8 cm,A板比B板电势高300 V,即U AB=300 V.一带正电的粒子电量为q=10-10C,质量为m=10-20kg,从R点沿电场中心线垂直电场线飞入电场,初速度v0=2×106 m/s,粒子飞出平行板电场后经过界面MN、PS间的无电场区域后,进入固定在中心线上O点的点电荷Q形成的电场区域(设界面PS右边点电荷的电场分布不受界面的影响).已知两界面MN、PS相距为L=12 cm,粒子穿过界面PS后被点电荷Q施加的电场力俘获,从而以O点为圆心做匀速圆周运动,最后垂直打在放置于中心线上的荧光屏EF上静电力常量k=9×109N·m2/C2,粒子重力不计,tan37°=34,tan53°=43.求:(1)粒子穿过界面MN时偏离中心线RO的距离h;(2)粒子穿过界面MN 时的速度v ;(3)粒子穿过界面PS 时偏离中心线RO 的距离Y ; (4)点电荷的电荷量Q (该小题结果保留一位有效数字).(2)粒子的运动轨迹如图8-6-4所示设粒子从电场中飞出时沿电场方向的速度为v y ,则:v y =at =qU AB lmdv 0解得:v y =1.5×106m/s所以粒子从电场中飞出时的速度为:v =v 20+v 2y =2.5×106m/s设粒子从电场中飞出时的速度方向与水平方向的夹角为θ,则:tan θ=v y v 0=34解得:θ=37°【例3】如图甲所示,真空中两水平放置的平行金属板A、B相距为d,板长为L,今在A、B两板间加一如图乙所示的周期性变化的交变电压.从t=0时刻开始,一束初速度均为v0的电子流沿A、B两板间的中线从左端连续不断地水平射入板间的电场,要想使电子束都能从A、B右端水平射出,则所加交变电压的周期T和所加电压的大小应满足什么条件?【解析】根据题意可知,电子在水平方向上做匀速直线运动,在竖直方向上做变速直线运动,可画出t =0时刻射入板间的电子在竖直方向上的速度-时间(v y-t)图象,如图8-6-6所示,因电子进入板间电场和离开板间电场时,其竖直分速度均为零,所以电子在电场中的运动时间t必为交变电压周期T的整数倍:t=nT(n=1、2、3、…)而t =l v 0故T =lnv 0(n =1、2、3…)规律总结“两个分运动、三个一”求解粒子偏转问题 带电粒子在匀强电场中偏转的基本模型如图所示.(1)分解为两个独立的分运动——平行极板的匀速直线运动,L =v 0t ;垂直极板的匀加速直线运动,y =12at 2,v y =at ,a =qUmd.(2)一个偏转角:tan θ=v y v 0;一个几何关系:y =L2tan θ;一个功能关系:ΔE k =qUy d. 专题练习1.如图,在P 板附近有一电子由静止开始向Q 板运动.已知两极板间电势差为U ,板间距为d ,电子质量为m ,电量为e.则关于电子在两板间的运动情况,下列叙述正确的是( )A .若将板间距d 增大一倍,则电子到达Q 板的速率保持不变B .若将板间距d 增大一倍,则电子到达Q 板的速率也增大一倍C .若将两极板间电势差U 增大一倍,则电子到达Q 板的时间保持不变D .若将两极板间电势差U 增大一倍,则电子到达Q 板的时间减为一半 【★答案★】 A2.(2017·洛阳联考)如图所示,平行金属板A 、B 水平正对放置,虚线为中心线,A 、B 板间加上稳定的电压,有三个带电微粒a 、b 、c 从靠近A 板边缘处以相同的水平初速度射入板间,a 从中心线上M 点飞出板间区域,b 从B 板右侧边缘飞出,c 落在B 板的中点N 处,不计微粒的重力,则带电微粒a 、b 、c 的比荷关系为( )A.q c m c =4q b m b =8q a m aB.q a m a =q b m b =4q c m cC.q a m a =2q b m b =4q c m cD.q c m c =2q b m b =4q a m a 【★答案★】 A【解析】根据平抛运动的知识可知,微粒在竖直方向上的偏转距离y =12at 2=qU 2dm t 2,t a =t b =2t c ,解得q c m c =4q b m b =8q am a,故A 项正确.3.(2017·临沂二模)(多选)有一种电荷控制式喷墨打印机的打印头的结构简图如图所示.其中墨盒可以喷出极小的墨汁微粒,此微粒经过带电室后以一定的初速度垂直射入偏转电场,再经偏转电场后打到纸上,显示出字符.不考虑墨汁的重力,为了使打在纸上的字迹缩小,下列措施可行的是( )A.减小墨汁微粒的质量 B.减小墨汁微粒所带的电荷量C.增大偏转电场的电压 D.增大墨汁微粒喷入偏转场的速度【★答案★】BD4.(2017·衡阳质检)(多选)如图所示,质量相同的两个带电粒子P、Q以相同的速度沿垂直于电场方向射入两平行板间的匀强电场中,P从两极板正中央射入,Q从下极板边缘处射入,它们最后打在同一点(不计P、Q的重力以及它们间的相互作用),则从开始射入到打到上极板的过程,下列说法中正确的是( )A.它们运动的时间相等B.它们所带的电荷量之比q P:q Q=1∶2C.它们的电势能减小量之比ΔE P:ΔE Q=1∶2D.它们的电场力做功之比W P:W Q=2∶1【★答案★】AB【解析】设两板间的距离为d,带电粒子的质量为m,带电粒子射入电场的初速度为v0.垂直电场方向P、Q 粒子都做匀速直线运动,则有v0t P=v0t Q,解得t P=t Q,A项正确;两粒子在垂直初速度方向都做初速度为零的匀加速直线运动,对两粒子分别应用牛顿第二定律和运动学公式得,P 粒子,q P E =ma P ,12d =12a P t P 2;Q 粒子,q Q E =ma Q ,d =12a Q t Q 2,联立解得q P ∶q Q =1∶2,B 项正确;两粒子的电势能减少量分别为ΔE P =q P E ×12d ,ΔE Q =q Q Ed ,解得ΔE P ∶ΔE Q =1∶4,C 项错误;两粒子的动能增量分别为ΔE kP =q P E ×12d ,ΔE kQ =q Q Ed ,解得ΔE kP ∶ΔE kQ =1∶4,D 项错误.5.(2017·广州综合测试)如图,带电粒子由静止开始,经电压为U 1的加速电场加速后,垂直电场方向进入电压为U 2的平行板电容器,经偏转落在下板的中间位置.为使同样的带电粒子,从同样的初始位置由静止加速、偏转后能穿出平行板电容器,下列措施可行的是( )A .保持U 2和平行板间距不变,减小U 1B .保持U 1和平行板间距不变,增大U 2C .保持U 1、U 2和下板位置不变,向下平移上板D .保持U 1、U 2和下板位置不变,向上平移上板 【★答案★】 D6.(2016·海南)如图,平行板电容器两极板的间距为d ,极板与水平面成45°角,上极板带正电.一电荷量为q(q>0)的粒子在电容器中靠近下极板处.以初动能E k0竖直向上射出.不计重力,极板尺寸足够大,若粒子能打到上极板,则两极板间电场强度的最大值为( )A.E k04qd B.E k02qdC.2E k02qdD.2E k0qd【★答案★】 B【解析】根据电荷受力可以知道,粒子在电场中做曲线运动,如图所示:当电场足够大时,粒子到达上极板时速度恰好与上极板平行,如图,将粒子初速度v 0分解为垂直极板的v y 和平行极板的v x ,根据运动的合成与分解,当分速度v y =0时,则粒子的速度正好平行上极板,则根据运动学公式:-v y 2=-2Eq m d ,由于v y =v 0cos45°,E k0=12mv 02,联立整理得到E =E k02qd,故B 项正确.7.(2017·青岛一模)(多选)如图所示为匀强电场的电场强度E 随时间t 变化的图像.当t =0时,在此匀强电场中由静止释放一个带电粒子,设带电粒子只受电场力的作用,则下列说法中正确的是( )A .带电粒子将始终向同一个方向运动B .2 s 末带电粒子回到原出发点C .3 s 末带电粒子的速度为零D .0~3 s 内,电场力做的总功为零 【★答案★】 CD8.(多选)(2017·山东淄博市模拟卷)(多选)如图所示,平行板电容器两极板水平放置,一电容为C.电容器与一直流电源相连,初始时开关闭合,极板间电压为U ,两极板间距为d ,电容器储存的能量E =12CU 2.一电荷量为q 的带电油滴以初动能E k 从平行板电容器的轴线水平射入(极板足够长),恰能沿图中所示水平虚线匀速通过电容器,则( )A .保持开关闭合,只将上极板下移了d3,带电油滴仍能沿水平线运动B .保持开关闭合,只将上极板下移d 3,带电油滴将撞击上极板,撞击上极板时的动能为E k +qU12C .断开开关后,将上极板上移d 3,若不考虑电容器极板的重力势能变化,外力对极板做功至少为23CU 2D .断开开关后,将上极板上移d 3,若不考虑电容器极板的重力势能变化,外力对极板做功至少为16CU 2【★答案★】 BD9.如图,与水平方向成45°角的直线MN 处于竖直向下的匀强电场E 中.带电粒子从直线MN 上的P 点以速度v 0水平向右抛出,经过时间t 到达直线MN 上的Q 点.带正电的粒子质量为m ,带电粒子的重力可以忽略.则下列正确的是( )A .粒子在Q 点的速度大小为2v 0B .P 、Q 两点距离5v 0tC .粒子运动时的加速度大小为2v 0tD .P 、Q 两点间的电势差2Etv 0【★答案★】 C10.(2017·河南天一大联考)如图所示,以直线AB 为边界,上下存在场强大小相等、方向相反的匀强电场.在P 点由静止释放一质量为m 、电荷量为q 的带电小球,小球穿过AB 边界时速度为υ0,到达M 点速度恰好减为零.此过程中小球在AB 上方电场中运动的时间是在下方电场中运动时间的12.已知重力加速度为g ,不计空气阻力,则下列说法正确的是( )A .小球带正电B .电场强度大小是3mgqC .P 点距边界线AB 的距离为3v 028gD .若边界线AB 电势为零,则M 点电势为3mv 028g【★答案★】 B【解析】小球先做匀加速运动,后做匀减速运动,可知电场力大于重力;结合牛顿运动定律求电场强度,P 点距边界的距离;通过动能定理求出M 的电势.根据题意,小球先做匀加速运动,后做匀减速运动,可知电场力大于重力,且直线AB 下方区域的场强方向向下,故电荷带负电,故A 项错误;在上方电场,根据牛顿第二定律得:a 1=mg +qE m ,在下方电场中,根据牛顿第二定律得,加速度大小为:a 2=qE -mgm ,因为a 1t 1=a 2t 2,由题意可知:t 1=12t 2,解得:E =3mg q ,故B 项正确;设P 点距边界的距离为h ,则h =v 022a 1=v 028g,故C 项错误;对边界到M 的过程运用动能定理得:qU +mgh ′=0-12mv 02,h ′=v 024g ,解得:U =-3mv 024q ,若边界线AB 电势为零,则M 点电势为-3mv 024q,故D 项错误.11.(2016·秋·宝安区校级期末)示波管的内部结构如图1所示,如果在电极YY ′之间加上图2(a)所示的电压,在XX ′之间加上图2(b)所示电压,荧光屏上会出现的波形是( )【★答案★】 C12.(2017·江西红色七校联考)如图所示,空间存在一匀强电场,其方向与水平方向间的夹角为30°,AB 与电场垂直,一质量为m ,电荷量为q 的带正电小球以初速度v 0从A 点水平向右抛出,经过时间t 小球最终落在C 点,速度大小仍是v 0,且AB =BC ,则下列说法中错误的是( )A .AC 满足AC =32v 0·t B .电场力和重力的合力方向垂直于AC 方向 C .此过程增加的电势能等于12mg 2t 2D .电场强度大小为E =mgq【★答案★】 AC13.(2017年江西赣中南五校联考)如图所示,a 、b 两个带正电的粒子,电荷量分别为q 1和q 2,质量分别为m 1和m 2.它们以相同的速度先后垂直于电场线从同一点进入平行板间的匀强电场后,a 粒子打在B 板的a ′点,b 粒子打在B 板的b ′点,若不计重力,则( )A .电荷量q 1大于q 2B .质量m 1小于m 2C .粒子的电荷量与质量之比q 1m 1>q 2m 2D .粒子的电荷量与质量之比q 1m 1<q 2m 2【★答案★】:C【解析】:设任一粒子的速度为v ,电量为q ,质量为m ,加速度为a ,运动的时间为t ,则加速度:a =qE m① 时间t =x v② 偏转量y =12at 2③因为两个粒子的初速度相等,由②得t ∝x ,则a 粒子的运动时间短,由③得a 的加速度大,由①得a 粒子的比荷q m就一定大,但a 的电荷量不一定大,质量也不一定小,故C 正确,A 、B 、D 错误,故选C. 14.(多选)(2017年潍坊高三调研)如图所示,水平面MN 的下方存在竖直向下的匀强电场,一带电小球由MN 上方的A 点以一定初速度水平抛出,从B 点进入电场,到达C 点时速度方向恰好水平.由此可知( )A .从B 到C ,小球的动能减小 B .从B 到C ,小球的电势能减小C .从A 到B 与从B 到C 小球的运动时间一定相等D .从A 到B 与从B 到C 小球的速度变化量大小一定相等 【★答案★】:AD15. (2017年汕头模拟)如图所示,M 和N 是两个带等量异种电荷的平行正对金属板,两板与水平方向的夹角为60°.将一个质量为m 、电荷量为q 的带正电小球从靠近N 板的位置由静止释放,释放后,小球开始做匀加速直线运动,运动方向与竖直方向成30°角,已知两金属板间的距离为d ,重力加速度为g ,则( )A .N 板带负电B .M 、N 板之间的场强大小为3mgqC .小球从静止到与M 板接触前的瞬间,合力对小球做的功为3mgdD .M 、N 板之间的电势差为-mgdq【★答案★】:D16.(2017·浙江测试)如图所示,在区域Ⅰ(0≤x≤L)和区域Ⅱ内分别存在匀强电场,电场强度大小均为E ,但方向不同.在区域Ⅰ内场强方向沿y 轴正方向,区域Ⅱ内场强方向未标明,都处在xOy 平面内,一质量为m ,电量为q 的正粒子从坐标原点O 以某一初速度沿x 轴正方向射入电场区域Ⅰ,从P 点进入电场区域Ⅱ,到达Ⅱ区域右边界Q 处时速度恰好为零.P 点的坐标为(L ,L2).不计粒子所受重力,求:(1)带电粒子射入电场区域Ⅰ时的初速度; (2)电场区域Ⅱ的宽度. 【★答案★】 (1)qEL m (2)22L 【解析】(1)设带电粒子射入电场区域Ⅰ时的初速度为v 0, 在x 方向:粒子做匀速直线运动,有L =v 0t 在y 方向:粒子做初速度为零的匀加速直线运动, 有L 2=12at 2,且a =qEm 解得:v 0=qELm. (2)粒子在区域Ⅱ做匀减速直线运动,设粒子在P 处的速度为v P ,在x 方向的分速度为v Px ,在y 方向的分速度为v Py ,电场区域Ⅱ的宽度为Δx 2,则 v Px =v 0=qELmv Py 2=2×qE m ×L 2即:v Px =v Py 故:v P =2qELm设粒子在P 处的速度方向与水平方向的夹角为θ,则tan θ=v Py v Px ,∴θ=π4.设粒子从P 做直线运动到Q 所通过的位移为x , 因有:0-v P 2=-2·qE m ·x解得:x =L ,Δx 2=xcos45° 得Δx 2=22L. 17.(2017·江苏模拟)如图所示,在正交坐标系xOy 的第一、四象限内分别存在两个大小相等、方向不同的匀强电场,两组平行且等间距的实线分别表示两个电场的电场线,每条电场线与x 轴所夹的锐角均为60°.一质子从y 轴上某点A 沿着垂直于电场线的方向射入第一象限,仅在电场力的作用下第一次到达x 轴上的B 点时速度方向正好垂直于第四象限内的电场线,之后第二次到达x 轴上的C 点.求:(1)质子在A 点和B 点的速度之比; (2)OB 与BC 长度的比值. 【★答案★】 (1)12 (2)2764设质子从B 到C 经历时间为t 2,作如图辅助线,沿CP 方向:BCsin60°=vt 2 沿BP 方向:BCcos60°=12at 22联立求解:BC =16v 023a所以:OB BC =2764.感谢您的下载!快乐分享,知识无限!由Ruize收集整理!。
带电粒子在复合场中的运动一、带电粒子在组合场中运动的分析方法1.正确受力分析,除重力、弹力、摩擦力外要特别注意静电力和磁场力的分析。
2.确定带电粒子的运动状态,注意运动情况和受力情况的结合。
3.对于粒子连续通过几个不同区域、不同种类的场时,要分阶段进行处理。
4.画出粒子运动轨迹,灵活选择不同的运动规律。
二、带电粒子在叠加场中运动的分析方法1.带电体在叠加场中运动的归类分析(1)磁场力、重力并存①若重力和洛伦兹力平衡,则带电体做匀速直线运动。
②若重力和洛伦兹力不平衡,则带电体将做复杂的曲线运动,因洛伦兹力不做功,故机械能守恒。
(2)电场力、磁场力并存(不计重力的微观粒子)①若电场力和洛伦兹力平衡,则带电体做匀速直线运动。
②若电场力和洛伦兹力不平衡,则带电体做复杂的曲线运动,可用动能定理求解。
(3)电场力、磁场力、重力并存①若三力平衡,带电体做匀速直线运动。
②若重力与电场力平衡,带电体做匀速圆周运动。
③若合力不为零,带电体可能做复杂的曲线运动,可用能量守恒定律或动能定理求解。
2.带电粒子(带电体)在叠加场中运动的分析方法(1)弄清叠加场的组成。
(2)进行受力分析。
(3)确定带电粒子的运动状态,注意运动情况和受力情况的结合。
(4)画出粒子运动轨迹,灵活选择不同的运动规律。
①当带电粒子在叠加场中做匀速直线运动时,根据受力平衡列方程求解。
②当带电粒子在叠加场中做匀速圆周运动时,应用牛顿定律结合圆周运动规律求解。
③当带电粒子做复杂曲线运动时,一般用动能定理或能量守恒定律求解。
④对于临界问题,注意挖掘隐含条件。
(5)记住三点:能够正确对叠加场中的带电粒子从受力、运动、能量三个方面进行分析①受力分析是基础:一般要从受力、运动、功能的角度来分析。
这类问题涉及的力的种类多,含重力、电场力、磁场力、弹力、摩擦力等;②运动过程分析是关键:包含的运动种类多,含匀速直线运动、匀变速直线运动、类平抛运动、圆周运动以及其他曲线运动;③根据不同的运动过程及物理模型,选择合适的定理列方程(牛顿运动定律、运动学规律、动能定理、能量守恒定律等)求解。
考点34 带电粒子在复合场中的运动考点名片考点细研究:(1)带电粒子在复合场中的运动;(2)质谱仪和回旋加速器等。
其中考查到的如:2016年全国卷Ⅰ第15题、2016年天津高考第11题、2016年浙江高考第25题、2016年江苏高考第15题、2015年重庆高考第9题、2015年福建高考第22题、2015年天津高考第12题、2015年山东高考第24题、2015年浙江高考第25题、2015年江苏高考第15题、2014年四川高考第10题、2014年大纲卷第25题、2014年重庆高考第9题等。
备考正能量:本部分内容综合性较强,经常以压轴题的形式出现。
试题综合考查力与运动以及运用数学解决物理问题的能力,尤其是对高新科技仪器物理原理的考查,对考生物理建模及信息迁移的能力要求较高。
今后本部分知识仍为出题的热点和难点,需要着重关注带电粒子在电磁交变场中的运动。
一、基础与经典1. 如图所示,某空间存在正交的匀强电场和匀强磁场,电场方向水平向右,磁场方向垂直纸面向里,一带电微粒由a点进入电磁场并刚好沿虚线ab向上运动。
下列说法中正确的是( )A.该微粒一定带负电B.该微粒的动能一定减少C.该微粒的电势能一定增加D.该微粒的机械能不一定增加答案 A解析微粒受到的重力和电场力是恒力,沿直线运动,则可以判断出微粒受到的洛伦兹力也是恒定的,即该微粒做匀速直线运动,所以B错误;如果该微粒带正电,则受到向右的电场力和向左下方的洛伦兹力,所以不会沿直线运动,故该微粒一定带负电,电场力做正功,电势能一定减少,机械能增加,A正确,C、D错误。
2. 质量为m的带电小球在正交的匀强电场、匀强磁场中做匀速圆周运动,轨道平面在竖直平面内,电场方向竖直向下,磁场方向垂直圆周所在平面向里,如图所示,由此可知( )A .小球带正电,沿顺时针方向运动B .小球带负电,沿顺时针方向运动C .小球带正电,沿逆时针方向运动D .小球带负电,沿逆时针方向运动 答案 B解析 根据题意,可知小球受到的电场力方向向上,大小等于重力,又电场方向竖直向下,可知小球带负电;已知磁场方向垂直圆周所在平面向里,带负电的小球受到的洛伦兹力指向圆心,小球一定沿顺时针方向运动。
原创精品资源学科网独家享有版权,侵权必究!
1
一、电场及电场强度
1.电场的概念
(1)19世纪30年代,法拉第提出一种观点,认为电荷间的作用不是超距的,而是通过场来传递。
(2)电场:存在于电荷周围,传递电荷之间相互作用的特殊媒介物质。电荷间的作用总是通过电场进
行的。虽然看不见摸不着也无法称量,但电场是客观存在的,只要电荷存在它周围就存在电场。
(3)静电场:静止的电荷周围存在的电场称为静电场(运动的电荷或变化的磁场产生的电场称为涡旋
电场)。
(4)电场的基本性质:对放入其中的电荷(不管是运动的还是静止的)有力的作用。电场具有能量和
动量。
(5)电场力:电场对于处于其中的电荷的作用力称为电场力。
2.电场强度、电场力的性质
(1)电场强度:放入电场中某一点的电荷受到的电场力F跟它的电荷量q的比值叫做该点的电场强
度,简称场强。
(2)大小:FEq(定义式,适用于一切电场)。
(3)方向:规定正电荷受电场力的方向为该点的场强方向,负电荷受电场力的方向与该点的场强方向
相反。
(4)单位:N/C或V/m。
(5)物理意义:描述该处电场的强弱和方向,是描述电场力的性质的物理量,场强是矢量。
3.三种电场的电场强度
2
F
EqkQErQUEdUd
适用于任何电场
与检验电荷是否存在无关
适用于点电荷产生的电场
为场源电荷的电荷量
适用于匀强电场
为两点间的电势差,为沿电场方向两点间的距离