酮连氮法ADC新工艺简介
- 格式:pdf
- 大小:79.68 KB
- 文档页数:1
开发与应用AC发泡剂的制备工艺及其微细化途径陈立军 陈焕钦(华南理工大学化学工程研究所,广州510640)摘 要 综述了AC发泡剂的制备工艺,重点探讨了联二脲中间体氧化制备AC发泡剂的氧化工艺,并指出各种氧化工艺的优缺点。
此外,由于传统氧化工艺制备的AC发泡剂粒径粗大,会给微孔泡沫制品的发泡带来困难,介绍了AC发泡剂颗粒微细化的途径。
关键词 AC发泡剂,偶氮二甲酰胺,制备工艺,微细化途径Preparation technique and minif ication pathw ay of AC blowing agentChen Lijun Chen Huanqin(Research Institute of Chemical Engineering,South China University of Technology,Guangzhou510640)Abstract The preparation technique of the AC blowing agent was reviewed.Especially,the oxidation technique of the biurea was discussed with emphasis and the advantage and disadvantage of the oxidation technique was pointed out.In ad2 dition,there is some difficulty in foaming on mipor foam product owing to the AC blowing agent with large particle size, which was prepared by conventional oxidation technique.The minification pathway of the AC blowing agent was also intro2 duced.K ey w ords AC blowing agent,azodicarbonamide,preparation technique,minification pathway 偶氮二甲酰胺(Azodicarbonamide)简称AC发泡剂,具有发气量大、气泡均匀、对制品无污染、所产生的气体无毒、对模具不腐蚀、容易控制温度、不影响固化或成型速度等特点。
展开编辑本段基本信息中文名称:水合肼别称:水合联氨英文名称:Hydrazine hydrate;Diamid hydrate 分子式:N2H4•H2O分子量:50.06水合肼及其衍生物产品在许多工业应用中得到广泛的使用,如化学产品、医药产品、农化产品、水处理、照相及摄影产品等用作还原剂、抗氧剂,用于制取医药、发泡剂等。
水合肼可直接用作:1.热电厂和核电厂中用作循环水的防腐蚀添加剂。
2.工业锅炉和高压蒸汽炉中用水的除氧剂。
水合联氨是一种脱氧剂,它能使水中的溶解氧还原,被用于进一步去除锅炉给水经热力除氧后的残留微量溶解氧。
因为给水中溶解氧会引起锅炉管壁的腐蚀。
向锅炉给水加入水合肼,不但能脱氧,还能防止锅炉内铁垢和铜垢的生成。
水合肼是一种高效还原剂,可以合成以下产品:1.发泡剂:偶氮甲酰胺(偶氮碳酰胺)(如:用于生产内胎用的叠氮化钠产品)。
2.农化产品和医药产品中生物活性中间体的合成,要先生成三唑。
3.偶氮引发剂4.其它各种产品:在染料方面某些特定的有机颜料产品,照相方面用的试剂,氨基甲酸酯及丙烯酸酯类产品,以及氰溴酸产品。
水合肼还可以在以下领域得到应用:1.贵金属的清洗、精炼。
2.酸洗液和表面处理液中回收金属。
3.处理废液和废气。
4.在电子市场中使用的各等级精制硫酸的提纯。
5.塑料和金属(镍、钴、铁、铬等)的金属镶嵌。
6.是火箭燃料的配方产品。
7.在ACTIRED工艺过程中使用,该工艺主要应用于金矿选矿。
由于水合肼具有双官能基团和亲核基团,因此可以生产多种衍生物产品,如:1. LIOZAN:防腐蚀产品,能提供快速的除氧能力,并且可在较低温度下生效。
2.肼盐:3种产品,主要用于合成中间体(尤其在医药工业中)。
3.三唑产品:1,2,4-三唑/1,2,4-三唑钠盐/4-氨基-1,2,4-三唑/3-氨基-1,2,4-三唑。
4.氨基胍碳酸氢盐。
5.新型的聚合物引发剂,如公司产的液态偶氮化合物产品。
水合肼为强还原剂,是医药、农药、染料、发泡剂、显像剂、抗氧剂的原料;大量用作大型锅炉水的脱氧剂;还用于制造高纯度金属、合成纤维、稀有元素的分离。
肼(N2H4)——化学试剂的新生力摘要:肼,又名联胺,是一种多用型的化学试剂。
本文将从肼的性质、用途、制备方法等方面概括的介绍。
关键词:水合肼,无水肼肼,又名联胺,英文名是hydrazine,日常所见的肼主要分为两大类:水合肼(hydrazine hydrate)和无水肼(hydrazine anhydrate)。
目前,市面上所见的水合肼,根据其含水量的不同,主要有40%,80%,55%水合肼三种类型,其中尤以前两种更为常见。
一:性质1:物理性质肼是无色发烟碱性液体,有特臭且具有可燃性。
熔点-51.7℃。
沸点120.1℃。
闪点73ºC(开杯)。
折射率nD(20℃)1.4280。
相对密度d(21/4℃)1.032。
能与水和乙醇混溶,不溶于氯仿和乙醚。
在空气中能吸收二氧化碳,发生烟雾。
且与及易还原的汞、铜等金属氧化物和多孔性氧化物接触时,会起火分解。
并且,肼,也是一种强腐蚀性的试剂,能侵蚀玻璃、橡胶和皮革等,因此,在储存方面,实验室中对含水量不高的水合肼可采用普通的密封的棕色试剂瓶存放,而在工业上,对于大批量水合肼,不但密闭条件要求高,而且不能采用一般的玻璃试剂瓶存放,对于大多数的生产产家多采用聚乙烯塑料桶或内涂环氧树脂的铁桶包装,且生产的试剂保存于阴凉干燥通风处,贮运中要避免日光直射,注意防火等。
2:化学性质NH2NH2,分子中含有一个N-N键和四个N-H键,因此,在化学反应中既可以作还原剂,又可以作氧化剂。
在碱性介质中作氧化剂时N2H4+2H2O+2e=2NH3+2OHˉφº=0.1V作还原剂时N2H 4+4OHˉ-2e=N2+4H2O φº=-1.15V并且,在一定条件下,肼也可发生如下分解:N2H4=N2+2H2产物是无毒的氮气和高能源性的氢气。
又由于联胺分子中的N具有孤对电子,具有跟氨相近的给电子性,在有机合成中具有特殊的用途,如提供胺基,或从有机分子中夺取具有吸电子性的离子等。
有机化学水合肼
水合肼,又称水合联氨,是一种无机化合物,为无色透明油状液体,有淡氨味,在湿空气中冒烟,具有强碱性和吸湿性。
水合肼是一种重要的精细化工原料,在农药、医药及精细化工方面有广泛的应用。
水合肼可用于生产农药,如除草剂、杀虫剂、杀菌剂等;在医药领域,水合肼可用作生产抗结核药、抗糖尿病药等的原料;在精细化工方面,水合肼可用于生产染料、发泡剂、表面活性剂等。
水合肼的合成方法主要有拉西法、尿素法、酮连氮法和双氧水法等。
其中,拉西法是最早的合成方法,但由于其工艺复杂、能耗高、环境污染大等缺点,已逐渐被淘汰。
尿素法是目前应用最广泛的合成方法,其工艺简单、成本低、产品质量好,但也存在一些环境污染问题。
酮连氮法和双氧水法是近年来发展起来的新方法,具有工艺简单、环境友好等优点,但目前还处于研究和开发阶段。
总的来说,水合肼是一种重要的化工原料,具有广泛的应用前景。
随着人们对环境保护的要求越来越高,水合肼的合成方法也在不断改进和创新,以实现更加环保、高效、经济的生产方式。
巨型水性聚氨酯 乳液[1]以水作溶剂或者作分散介质,体系中不含或含很少量的 有机溶剂,异氰酸酯和多元醇缩合生成聚氨酯的乳液。
反应用下式表示:水性聚氨酯乳液合成工艺进展(1-1)这是一类非常重要的缩聚物,水性聚氨酯乳液具有无毒、不污染环境、节能、 易操作等优点,在工业上(包括 黏合剂和涂料等)有着广泛的应用。
因此,它正 逐步成为当今聚氨酯领域发展的重要方向。
从20世纪60年代水性聚氨酯被用做 涂料开发出来到80年代,美、德、日等国的一些聚氨酯产品已从试制阶段发展 为实际生产和应用,一些公司如德国的Bayer 公司、Hoechst 公司、美国Wyandotle 化学公司、日本的Dic 公司走在前列。
国内水性聚氨酯产品品种少、性能不佳, 每年仍需大量进口,因此需开发高质量的产品以满足国内的迫切需要。
由于聚氨 酯的疏水性很强,必须采用新的合成方法制备 PU 乳液,水性聚氨酯的合成过程 主要为:①由低聚物多元醇、扩链剂、二异氰酸酯形成中高相对分子质量的 PU 预聚体;②中和后预聚体在水中乳化,形成分散液。
各种方法在于扩链过程的不 同。
聚氨酯乳液的制备方法有两大类:外乳化法和内乳化法。
1•外乳化法该方法是使用最早的制备水性聚氨酯的方法, 外乳化法就是在乳化剂、高剪 切力存在下强制乳化的方法,最早为 Pschlack 发明,1953年杜邦公司的 W.yandott 采用此法合成了 PU 乳液。
其合成工艺是先将聚醚二醇和有机异氰酸 酯合成PU 预聚体,再以小分子二元醇或二胺扩链,得到PU 的有机溶液,然后于 强烈搅拌下,逐渐加入适当的乳化剂的水溶液,形成一种粗粒乳液,最后送入均 化器,形成粒径适当的乳液。
但因该方法存在反应时间长,乳化剂用量大以及乳 液颗粒粗而导致储存性差,胶层物理机械性能不佳等缺点,目前生产基本不用该 方法。
后来发展起来的一种叫做低温封蔽法制备 PU 乳液的方法,可减少乳化剂 的用量且制得稳定性好的乳液。
聚氨基甲酸酯(polyurethane),简称聚氨酯(PU),是分子结构中含有重复氨基甲酸酯(-NHCOO-)结构的高分子材料的总称。
聚氨酯一般由二异氰酸酯和二元醇或多元醇为基本原料经加聚反应而成,根据原料的官能团数不同,可制成线形或体形结构的聚合物,其性能也有差异。
聚氨酯具有良好的力学性能、粘结性能及耐磨性等,在各领域得到了广发应用。
由于溶剂型聚氨酯的溶剂为有机物,具有挥发性,不仅污染环境,而且对人体有害。
在人们日益重视环境保护的今天以及环保法规的确立,溶剂型涂料中的有机化合物的排放量受到了严格的控制,因此,开发污染小的水性涂料已成为研究的主要方向。
水性聚氨酯(WPU)具有优异的物理机械性能,其不含或含有少量可挥发性有机物,生产施工安全,对环境及人体基本无害,符合环保要求。
其生产方法分为外乳化法和内乳化法,外乳化法又称强制乳化法,由使用这种方法得到的乳液稳定性较差,所以使用较少。
目前使用较多的是内乳化法,也称自乳化法,即在聚氨酯分子链上引入一些亲水性基团,使聚氨酯分子具有一定的亲水性,然后在高速分散下,凭借这些亲水基团使其自发地分散于水中,从而得到WPU。
然而,亲水基团的引入在提高聚氨酯亲水性的同时却降低了它的耐水性和拒油性。
为了改善其耐水性和拒油性,通常是将强疏水性链段引入聚氨酯结构之中。
有机硅、有机氟由于其表面能低和热稳定性好受到人们的重视,已经得到了广泛应用。
同时利用纳米材料来提高涂膜的光学、热学和力学性能。
纳米改性WPU 完美地结合了无机物的刚性、尺寸稳定性、热稳定性及WPU的韧性、易加工性,纳米改性WPU为涂料向高性能化和多功能化提供了崭新的手段和途径,是最有前途的现代涂料研究品种之一。
[1]1.2 水性聚氨酯的基本特征及发展历史1937年德国的Otto Bayer博士首次将异氰酸酯用于聚氨酯的合成。
直到1943年德国科学家Schlack在乳化剂或保护胶体存在的情况下,将二异氰酸酯在水中乳化并在强烈搅拌下加入二胺,首次成功制备了水性聚氨酯。
浅谈对水合腊及其工艺技术的认识偶氨二甲酰胺(ADC是发泡剂的一种,盐湖海虹化工股份有限公司以水合腓和尿素为原料,经缩合、洗涤、氧化等一系列生产工序后制备ADC 大家对水合腓的了解都较为陌生。
现通过学习对水合腓有了初步认知:1水合腓的物化性质水合腓(Hydrazine hydrate),又名水合联氨,是腓的一水化物(N2H - H2O)。
水合腓是无色透明具有发烟的强碱性液体,沸点118.5 C;着火点73 C;相对密度1.032;能与水、醇任意混合;不溶于乙酬和氯仿。
有渗透性、腐蚀性,能浸蚀玻璃、橡胶、皮革和软木等。
与氧化剂接触会引起白燃、白爆、有毒、有臭味。
水合腓脱去结合水则形成腓(Hydrazine) N2H。
腓为油状无色液体,有刺激性的臭味,相对密度1.013,沸点113.5 C,有吸湿性,在空气中发烟。
溶于水、醇、氨、胺;与水能形成共沸物,在碱性溶液中呈现强的还原性。
与卤素、液氨、过氧化氢及其他强氧化剂接触时均可白燃。
长期暴露在空气中或短时期受高温作用,能以爆炸形式分解,贮存时应在氮气中密闭保存。
比水合腓危险性大得多。
水合腓的化学性质来白腓的结构,故腓的化学性质与水合腓的化学性质实质上无差异,其主要化学性质如下:1.1热分解腓受热分解,产生N、吒和NH。
NHr N2+2H I3NHr 4NH+NNH+Hr 2NH金属,如铜、钻、钳及其氧化物,可催化腓的分解过程。
铁锈也能催化分解,在这些催化剂存在下,腓的分解温度明显下降,因此高浓度的腓应贮存于洁净的环境中。
1.2酸碱性反应腓与水反应呈弱碱性:NH+H睥NHf +OHNH+2HCH NH2++2OH形成正一价腓离子NB+和正二价腓离子N2FT;无水腓与碱金属或碱土金属反应形成腓的金属化物:2Na+2NHr ZNaNH+H这些腓的离子化物受热或与空气接触,均可引起爆炸。
1.3还原性反应作为还原剂,腓在碱性溶液中还原能力较亚硫酸强,而弱于亚氯酸;在酸性溶液中的还原能力在Sr3+和Ti2+之间。
酮连氮法ADC发泡剂生产新工艺简介
ADC发泡剂是一种用量最大的发泡剂。
近年来,我国ADC发泡剂行业发展迅速,已经成为最大的生产国。
国内广泛采用的尿素法面临着高物耗、高污染的严峻考验。
我们认为,尿素法的致命缺点为:
(1)工序叠加,物料界面不清,造成副产物持续叠加、副反应增多、物耗增加。
(2)原料路线的原子经济性很差,高物耗、多副产物难于避免。
(3)废水高含盐、高氨氮、成分复杂,治理方法近期难有突破。
我们开发了酮连氮法生产联二脲进而生产ADC的新工艺。
新工艺从源头上减少了副产物的种类和数量,在节能降耗、减少污染物排放、降低治污难度等方面效果显著。
制得ADC产品与尿素法无别。
新工艺的主要特点为: (1)原子利用率高,物耗低,副产物少
新工艺避免了酸、碱的无效消耗,原子利用率成倍提高,从源头上减少了副产物的种类和数量,物料消耗显著降低。
(2)能量消耗低
与国外技术相比,本工艺不经历水解制肼过程;与尿素法相比,本工艺不需要冷冻脱盐。
因此,能耗低。
(3)工序界面清晰,废水易治理
新工艺各工序间物料“界面”清晰、不累积,产物各组分间的理化性质差别大,采用简单方法即可有效回收再用于生产过程。
新工艺外排废水含盐成分单一,主要为氯化钠,容易治理。
(4)成本低廉
与尿素法同比,直接原材料消耗可降低2000-3000元/吨。
(5)适用于对尿素法ADC装置的改造
现有尿素法装置增添部分设备后,可改造改为本工艺。
联系人: 王先生
E-mail: chem-man@。